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Introduction 

• Need for high speed infrastructure 
Bandwidth (BW) hungry technologies emerging (~2 dB increase per year) 

-Wired: IPTV, telepresence,  
online gaming, live streaming etc. 
 
- “Capacity- crunch” eminent 
 

 
– Solutions so far 

• Optical Networks (WDM-DWDM) have exploited many degrees of freedom (BW, 
available power, polarization diversity) except  one: spatial. 

– Soon the online devices will exceed the number of global population!  
– Use of optical Space Division Multiplexing (SDM) is compelling. 

• Ideally: without changing the already infrastructure… 
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Introduction 

• What is Optical MIMO? 
Just like in wireless domain, in optical we can use N  parallel transmission paths 
to greatly enhance the capacity of the system. 

 
 
 
 
 

– First paper on Optical MIMO: H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 
289(5477), 281–283 (2000) 

 
– Multi-Mode Fibers (MMF): Use multiple modes to carry information 

 
 
 
 
 

– Multi-Core Fibers (MCF): Utilize different optical paths of different cores in 
the same fiber (within the same cladding) 
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Introduction 

Problem: Crosstalk phenomenon arises 
 
 
 
 
Due to : 
– Extensive fiber length 
– Bending of fiber 
– Limited area with multiple power distributions 
– Light beam scattering 
– Non-linearities 
 

Crosstalking between adjacent cores in MCF Light beam scattering resulting in crosstalking in MMF  
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Introduction 

Problem: Crosstalk phenomenon 
• Two Approaches: 

– Fight it 

Section of 7-core optical fiber 
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Introduction 

Problem: Crosstalk phenomenon 
• Two Approaches: 

– Take advantage of it 
 
 
 
 

“Classic” MIMO techniques required but with some twists: 
– Low power constraints to avoid non-linear behavior. 
–  Optical channel matrix just a subset of a unitary matrix. 
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System Model 

Consider a single-segment N-channel lossless optical fiber system: Nt ≤ N 
transmitting channels excited, Nr ≤ N receiving channels coherently. The 2N ×2N 
scattering matrix is 
 
 
 
 
Only t ( Haar-distributed t†t = tt† = IN) sub-matrix is of interest (r is ~0).  
 
Generally Nr , Nt < N: 
• Other channels may be used from different, parallel transceivers 
• Modelling of loss: additional energy lost during propagation 
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System Model 

Only t ( Haar-distributed t†t = tt† = IN) sub-matrix is of interest (r is ~0). 
 
 
 
 
 
 
Define Nt x Nr  matrix U as  
 
 
• where P projection operator:  
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System Model 

Channel Equation: 
 
 
– Assume no differential delays between channels (frequency flat fading)the 

mutual information is 
 
 
 
 

• Gaussian noise z 
• Receiver knows the channel (pilot) 
• Transmitter does not know the channel 
• w.l.o.g. 𝑁𝑁𝑡𝑡 ≤ 𝑁𝑁𝑟𝑟  
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Information Metrics 

– Outage Probability: 
 
 

• Optimal: Assumes infinite codewords 
 
 

What is the price of finite codelengths? 
 

– Gallager error bound for M-length code: 
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Coulomb – Gas Analogy 

• Joint probability distribution of eigenvalues of 𝐔𝐔†U 
 
 

 
–   

• Exponent is energy of point charges repelling logarithmically in the presence of 
external field 
 

• Large N: charges coalesce to density 
 
 

 
–  where  

 
• Minimizing (convex) S0 w.r.t p(x) gives the “Marcenko-Pastur” distribution 
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Outage Probability 

• We need tails of distribution: Optical Comms operate at  
 
 
 

– Fourier transform (or use large deviations arguments)  
 
 

 
 

• k plays role of strength of logarithmic attraction/repulsion at 
 

– k>0 shifts charge density to larger values (R>Rerg), k<0 to smaller ones (R<Rerg) 
• Minimizing S w.r.t p(x) gives the generalized Marcenko Pastur distribution 
• Equivalent to balancing forces on the charge located at x: 
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Generalized MP equation 

• Use Tricomi theorem to calculate p(x)  
 

• Obtain closed form expr. for energy S[p] 
 

• E.g. β>1; n>0 
 

 
 

– a, b, k calculated from  
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Generalized MP equation 

• In general 
 
 
 
 
 
 
 
 

• Phase transitions (a=0 to a>0) etc are third order 
– discontinuous  
– Relation to Tracy-Widom (?) 
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Distribution Density of r 

Finally  
 
 
– where  
 
 
 
 
 
 is the variance at the peak of the distribution. 
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Numerical Simulations (β > 1 and n0 > 0) 

The LD approach 
demonstrates better 
behavior, following 
Monte Carlo. 



Aris Moustakas, University of Athens 17 

Numerical Simulations (β > 1 and n0 > 0) 

The LD approach 
demonstrates better 
behavior, following 
Monte Carlo. 

For small values of Nr, 
Nt and N0, the 
discrepancy is minimal 
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Finite Block-Length Error Probability 

 
 

 

• Here we need 
 

 
 
 

 
–  where  

 
• Now k is bounded in [0,1] 
• Also when k<1 

 
 
 

– otherwise no constraint 
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Numerical Simulations (β > 1 and n0 = 0) 

There are two types of phase transition 
points here: 
• rc1: At k=1 point – discontinuous  

 
• rc2: Discontinuous  
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More Realistic Channel 

• Chaotic cavity picture: 
 
 
 

 
 
 

 
• Assuming very low backscattering at edges we obtain 

 
 
– Deterministic (mode energy) 
– Random (complex Gaussian) 
– Diagonal loss matrix 
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More Realistic Channel 

• Mutual Information metric: 
 
 
 

• I – Distribution (mean-variance) can be obtained using replica theory 
 
 
 
 
 
 
 
 
 
– I2 same with ρ=0 – also expressions for variance 
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Numerical Simulations 
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Conclusions 

 
• MIMO: promising idea in Optical Communications 

 
• In this work: 

– Simple model for Optical MIMO channel 
– Large Deviation Approach provides tails for MIMO mutual information 
– Method provides metric for outage throughput and finite blocklength error 
  

• Many issues still open: 
– Channel modeling still at its infancy 
– Transmitter/Receiver Architectures 
– Multiple fiber segments 
– Nonlinearities: Signal becomes interference 
– … 
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