Biomedical Engineering MSc

  • Overview
  • Course Content
  • Special Features
  • Employability
  • Fees
  • Entry Criteria

About the Course

The MSc course in Biomedical Engineering draws on the wide experience of academic staff at Brunel in the School of Engineering and Design that ranges from the development of equipment and experiments for use in space, to research carried out in collaboration with hospitals, biomedical companies and research institutions.

See what the students have said about this course:

See the photo gallery for this course.

This course is accredited by the Institution of Mechanical Engineers (IMechE).

About Mechanical Engineering at Brunel

Mechanical Engineering offers a number of MSc courses all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE), Energy Institute (EI) and Chartered Institute of Building Services Engineers (CIBSE). 

Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Aims

This programme has a strong research and development emphasis. It aims to provide an overall knowledge base, skills and competencies, which are required in biomedical engineering, research activities and in related fields. Students will develop expertise in advanced product development and research.

Enquiries

Admissions and Course Enquiries
Web: Admissions Enquiries Information
Tel (before application): +44 (0)1895 265814 (School Marketing Office)
Tel (after application): +44 (0)1895 265265 (Admissions Office)
Contact Admissions or Course Enquiries Online

Course Director: Professor Ibrahim Esat
Email: ibrahim.esat@brunel.ac.uk

School Marketing Office
Web: School of Engineering and Design
Tel: +44 (0)1895 265814
Email: sed-pg-admissions@brunel.ac.uk

Course Content

As well as giving a solid scientific understanding, the course also addresses commercial, ethical, legal and regulatory requirements, aided by extensive industrial contacts.

Students who successfully complete the course will have acquired skills that are essential to the modern biomedical and healthcare industry, together with the expertise required to enter into management, product innovation, development and research.

Taught modules are given in a short course format. The order in which they are taken may also be adjusted to suit individual needs.

All students take the compulsory foundation modules. They may then continue to take the core programme, or select modules covering a particular theme that is relevant to their own interests or those of their sponsoring organisation.

Typical Modules (all core)

Biomechanics and Biomaterials
Main topics include: review of biomechanical principles; introduction to biomedical materials; stability of biomedical materials; biocompatibility; materials for adhesion and joining; applications of biomedical materials; implant design.

Biofluid Mechanics
Main topics include: review of the cardiovascular system; the cardiac cycle and cardiac performance, models of the cardiac system, respiratory system and respiratory performance, lung models, physiological effects of exercise, trauma and disease; blood structure and composition, blood gases. oxygenation, effect of implants and prostheses, blood damage and repair, viscometry of blood, measurement of blood pressure and flow; urinary system: anatomy and physiology, fluid and waste transfer mechanisms, urinary performance and control, effects of trauma, ageing and disease; modelling of biofluid systems, review of mass, momentum and energy transfers related to biological flow systems, fluid mechanics in selected topics relating to the cardiovascular and respiratory systems; measurements in biomedical flows.

Innovation and Management
Main topics include: company structure and organisation will be considered (with particular reference to the United Kingdom), together with the interfacing between hospital, clinical and healthcare sectors; review of existing practice: examination of existing equipment and devices; consideration of current procedures for integrating engineering expertise into the biomedical environment. Discussion of management techniques; design of biomedical equipment: statistical Procedures and Data Handling; matching of equipment to biomedical systems; quality assurance requirements in clinical technology; patient safety requirements and protection; sterilisation procedures and infection control; failure criteria and fail-safe design; maintainability and whole life provision; public and environmental considerations: environmental and hygenic topics in the provision of hospital services; legal and ethical requirements; product development: innovation in the company environment, innovation in the clinical environment; cash flow and capital provision; testing and validation; product development criteria and strategies.

Biomedical Engineering Principles
Main topics include: bone structure and composition; the mechanical properties of bone, cartilage and tendon; the cardiovascular function and the cardiac cycle; body fluids and organs; organisation of the nervous system; sensory systems; biomechanical principles; biomedical materials; biofluid mechanics principles, the cardiovascular system, blood structure and composition, modelling of biofluid systems.

Biomedical Instrumentation and Signal Processing
Main topics include: biomedical instrumentation; biomedical signal processing.

Design and Manufacture
Main topics include: design and materials optimisation; management and manufacturing strategies; improving clinical medical and industrial interaction; meeting product liability, ethical, legal and commercial needs.

Artificial Organs and Biomedical Applications
Main topics include: audiology and cochlear implants; prostheses; artificial limbs and rehabilitation engineering; life support systems; robotic surgical assistance; telemedicine; nanotechnology.

Dissertation
The choice of Dissertation topic will be made by the student in consultation with academic staff and (where applicable) with the sponsoring company. The topic agreed is also subject to approval by the Module Co-ordinator. The primary requirement for the topic is that it must have sufficient scope to allow the student to demonstrate his or her ability to conduct a well-founded programme of investigation and research. It is not only the outcome that is important since the topic chosen must be such that the whole process of investigation can be clearly demonstrated throughout the project. In industrially sponsored projects the potential differences between industrial and academic expectations must be clearly understood.

Special Features

Brunel recognises that scientific understanding is just one part of medical engineering. The course also addresses commercial, ethical, legal and regulatory requirements, and extensive industrial contacts fulfil its contextual elements.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Foundation course external to the School at Brunel

The Intensive International Pre-Masters Course is a full-time 14-week course for international students who have marginally fallen below the postgraduate direct entry level and would like to progress onto a Master's degree course in the School of Engineering and Design. It combines academic study, intensive English Language preparation, study skills and an orientation programme.

Accreditation

Biomedical Engineering is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Careers

Students who successfully complete the course will have gained the skills that are essential for the modern biomedical and healthcare industry, together with the expertise required to enter management, product innovation, development and research.

At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

» More about Employability

Fees for 2014/15 entry

UK/EU students: £7,750 full-time

International students: £16,000 full-time

Read about funding opportunities available to postgraduate students

Fees quoted are per annum and are subject to an annual increase.

Entry Requirements

A UK first or second class Honours degree or equivalent internationally recognised qualification in an engineering; appropriate science or technology discipline. Other qualifications and relevant experience will be assessed on an individual basis.

English Language Requirements

  • IELTS: 6 (min 5.5 in all areas) 
  • TOEFL Paper test: 550 (TWE 4) PBT
  • TOEFL Internet test: 79 IBT (R18, L17, S20, W17)
  • Pearson: 51 (51 in all subscores)
  • BrunELT: 60% (min 55% in all areas)

Brunel also offers our own BrunELT English Test and accept a range of other language courses. We also have a range of Pre-sessional English language courses, for students who do not meet these requirements, or who wish to improve their English.

Our International Pathways and Language Centre offers a range of foundation and pre-masters courses to provide you with the academic skills required for your chosen course.

Page last updated: Tuesday 21 January 2014