

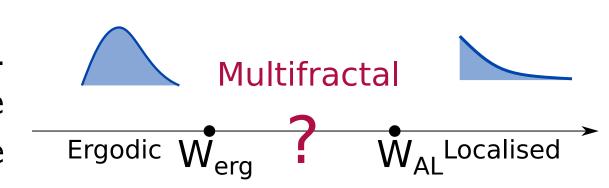
From non-ergodic eigenvectors to local resolvent statistics and back: a random matrix perspective

D. Facoetti¹, P. Vivo¹, G. Biroli²

Department of Mathematics, King's College London 2 IPhT, CEA Saclay and Laboratoire de Physique Statistique, École Normale Supérieur, Paris

Reference: EPL **115** (2016) 47003, arXiv:1607.05942

The phenomenon of many-body localisation (MBL) has attracted considerable interest in recent years in the study of non-equilibrium quantum sytems. A feature that is not well understood is the existence of an intermediate extended non-ergodic "bad metal" phase between the localised and extended ones. To help the debate about the existence and role of extended, non-ergodic phases in MBL and the related problem of Anderson localisation on the Bethe lattice, we study such a phase in the simpler setting of the generalised Rosenzweig-Porter random matrix model. We confirm previous results about the multifractality of the eigenstates, and show that the intermediate phase can be characterised studying the local resolvent in a non-standard scaling limit.



Generalised Rosenzweig-Porter model

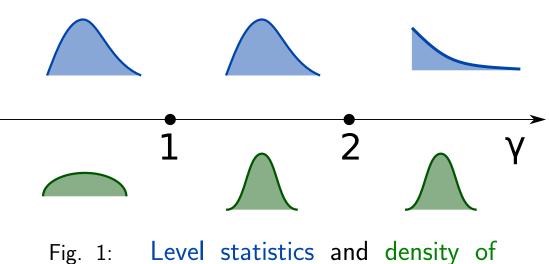
Random matrix model with the $N \times N$ Hamiltonian

$$H = A + \frac{\mu}{N^{\gamma/2}}V\tag{1}$$

where A is diagonal with real i.i.d. entries $a_i \sim p_A(a_i)$, and V belongs to the Gaussian unitary ensemble (GUE) with variance 1. The parameter γ is a proxy for the disorder strength. All quantities are considered in the large N limit.

Level statistics: transition between Poisson ($\gamma > 2$) and Wigner-Dyson ($\gamma < 2$). Well known [1] and was interpreted as the fingerprint of a transition between a localised and an ergodic phase.

Eigenstates: it was argued recently [2] that the they are actually delocalised only for $\gamma \leq 1$. There is a third, intermediate phase $\gamma \in (1,2)$ in which the eigenstates are multifractals extended over $\propto N^{2-\gamma}$ sites.



states in the three phases.

The model undergoes two transitions, AL-like at $\gamma=2$ and ergodic at $\gamma=1$.

Recurrence relation for the local resolvent

Resolvent matrix:

$$\mathbf{G}(z) = (z - H)^{-1} \tag{2}$$

From block matrix inversion formula, equivalence between RV

$$G_{00}^{(N+1)}(z)^{-1} \stackrel{d}{=} z - H_{00} - \frac{\mu^2}{N^{\gamma}} \sum_{ij} G_{ij}^{(N)}(z) V_{0i} V_{j0}$$
 (3)

Correlations between terms in the sum, and their variances are small for large N (shown perturbatively). The sum converges to a non-fluctuating quantity involving $\overline{G}(z)=\mathrm{Tr}\overline{\mathbf{G}}(z)/N$. All diagonal elements of \mathbf{G} are equivalent. Therefore the distribution of the local resolvent is given by

$$G_{ii}(z)^{-1} \stackrel{d}{=} z - a_i - \frac{\mu^2}{N^{\gamma - 1}} \overline{G}(z) - \frac{\mu}{N^{\gamma / 2}} V_{ii}$$
 (4)

The values $\gamma=1$ and $\gamma=2$, corresponding to the transitions, appear naturally when comparing the order in N of the terms in the expression. In the intermediate region $\gamma\in(1,2)$, the last term can be neglected.

Local resolvent statistics

We consider the local resolvent at $z=\lambda-\mathrm{i}\eta$, with λ in the bulk of the spectrum. The statistics of $\mathrm{Im}G_{ii}$, with η small but finite in the thermodynamics limit, has been studied in many disordered systems, and is widely used to characterise localisation transitions [3]. Using eq. (4) we derived the probability distribution for the real and imaginary parts of the local resolvent, both with η small but fixed, and $\eta\approx N^{-\delta}$ (Fig. 2). For the imaginary part we obtained, with η of order one,

$$p_{\text{Im}G}(x) = \phi_A(x) \frac{\sqrt{\eta}}{2x^{3/2}\sqrt{1 - nx}}$$
 (5)

with support $(0,1/\eta)$ and where $\phi_A(x)$ depends weakly on x.

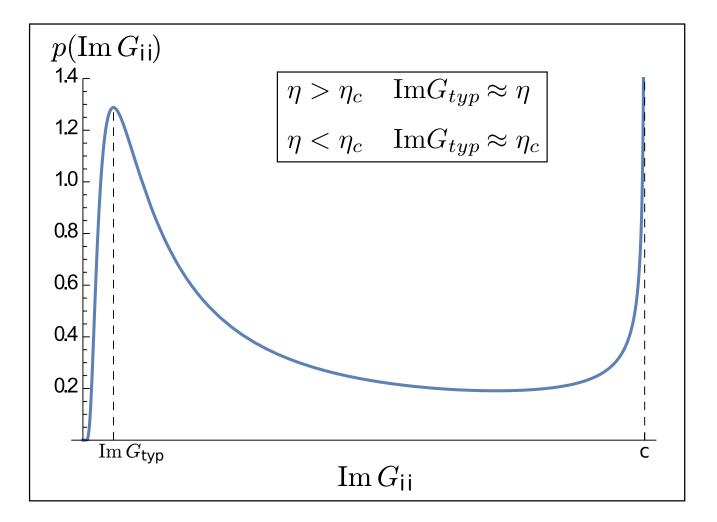
The details depend on the distribution p_A through ϕ_A , but some features are universal: a peak at ${\rm Im}G_{typ}\approx\eta$, the cutoff at $1/\eta$ and a power law $\propto x^{-3/2}$ in between. This behaviour is typical of localised systems [3].

Taking a scaling $\eta \approx N^{-\delta}$ we found two different regimes, separated by a critical $\eta_c = N^{1-\gamma}$.

• If $\delta > \delta_c = \gamma - 1$, $\eta \gg \eta_c$, the behaviour is the same as for the previous case.

• If $\delta < \delta_c, \eta \ll \eta_c$, the distribution has the same form with $\eta \to \mu^2 N^{1-\gamma} \mathrm{Im} \overline{G}$ In the first case, the PDF looks as if the system were in a localised phase. In the second case, $\mathrm{Im} G_{typ} \gg \eta$ and the system looks as in a delocalised phase.

This suggests the idea of a localisation length in energy space η_c .



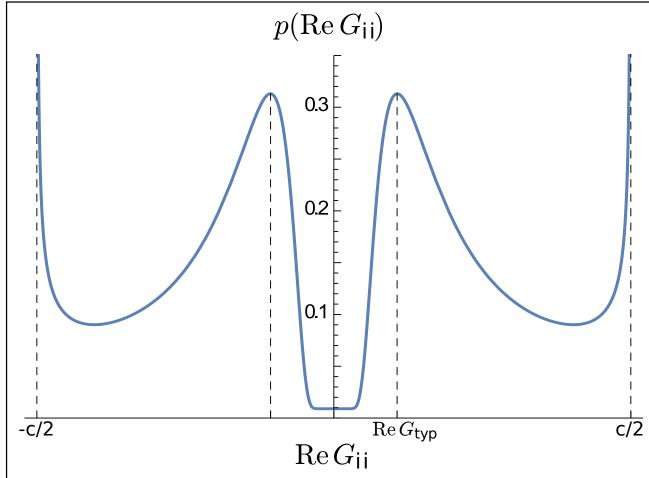


Fig. 2: Probability densities for real and imaginary parts of the local resolvent.

Dyson Brownian motion

Matrix-valued stochastic process

$$dM_{ij}(t) = \sqrt{\frac{(1+\delta_{ij})\sigma^2}{2}}dW_{ij},$$
(6)

where W_{ij} are independent standard complex Wiener processes, with $W_{ij}=W_{ji}^*$. With initial conditions M(0)=A and $\sigma^2=N^{-\gamma}$, at $t=\mu^2$ $M(\mu^2)=H$ is a GRP matrix.

Using Itō's calculus we derived evolution equations for the eigenvalues, eigenvectors, and for the quantities, $u_{i|j} = [|\psi_j^{(i)}|^2]$ where $[\dots]$ indicates the average performed only over the off-diagonal elements V_{ij} [4, 5]. We analysed the evolution equation

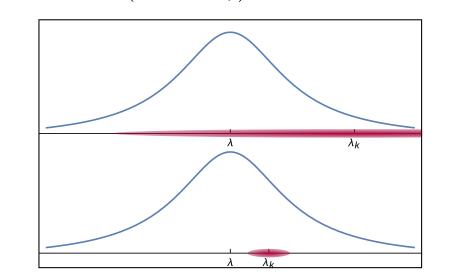
$$\partial_t u_{i|j}(t) = N^{-\gamma} \sum_{k \neq i} \frac{u_{k|j}(t) - u_{i|j}(t)}{(\lambda_k - \lambda_i)^2} , \qquad (7)$$

using an ansatz for $u_{i|j}$ inspired by the result on the local resolvent statistics, but without fixing the value of δ_c .

The ansatz is consistent if the eigenstates are delocalised over the $N^{2-\gamma}$ sites closest in energy, compatible with the results of Ref. [2].

Conclusions

• The extended, non-ergodic phase can be characterised by the statistics of the local resolvent $G_{ii}(\lambda-\mathrm{i}\eta)$ in the non-standard scaling limit $\eta\propto N^{-\delta}$.



- Insights from local resolvent statistics and Dyson Brownian confirm that for $\gamma \in (1,2)$ the eigenstates of the GRP are extended over the $N^{2-\gamma}$ sites closest in energy.
- Local resolvent statistics explained intuitively as eigenvalue contribute to ${\rm Im}G_{ii}$ as "packets" of width $\eta_c=N^{1-\gamma}$.

References

- [1] H. Kunz and B. Shapiro, Phys. Rev. E **58**, 400 (1998).
- [2] V. E. Kravtsov et al., New Journal of Physics **17**, 122002 (2015).
- [3] A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. Lett. **72**, 526 (1994).
- [4] P. Bourgade and H.-T. Yau, arXiv:1312.1301.
- [5] R. Allez, J. Bun, and J.-P. Bouchaud, arXiv:1412.7108.

Contacts

Davide Facoetti

davide.facoetti@kcl.ac.uk

CANES Centre for Doctoral training

Disordered systems group

Department of Mathematics

King's College London