Non-intersecting squared Bessel paths

ARNO KUIJLAARS

Department of Mathematics

Katholieke Universiteit Leuven

Belgium

joint work with

Andrei Martínez-Finkelshtein (Almeria, Spain)

Franck Wielonsky (Lille, France)

Determinantal point processes

- ▲ The structure behind eigenvalues of unitary random matrices appears in other situations as well
 - ▲ Non-intersecting paths
 - **▲** Certain tiling problems, stochastic growth problems
 - **▲** Representation theory of large groups
- ▲ They are determinantal point processes: a random point process so that correlation functions have determinantal form

$$\det \left[K(x_j, x_k) \right]_{j,k=1,\dots,m}$$

lacktriangle K is the correlation kernel

Unitary random matrices

▲ The eigenvalues of the unitary ensemble

$$\frac{1}{Z_n} \exp(-\operatorname{Tr} V(M)) dM$$

defined on $n \times n$ Hermitian matrices M follow a determinantal point process with correlation kernel

$$K(x,y) = \sqrt{e^{-V(x)}} \sqrt{e^{-V(y)}} \sum_{j=0}^{n-1} p_j(x) p_j(y)$$

 $lacktriangleq p_j$ is the orthonormal polynomial of degree j with weight $e^{-V(x)}$

Non-intersecting random paths

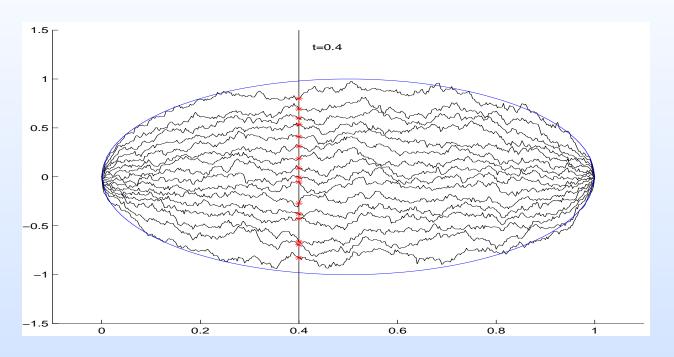
- lacktriangle Given a 1-D diffusion process with transition probability density $p_t(x,y)$. Suppose n independent copies $X_1(t),\ldots,X_n(t)$ conditioned to
 - lacktriangle start at time t=0 at n given points $a_1 < a_2 < \cdots < a_n$,
 - lacktriangle end at time t=T at n given points $b_1 < b_2 < \cdots < b_n$,
 - lacktriangle not intersect in the full time interval (0,T).
- lacktriangle Then the positions of the paths at given time $t\in(0,T)$ are a determinantal point process. consequence of Karlin-McGregor (1959) theorem
- lacktriangle The correlation kernel K takes the form

$$K(x,y) = \sum_{j=1}^{n} \phi_j(x)\psi_j(y)$$

where biorthogonal functions ϕ_j and ψ_j arise from biorthogonalizing the transition probability density functions $p_t(a_j,x)$ and $p_{T-t}(x,b_j)$.

Confluent case as a model for GUE

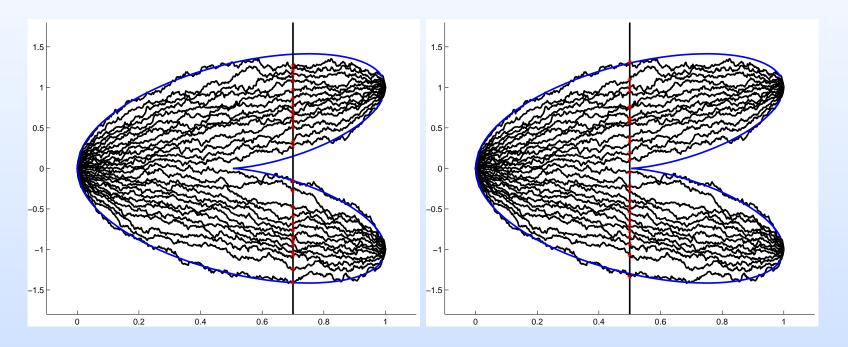
▲ The confluent case $a_j \to 0$, $b_j \to 0$, for Brownian motion leads to (a variation on) Dyson's Brownian motion



▲ The positions of the paths at any given time t have the same joint p.d.f. as the eigenvalues of an $n \times n$ GUE matrix.

GUE with external source

lacktriangle Eigenvalues of GUE with external source having 2 distinct eigenvalues, have the same joint pdf as the positions of non-intersecting Brownian paths with two end positions



▲ Kernel has usual scaling limits (sine kernel and Airy kernel) from random matrix theory. At the cusp point a new family of scaling limits appear in a double scaling limit: Pearcey kernels Brézin-Hikami (1998), Bleher-Kuijlaars (2007)

Multiple Hermite polynomials

- **▲** We analyzed this using the connection with multiple Hermite polynomials.
 - lacktriangle Given two weight functions w_1 and w_2 and indices n_1 , n_2 , we look for a monic polynomial

$$P_{n_1,n_2}(x) = x^n + \cdots, \qquad n = n_1 + n_2$$

such that

$$\int_{-\infty}^{\infty} P_{n_1,n_2}(x) x^k w_1(x) dx = 0, \qquad k = 0, \dots, n_1 - 1,$$

$$\int_{-\infty}^{\infty} P_{n_1,n_2}(x) x^k w_2(x) dx = 0, \qquad k = 0, \dots, n_2 - 1.$$

- $lacktriangleq P_{n_1,n_2}$ is called a multiple orthogonal polynomial (MOP).
- **▲ Multiple Hermite polynomials correspond to case**

$$w_1(x) = e^{-n(\frac{1}{2}x^2 - ax)}, \quad w_2(x) = e^{-n(\frac{1}{2}x^2 + ax)}$$

Riemann-Hilbert problem for MOPs

lacktriangle MOPs (with two weights) satisfy a 3 imes 3 matrix valued RH problem

Van Assche-Geronimo-Kuijlaars (2001)

generalization of Fokas-Its-Kitaev (1992) RH problem for OPs

 $lack Y:\mathbb C\setminus\mathbb R\to\mathbb C^{3 imes 3}$ is analytic

$$\blacktriangle \ Y(z) \begin{pmatrix} z^{-n_1-n_2} & 0 & 0 \\ 0 & z^{n_1} & 0 \\ 0 & 0 & z^{n_2} \end{pmatrix} \to I_3 \quad \text{as } z \to \infty$$

 \blacktriangle The RH problem is solvable if and only if the MOP P_{n_1,n_2} exists and is unique.

Correlation kernel

lacktriangle The correlation kernel for non-intersecting Brownian paths with two endpoints can be expressed in terms of the solution Y of the RH problem

$$K(x,y) = \frac{1}{2\pi i(x-y)} \begin{pmatrix} 0 & w_1(y) & w_2(y) \end{pmatrix} Y_+(y)^{-1} Y_+(x) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

with weights
$$w_1(x)=e^{-n(x^2-ax)}$$
, $w_2(x)=e^{-n(x^2+ax)}$ where a depends on t for two weights: Bleher-Kuijlaars (2004)

extension to more than two weights: Daems-Kuijlaars (2004)

▲ The RH problem is then analyzed with the steepest descent method for RH problems of Deift and Zhou.

Squared Bessel process

▲ Squared Bessel process is a diffusion process on $[0,\infty)$ depending on parameter $\alpha>-1$, with transition probabilities

$$p_t^{\alpha}(x,y) = \frac{1}{2t} \left(\frac{y}{x}\right)^{\alpha/2} e^{-(x+y)/(2t)} I_{\alpha} \left(\frac{\sqrt{xy}}{t}\right), \qquad x, y > 0,$$

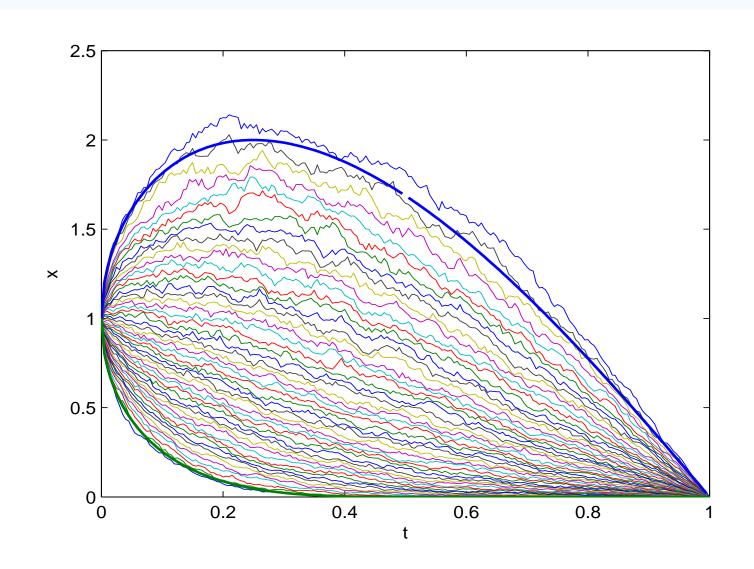
where I_{α} is the modified Bessel function of the first kind of order α

$$I_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{(z/2)^{2k+\alpha}}{k!\Gamma(k+\alpha+1)}$$

- - ▲ Non-intersecting squared Bessel processes were considered by König-O'Connell (2001) and Desrosiers-Forrester (arxiv 2006).
 - ▲ Related work by Katori-Tanemura and by Tracy-Widom (2007) on non-intersecting Brownian excursions.

Simulation of 50 non-intersecting paths

 \blacktriangle Confluent case: $a_j \to a > 0$ and $b_j \to 0$.



Non-intersecting squared Bessel paths

PROPOSITION:

In the confluent limit $a_j \to a > 0$, $b_j \to 0$, the positions of n non-intersecting squared Bessel paths at time $t \in (0,1)$ are a MOP ensemble with weights

$$w_1(x) = x^{\alpha/2} e^{-\frac{Tx}{2t(T-t)}} I_{\alpha} \left(\frac{\sqrt{ax}}{t}\right)$$

$$w_2(x) = x^{(\alpha+1)/2} e^{-\frac{Tx}{2t(T-t)}} I_{\alpha+1} \left(\frac{\sqrt{ax}}{t}\right)$$

and multi-indices
$$n_1 = \lceil n/2 \rceil$$
 , $n_2 = \lfloor n/2 \rfloor$

▲ Proof depends on differential relations for modified Bessel functions

RH problem

lacktriangle COROLLARY: The correlation kernel K_n is expressed in terms of the solution Y of a 3×3 matrix valued RH problem

$$K_n(x,y) = \frac{1}{2\pi i(x-y)} \begin{pmatrix} 0 & w_1(y) & w_2(y) \end{pmatrix} Y_+(y)^{-1} Y_+(x) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

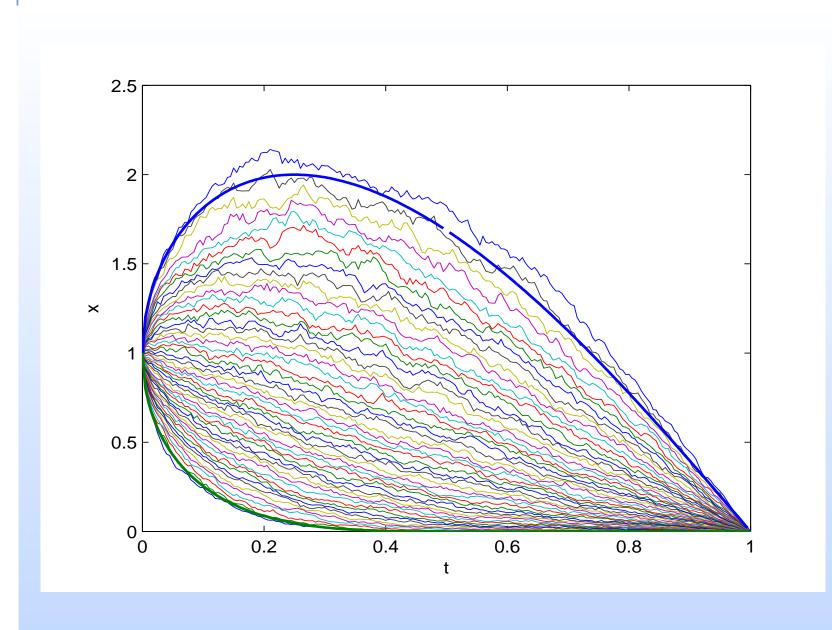
- \blacktriangle Jump condition $Y_+(x) = Y_-(x) \left(\begin{smallmatrix} 1 & w_1(x) & w_2(x) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right) \quad \text{on } \mathbb{R}$
- **▲** Asymptotic condition

$$Y(z) = (I + O(1/z)) \operatorname{diag} \left(z^{n_1 + n_2} \quad z^{-n_1} \quad z^{-n_2}\right)$$

lacktriangle To obtain interesting limits as $n o \infty$, we rescale time

$$t \mapsto \frac{t}{2n}, \qquad T \mapsto \frac{1}{2n}, \qquad \text{so now } 0 < t < 1$$

Simulation of 50 non-intersecting paths



Global regime 1

THEOREM on global regime

As $n \to \infty$ the squared Bessel paths fill out a region in the tx-plane whose boundary satisfies the algebraic equation

$$4ax^{3} + x^{2}(t^{2} - 20at(1-t) - 8a^{2}(1-t)^{2}) - 4x(1-t)(t-a(1-t))^{3} = 0$$

lacktriangle For every 0 < t < 1 the algebraic equation has three solutions

$$x = 0, \quad x = p = p(t), \quad x = q = q(t)$$
 with $p < q$

- lacktriangle There is a critical time $t_{cr}=rac{a}{a+1}$ so that

Global regime 2

THEOREM on global regime (cont')

lacktriangle For every $t \in (0,1)$ the paths at time t accumulate on the interval

$$\Delta_1 = [\max(0, p), q]$$

with a limiting mean density

$$\frac{d\mu_1(x)}{dx} = \frac{1}{\pi} |\operatorname{Im} \zeta(x)|, \quad x \in \Delta_1,$$

where $\zeta = \zeta(x)$ is a non-real solution of

$$x\zeta^{3} - \frac{2x}{t(1-t)}\zeta^{2} + \left(\frac{x}{t^{2}(1-t)^{2}} + \frac{1}{t(1-t)} - \frac{a}{t^{2}}\right)\zeta - \frac{1}{t^{2}(1-t)^{2}} = 0$$

THEOREM on local regime

- lacktriangle The correlation kernel $K_n(x,y)$ has scaling limits as $n o \infty$
 - **▲** Bulk scaling near a point $x^* \in (p, q)$:

$$\frac{\sin \pi (x-y)}{\pi (x-y)}$$

▲ Soft edge scaling near a point $x^* = q$ or $x^* = p$ if $t < t_{cr}$:

$$\frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x - y}.$$

 \blacktriangle Hard edge scaling near $x^* = 0$ if $t > t_{cr}$:

$$\frac{J_{\alpha}(\sqrt{x})\sqrt{y}J_{\alpha}'(\sqrt{y}) - \sqrt{x}J_{\alpha}'(\sqrt{x})J_{\alpha}(\sqrt{y})}{2(x-y)}$$

THEOREM at the critical time

- \blacktriangle At the critical time t_{cr} the density of paths grows like $\sim x^{-1/3}$ as $x \to 0+$.
- lacktriangle Double scaling limit at $x^* = 0$ and $t = t_{cr}$:

$$\lim_{n \to \infty} \frac{1}{cn^{3/2}} K_n \left(\frac{x}{cn^{3/2}}, \frac{y}{cn^{3/2}}; t = t_{cr} + \frac{\tau}{c'n^3} \right) = ??$$

- ▲ New limiting kernels involving solutions of third order ODEs
- \blacktriangle In case $\alpha=0$:

$$\frac{1}{\pi(x-y)} \left[f(x)yg''(y) - xf'(x)g'(y) + xf''(x)g(y) + \frac{x}{y}f'(x)g(y) - \tau f(x)g(y) \right]$$

- lacktriangleq f(x) is a solution of $xf''' + 2f'' \tau f' f = 0$

About the proof

▲ Deift-Zhou steepest descent analysis of the RH problem with jump matrix

$$\begin{pmatrix} 1 & x^{\alpha/2}e^{-\frac{nx}{t(1-t)}}I_{\alpha}\left(\frac{2n\sqrt{ax}}{t}\right) & x^{(\alpha+1)/2}e^{-\frac{nx}{t(1-t)}}I_{\alpha+1}\left(\frac{2n\sqrt{ax}}{t}\right) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

for x > 0

First transformation $Y \mapsto X$

The first transformation uses the special differential properties of

$$z^{\alpha/2}I_{\alpha}(2\sqrt{z}), \qquad z^{(\alpha+1)/2}I_{\alpha+1}(2\sqrt{z}),$$
 $z^{\alpha/2}K_{\alpha}(2\sqrt{z}), \qquad z^{(\alpha+1)/2}K_{\alpha+1}(2\sqrt{z})$

$$z^{\alpha/2}K_{\alpha}(2\sqrt{z}), \qquad z^{(\alpha+1)/2}K_{\alpha+1}(2\sqrt{z})$$

It leads to RH problem with jump matrices

$$\begin{pmatrix} 1 & x^{\alpha} e^{-n\left(\frac{x}{t(1-t)} - \frac{2\sqrt{ax}}{t}\right)} & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad x > 0,$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & e^{2in\frac{2\sqrt{|ax|}}{t}} & 0 \\
0 & |x|^{\alpha} & e^{-2in\frac{2\sqrt{|ax|}}{t}}
\end{pmatrix}, \quad x < 0$$

Equilibrium problem

Minimize

$$\iint \log \frac{1}{|x-y|} d\mu_1(x) d\mu_1(y) - \iint \log \frac{1}{|x-y|} d\mu_1(x) d\mu_2(y) + \iint \log \frac{1}{|x-y|} d\mu_2(x) d\mu_2(y) + \int \left(\frac{x}{t(1-t)} - \frac{2\sqrt{ax}}{t}\right) d\mu_1(x)$$

over pairs of measures (μ_1,μ_2) such that

$$lack \operatorname{supp}(\mu_1) \subset [0,\infty), \qquad \int d\mu_1 = 1,$$

$$\blacktriangle$$
 supp $(\mu_2) \subset (-\infty, 0]$, $\int d\mu_2 = 1/2$,

 $lacktriangleq \mu_2 \leq \sigma$, where σ is the (unbounded) measure on $(-\infty,0]$ with density

$$\frac{d\sigma}{dx} = \frac{\sqrt{a}}{\pi t \sqrt{|x|}} = -\frac{d}{dx} \left(\frac{2\sqrt{|ax|}}{\pi t} \right), \quad x < 0.$$

Minimizer and g-functions

- lacktriangle The constraint $\mu_2 \leq \sigma$ is active only if p < 0, that is, if $t > t_{cr}$.
- ▲ The unique minimizer satisfies

$$\operatorname{supp}(\mu_1) = \Delta_1 = [\max(0, p), q],$$

$$\operatorname{supp}(\mu_2) = (-\infty, 0],$$

$$\operatorname{supp}(\sigma - \mu_2) = \Delta_2 = (-\infty, \min(0, p)]$$

▲ Explicit formulas for densities

$$\frac{d\mu_1(x)}{dx} = \frac{1}{\pi} |\operatorname{Im} \zeta(x)| \chi_{\Delta_1}(x), \qquad \frac{d(\sigma - \mu_2)(x)}{dx} = \frac{1}{\pi} |\operatorname{Im} \zeta(x)| \chi_{\Delta_2}(x),$$

where (as before) $\zeta = \zeta(x)$ is a non-real solution of

$$x\zeta^{3} - \frac{2x}{t(1-t)}\zeta^{2} + \left(\frac{x}{t^{2}(1-t)^{2}} + \frac{1}{t(1-t)} - \frac{a}{t^{2}}\right)\zeta - \frac{1}{t^{2}(1-t)^{2}} = 0$$

Second transformation $X \mapsto U$

 \blacktriangle Define the g-functions $g_j(z)=\int \log(z-s)d\mu_j(s)$ and for certain constant matrices C_n and D_n ,

$$T(z) = C_n X(z) \operatorname{diag}\left(e^{-ng_1(z)}, e^{n(g_1-g_2)(z)}, e^{ng_2(z)}\right) D_n$$

▲ Then we have jump matrices of the form

$$\begin{pmatrix} e^{-2n\varphi_{1+}(x)} & x^{\alpha} & 0\\ 0 & e^{-2n\varphi_{1-}(x)} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad x \in \Delta_{1}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & e^{-2n\varphi_{2-}(x)} & 0 \\
0 & |x|^{\alpha} & e^{-2n\varphi_{2+}(x)}
\end{pmatrix}, x \in \Delta_{2}$$

and all other jump matrices are I+ "exp. small", including the one on (p,0) if $t>t_{cr}$, which is where the upper constraint comes in.

Further steps

- ▲ Then we follow the general scheme of the Deift-Zhou steepest descent method
 - lacktriangle opening up lenses around Δ_1 and Δ_2
 - **▲** construction of global parametrix
 - lacktriangle local parametrices around p and q with Airy functions
 - ▲ local parametrix around 0 with Bessel functions
- lacktriangle Certain complications due to unboundedness of Δ_2
- Detailed analysis of critical time remains to be done