MSc Curriculum Development and Requirements

Prepared by

Professor M. Shafik, University of Derby

Professor M. E. Farrag, Glasgow Caledonian University

MSc programme with a focus on Engineering and Technology based on first year is a teaching year and second year is for programme dissertation and industrial placement.

This is a draft of the possible potential 2-year postgraduate engineering and technology programme with a focus on Electric Vehicle Systems. The programme has a selection of modules that split over 2 years. Each module specifications will play a vital development of the student knowledge and skills to meet the existing and future industrial market needs and revolution. The titles of the modules are reflecting the possible contents that can be included. It could also be used to reveals the learning outcomes to achieve in each module and the programme. This can also be used for knowledge and skills mapping for accreditation purpose.

Two programme structures are proposed right here, one based on scholarship and industrial placement modules, and one based on dual degree programme between Brunel University and Saudi Institutions.

The aims of the proposed programme are:

- provide a boarder and flexible learning opportunities informed by industrial applied research in the field of advanced engineering and technology with a focus on electric vehicle systems.
- provide and prepare graduates with the potential knowledge, and skills in engineering and technology with a focus on electric vehicle systems.
- prepare graduates with the ability of products, systems, and services development from concept to realisation, close to commercialisation.
- prepare graduates with the critical thinking skills, and ability of problem solving.
- an enhanced treatment of business and management that aids progression to a position of responsibility.
- greater confidence to manage and to take on leadership in major engineering projects with a focus on electric vehicle systems.

(2 Year MSc programme based on first year is a teaching year and second year is for programme dissertation and industrial placement)

_	Y_1	Systems Engineering and Technology	Industrial Electronics for EV Systems	Programming Engineering and Technology (Solid Sate)	Advanced Mechatronics Systems (Drive and Steer by Wire)	Heat transfer and cooling in EV systems	(Project Management for Engineers & Research Methodology)	Modern Control Systems	Advanced Vehicle Dynamics, Materials and Manufacturing
	Y_2	Proje	ect Scholarship/I	Dissertation – 60 Ci	redits		Industrial F	Placement	

Year_1: Modules List and Learning Outcomes:

Academic Year	Module Title	Credits	Learning Outcomes
Y_1	Automotive Systems Engineering and Technology	15	 On successful completion of the module, student will be able to: Develop knowledge, skills, and ability to critically assess all major operations of manufacture, and improvement of next

		 generation of EV engineering and technology. Identify, and describe the roles of mechatronics systems in a modern motor
		 vehicle technology. Develop knowledge on data collection using sensor and Sensorless technology,
		 and the use of signal conditioning and information technology relevant to automotive systems. Develop an understanding of all the major automotive mechanical and electrical components including chassis, powertrain, suspension, etc.
Industrial Electronic EV Systems	s for 15	On successful completion of the module, student will be able to: • Critically analyse the latest developments
		in industrial electronics and their applications in EV systems, critically evaluating technical, commercial and sustainability implications.
		 Analyse, design, simulate, and build an industrial control system using appropriate electronics, critically evaluating the outcome for EV systems.
		 Identify, select, and evaluate the necessary electrical, electronic and control units to build a specific EV industrial application system.
Advanced	15	On successful completion of the module,
Programming Engineering Technology	and	 student will be able to: Design and development the hardware of a solid-state microcontroller-based system, including interface, and critically evaluate its performance.
		 Design, implement and critically evaluate the programming code for solid-state embedded system, selecting an appropriate programming language, tools, and development environment, and
		 analysing close to real-time requirements. Define and critically evaluate a current area of advance distributed networking in embedded design for EV applications considering safety critical factors and high reliability systems.
Advanced Mechatronics Syst (Drive and Steer Wire)		On successful completion of the module, student will be able to:oCritically analyse and evaluate Advanced MechatronicMechatronicSystems, and its
		 including drive and steer by wire. Analyse, design, simulate, and build an EV application using Programmable Logic Controller Embedded Mechatronic
		Controller. o Identify, select, and evaluate the necessary programming, digital electronics, and controlled systems in the

		design of advanced machetropic systems
		design of advanced mechatronic systems for EV applications.
		\circ Develop innovative solutions to
		automation problems that arise in
		advanced manufacturing for EV
		applications.
Heat Transfer and	15	On successful completion of the module,
Cooling in EV Systems		student will be able to:
		\circ Develop knowledge and skills in
		mathematical analysis on heat exchange
		and experimental data for EV industrial
		applications.
		 Identify, select, and evaluate the principles
		of heat transfer, power generation, and
		cooling systems to include regenerative
		techniques.
		 Critically analyse and assess the environmental sustainability of power
		generation and its use in the EV
		applications.
		 Describe, select, and evaluate cost
		drivers, reliability, critical risks, health, and
		safety in power generation.
Professional	15	On successful completion of the module,
Development (Project		student will be able to:
Management for		 Demonstrate ability to deal with
Engineers & Research		complex issues creatively and make
Methodology)		the right judgements that show your
		ability of problem-solving skills in EV
		industry.
		 Develop ability to analysis and convey complicated ideas, concepts and
		industrial challenges in EV engineering
		and Technology to automotive
		professional and non-professional
		audiences.
		 Develop the ability to choose and
		implement modern Computer Aided
		Design tools, right research methods,
		and general Information
		Communication Technology
		infrastructure.
		• Develop the knowledge and skills in
		project management in EV engineering
		and technology industry to work in your
		own or as a member of a team, learn
		independently, use critical thinking, and
		demonstrate independence in resource and time management.
Modern Control	15	On successful completion of the module,
Systems	10	student will be able to:
		 Design and critically analyse the
		performance of modern control systems
		for EV applications using appropriate
		analytical control techniques,
		programming, experimental and computer
		aided design simulation tools.
		• Critically analyse, describe, and validate
		theoretically and virtually the performance
		of commonly used modern control design

		 for EV applications, including modern digital, optimal and robust control techniques. Critically evaluate the role of advanced control techniques for EV applications using state space, digital, optimal, and robust in industrial control systems. Demonstrate a clear understanding of existing and future modern control system techniques using AI for EV applications.
Advanced Vehicle Dynamics, Materials and Manufacturing	15	 On successful completion of the module, student will be able to: Critically analyse and implement complex mathematical methods, CAD tools to evaluate vibrational problems in the environment of automotive chassis dynamics specially for EV Engineering and Technology. Identify, select, and integrate the necessary mechatronics tools to support the study of EV dynamics. Critically assess and evaluate the performance of advanced automotive chassis systems including materials, components, and systems through the use of analytical, quantitative and qualitative processes and CAD modelling methods. Analyse, design, simulate, and manufacture a real industrial case study of EV chassis systems and carry out the necessary validation and verifications.

Year_2: Modules List and Learning Outcomes:

Academic Year	Module Title	Credits	Learning Outcomes
Y_2	MSc Project Scholarship/Dissertation	60	 On successful completion of the Independent Studies module, student will be able to: Originate and manage a major piece of engineering and technology research programme, demonstrating creativity, innovation, application of research methods, and advanced engineering practice. Work on your own initiative, and or as a member of a team to developing and applying techniques of scientific investigation, project management, data analysis, engineering experimentation, research and problem solving. Develop in depth reflection upon the research and project development, place the results in context in relation to theories and practices and the specification developed for the study. Ability to engage in professional discussion to communicate findings, including critical issues, major impact on direction of system development, and key design specifications.

Industrial Placement	60	In this Industrial Placement module student requires to take on a substantial period (i.e., 3 up to 6 months) of supervised work experience in automotive manufacturing environment (preferred EV environment) and on successful completion of the module, student will be able to: • Create, implement, and evaluate a plan for
		 professional development in automotive manufacturing environment. Critically examine industry requirements via UK-SPEC for Engineers, in relation to your own professional development Discuss and critically appraise relevant literature about the impact of engineering in society.
		 Reflect on the importance of people and behaviours in the engineering process, based on your learning and development in the workplace.

MSc Curriculum Development and Requirements

MSc programme with a focus on Engineering and Technology based on first year at KSA and the second year at Brunel – Dual degree.

This is a draft of the possible potential 2-year postgraduate engineering and technology programme with a focus on Electric Vehicle Systems. The programme has a selection of modules that split over 2 years. Each module specifications will play a vital development of the student knowledge and skills to meet the existing and future industrial market needs and revolution. The titles of the modules are reflecting the possible contents that can be included. It could also be used to reveals the learning outcomes to achieve in each module and the programme. This can also be used for knowledge and skills mapping for accreditation purpose.

Two programme structures are proposed right here, one based on scholarship and industrial placement modules, and one based on dual degree programme between Brunel University and Saudi Institutions.

(2 Year MSc programme based on first year at KSA and the second year at Brunel – Dual degree)

Y_1	Automotive Systems Engineering and Technology	Industrial Electronics for EV Systems	Advanced Programming Engineering and Technology (Solid Sate)	Advanced Mechatronics Systems (Drive and Steer by Wire)	Heat transfer and cooling in EV systems	Professional Development and Project Management for Engineers & Research Methodology	Modern Control Systems	Advanced Vehicle Dynamics, Materials and Manufacturing
Y_2	Advanced Vehicular Systems Technology	Advanced Embedded Systems Engineering	Power Electronics and Drives	Artificial Intelligence & Autonomous Electric Vehicle Technology	Pro	ject Scholarship/Di	ssertation – 6	60 Credits

Year_1: Modules List and Learning Outcomes:

Academic Year	Module Title	Credits	Learning Outcomes
Y_1	Automotive Systems Engineering and	15	On successful completion of the module, student will be able to:
	Technology		 Develop knowledge, skills, and ability to critically assess all major operations of

		manufacture, and improvement of next
		 generation of EV engineering and technology. Identify, and describe the roles of
		 mechatronics systems in a modern motor vehicle technology. Develop knowledge on data collection
		using sensor and Sensorless technology, and the use of signal conditioning and information technology relevant to
		 automotive systems. Develop an understanding of all the major automotive mechanical and electrical
		components including chassis, powertrain, suspension, etc.
Industrial Electronics for EV Systems	15	On successful completion of the module, student will be able to:
		 Critically analyse the latest developments in industrial electronics and their applications in EV systems, critically
		evaluating technical, commercial and sustainability implications.
		 Analyse, design, simulate, and build an industrial control system using appropriate
		electronics, critically evaluating the outcome for EV systems.
		 Identify, select, and evaluate the necessary electrical, electronic and control
		units to build a specific EV industrial application system.
Advanced Programming	15	On successful completion of the module, student will be able to:
Engineering and Technology		 Design and development the hardware of a solid-state microcontroller-based
		system, including interface, and critically evaluate its performance.
		 Design, implement and critically evaluate the programming code for solid-state
		embedded system, selecting an appropriate programming language, tools,
		and development environment, and analysing close to real-time requirements.
		 Define and critically evaluate a current area of advance distributed networking in
		embedded design for EV applications considering safety critical factors and high reliability systems.
Advanced	15	On successful completion of the module,
Mechatronics Systems (Drive and Steer by		student will be able to: • Critically analyse and evaluate Advanced
Wire)		Mechatronic Systems, and its implementation in EV applications including drive and steer by wire
		 including drive and steer by wire. Analyse, design, simulate, and build an EV application using Programmable Logic Controller Embedded Mechatronic
		Controller. o Identify, select, and evaluate the
		necessary programming, digital electronics, and controlled systems in the

		design of advanced mechatronic eveters
		design of advanced mechatronic systems for EV applications.
		 Develop innovative solutions to
		automation problems that arise in
		advanced manufacturing for EV
		applications.
Heat Transfer and	15	On successful completion of the module,
Cooling in EV Systems		student will be able to:
		 Develop knowledge and skills in mathematical analysis on heat exchange
		and experimental data for EV industrial
		applications.
		 Identify, select, and evaluate the principles
		of heat transfer, power generation, and
		cooling systems to include regenerative
		techniques.
		 Critically analyse and assess the environmental sustainability of power
		generation and its use in the EV
		applications.
		 Describe, select, and evaluate cost
		drivers, reliability, critical risks, health, and
		safety in power generation.
Professional	15	On successful completion of the module,
Development (Project		student will be able to:
Management for Engineers & Research		 Demonstrate ability to deal with complex issues creatively and make
Methodology)		the right judgements that show your
(include legg)		ability of problem-solving skills in EV
		industry.
		 Develop ability to analysis and convey
		complicated ideas, concepts and
		industrial challenges in EV engineering
		and Technology to automotive professional and non-professional
		professional and non-professional audiences.
		\circ Develop the ability to choose and
		implement modern Computer Aided
		Design tools, right research methods,
		and general Information
		Communication Technology
		infrastructure.
		 Develop the knowledge and skills in project management in EV engineering
		and technology industry to work in your
		own or as a member of a team, learn
		independently, use critical thinking, and
		demonstrate independence in resource
		and time management.
Modern Control	15	On successful completion of the module,
Systems		student will be able to:
		 Design and critically analyse the performance of modern control systems
		for EV applications using appropriate
		analytical control techniques,
		programming, experimental and computer
		aided design simulation tools.
		• Critically analyse, describe, and validate
		theoretically and virtually the performance
		of commonly used modern control design

		 for EV applications, including modern digital, optimal and robust control techniques. Oritically evaluate the role of advanced control techniques for EV applications using state space, digital, optimal, and robust in industrial control systems. Demonstrate a clear understanding of existing and future modern control system techniques using AI for EV applications.
Advanced Vehicle Dynamics, Materials and Manufacturing	15	 On successful completion of the module, student will be able to: Critically analyse and implement complex mathematical methods, CAD tools to evaluate vibrational problems in the environment of automotive chassis dynamics specially for EV Engineering and Technology. Identify, select, and integrate the necessary mechatronics tools to support the study of EV dynamics. Critically assess and evaluate the performance of advanced automotive chassis systems including materials, components, and systems through the use of analytical, quantitative and qualitative processes and CAD modelling methods. Analyse, design, simulate, and manufacture a real industrial case study of EV chassis systems and carry out the necessary validation and verifications.

Year_2: Modules List and Learning Outcomes:

Academic Year	Module Title	Credits	Learning Outcomes
Y_2	Advanced Vehicular Systems Technology	15	 On successful completion of the module, student will be able to develop: Comprehensive knowledge and the ability to apply concepts from electrical and electronic engineering in complex problems in electric vehicle systems and a critical awareness of new developments and the wider context of engineering. Ability to formulate and critically evaluate complex problems involving uncertain or incomplete data using data analytics in electric vehicle systems design. Ability to select and apply modelling techniques and technologies for complex problems in electric vehicle systems and discussing the limitations of the techniques employed. Select and critically evaluate literature about current and future vehicular technology with respect to current engineering practices; as well as social, legal, ethical, and professional issues. Communicate effectively on complex electric vehicle systems matters with

	[]		tookal and not tookal and took
			technical and non-technical audiences
			and the ability to evaluate the
	Advonced Embedded	15	effectiveness of the methods used.
	Advanced Embedded	15	On successful completion of the module,
	Systems Engineering		student will be able to:
			 Apply a comprehensive knowledge of the attractive and the apprentiate principles of
			structure and the operating principles of
			embedded systems and reconfigurable
			devices, such as FPGAs.
			 Analyse/evaluate complex embedded avatem problems and reach substantiated
			system problems and reach substantiated
			solutions using computation/measurement
			principles.
			 Design solutions for complex embedded aveter problems by considering the
			system problems by considering the various engineering, societal, scientific,
			and economic factors and trade-offs
			influencing eventual implementation that
			supports equality, diversity and inclusion.
			 Apply a Hardware Description Language approach, based on VHDL, for the solution
			of hardware/circuit design problems.
			 Use and evaluate practical laboratory
			skills to investigate complex embedded
			system problems.
	Power Electronics and	15	On successful completion of the module,
	Drives		student will be able to develop:
			 Comprehensive knowledge and the ability
			to apply concepts from electronic
			engineering in complex problems in power
			electronics and drives and awareness of
			new developments and the wider context
			of engineering.
			 Ability to formulate and critically evaluate
			complex problems involving uncertain or
			incomplete data using data analytics in
			power electronic circuits design.
			 Ability to select and apply simulation and
			modelling techniques and technologies for
			complex problems in power electronics
			and drive circuits and to discuss the
			limitations of any techniques used.
			• Ability to select and critically evaluate
			literature about current and future power
			electronics and drive circuits with respect
			to current engineering practices as well as
			social, legal, ethical, and professional
		45	issues.
	Artificial Intelligence &	15	On successful completion of the module,
	Autonomous Electric		student will be able to develop:
	Vehicle Technology		 clear understanding of computational intelligence and computer systems with
			intelligence and computer systems with
			focus on Artificial Intelligence, including
			machine, deep and cognitive learning principles, and its applications in
			Autonomous EV.
			 knowledge and understanding the inspiration for designing intelligent
			machines, their impacts and related
L			maoninos, their impacts and related

		rational issues, including intelligence,
		 learning, deep and cognitive learning. Ability to distinguish between major forms of machine learning operation challenges, such as supervised, unsupervised and reinforcement learning and implement the fundamental ideas of algorithms for solving these identified industrial challenges. knowledge, skills, and ability to critically assess all major operations of manufacture, and improvement of next generation of Autonomous EV engineering and technology using Applied Artificial Intelligence. Identify, and describe the roles of mechatronics systems and AI in a modern motor vehicle technology. Develop knowledge on big data and machine learning including data collection using sensor and Sensorless technology, and the use of signal conditioning and information technology relevant to automotive systems. Develop an understanding of all the major automotive mechanical and electrical components including chassis, powertrain,
MSc Project Scholarship/Dissertation	60	 suspension, etc. On successful completion of the Independent Studies module, student will be able to: Originate and manage a major piece of engineering and technology research programme, demonstrating creativity, innovation, application of research methods, and advanced engineering practice. Work on your own initiative, and or as a member of a team to developing and applying techniques of scientific investigation, project management, data analysis, engineering experimentation, research and problem solving. Develop in depth reflection upon the research and project development, place the results in context in relation to theories and practices and the specification developed for the study. Ability to engage in professional discussion to communicate findings, including critical issues, major impact on direction of system development, and key design specifications.