Gishantha I.F. Thantulage

Gishantha I.F. ThantulageStart date: 14/02/2005

Email: gishantha@dscs.sjp.ac.lk

Supervisor: Dr. Tatiana Kalganova

PhD Research Title:  Ant colony optimization based simulation of 3D automatic hose/pipe routing

This  thesis  focuses  on  applying  one  of  the  rapidly  growing  non-deterministic
optimization algorithms, the ant colony algorithm, for simulating automatic hose/pipe routing  with  several  conflicting  objectives.  Within the thesis, methods have been developed and applied to single objective hose routing, multi-objective hose routing and multi-hose routing.

The use of simulation and optimization in engineering design has been widely applied in all fields of engineering as the computational capabilities of computers has increased and improved.  As  a  result  of  this,  the  application  of  non-deterministic  optimization techniques  such  as  genetic  algorithms,  simulated  annealing  algorithms,  ant  colony algorithms, etc. has increased dramatically resulting in vast improvements in the design process.

Initially,  two  versions  of  ant  colony  algorithms  have  been  developed  based  on, respectively, a random network and a grid network for a single objective (minimizing the length of the hoses) and avoiding obstacles in the CAD model.

While  applying  ant  colony  algorithms  for  the  simulation  of  hose  routing,  two modifications have been proposed for reducing the size of the search space and avoiding the stagnation problem.

Hose  routing  problems  often  consist  of  several  conflicting  or  trade-off  objectives.  In classical approaches, in many cases, multiple objectives are aggregated into one single objective  function  and  optimization  is  then  treated  as  a  single-objective  optimization problem. In this thesis two versions of ant colony algorithms are presented for multi-hose routing with two conflicting objectives: minimizing the total length of the hoses and maximizing the total shared length (bundle length). In this case the two objectives are aggregated into a single objective.

The current state-of-the-art approach for handling multi-objective design problems is to employ the concept of Pareto optimality. Within this thesis a new Pareto-based general-purpose  ant  colony  algorithm  (PSACO)  is  proposed  and  applied  to  a  multi-objective hose routing problem that consists of the following objectives: total length of the hoses between  the  start  and  the  end  locations,  number  of  bends,  and  angles  of  bends.  The proposed  method  is  capable  of  handling  any  number  of  objectives  and  uses  a  single pheromone matrix for all the objectives. The domination concept is used for updating the pheromone matrix.  Among the currently available multi-objective ant colony optimization (MOACO) algorithms, P-ACO generates very good solutions in the central part of the Pareto front and hence the proposed algorithm is compared with P-ACO. A new term is added to the random proportional rule of both of the algorithms (PSACO and P-ACO) to attract ants towards edges that make angles close to the pre-specified angles of bends. A refinement algorithm is also suggested for searching an acceptable solution after the completion of searching the entire search space.

For all of the simulations, the STL format (tessellated format) for the obstacles is used in  the  algorithm  instead  of  the  original  shapes  of  the  obstacles.  This  STL  format  is passed  to  the  C++  library  RAPID  for  collision  detection.  As  a  result  of  using  this format,  the  algorithms  can  handle  freeform  obstacles  and  the  algorithms  are  not restricted to a particular software package.

Publications:

  • Thantulage, G., Kalganova, T.  & Fernando, W.A.C.  (2006).  A  Grid-based  Ant Colony  Algorithm  for  Automatic  3D  Hose  Routing.  IEEE Congress on Evolutionary Computation, CEC 2006, Vancouver, Canada, Jul., 2006. pp. 48 – 55.
  • Thantulage  G.,  T.  Kalganova  and  M.  Wilson  (2006)  “Grid  Based  and  Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space” Proc. of International Conference on Machine Intelligence (ICMI’2006).
  • G Thantulage, T Kalganova & M Wilson (2006). Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space. Transactions on Engineering, Computing and Technology, Volume 14, International Journal of Applied Science, Engineering and Technology (IJASET), Enformatika, ISBN 1503-5313, ISBN 975-00803-3-5, Aug., 2006. pp. 144 – 150.

Page last updated: Monday 15 October 2012