U-MIDAS: MIDAS Regressions with Unrestricted Lag Polynomials

Starts: Wednesday 13 March 2013 1:00 pm
Ends: Wednesday 13 March 2013 2:00 pm
Event type Seminar
Location MJ117
Presented by: Christian Schumacher (Deutsche Bundesbank)

By Claudia Foroni, Massimiliano Marcellino and Christian Schumacher

Mixed-data sampling (MIDAS) regressions allow to estimate dynamic equations that explain a low-frequency variable by high-frequency variables and their lags. When the difference in sampling frequencies between the regressand and the regressors is large, distributed lag functions are typically employed to model dynamics avoiding parameter proliferation. In macroeconomic applications, however, differences in sampling frequencies are often small. In such a case, it might not be necessary to employ distributed lag functions. In this paper, we discuss the pros and cons of unrestricted lag polynomials in MIDAS regressions. We derive unrestricted MIDAS regressions (U-MIDAS) from linear high-frequency models, discuss identiĀ…cation issues, and show that their parameters can be estimated by OLS. In Monte Carlo experiments, we compare U-MIDAS to MIDAS with functional distributed lags estimated by NLS. We show that U-MIDAS performs better than MIDAS for small differences in sampling frequencies. On the other hand, with large differing sampling frequencies, distributed lag-functions outperform unrestricted polynomials. The good performance of U-MIDAS for small differences in frequency is confiĀ…rmed in empirical applications on nowcasting and short term forecasting Euro area and US GDP growth using monthly indicators.

  

Contact details

Name: Dr. Russ Moro
Email: Russ.Moro@brunel.ac.uk

Page last updated: Thursday 07 February 2013