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Let M be a loopless matroid with rank r and c components. Let P (M, t) be the characteristic

polynomial of M. We shall show that (−1)rP (M, t) > (1 − t)r for t ∈ (−∞, 1), that the

multiplicity of the zeros of P (M, t) at t = 1 is equal to c, and that (−1)r+cP (M, t) > (t− 1)r

for t ∈ (1, 32
27 ]. Using a result of C. Thomassen we deduce that the maximal zero-free

intervals for characteristic polynomials of loopless matroids are precisely (−∞, 1) and

(1, 32
27 ].

1. Introduction

Characteristic polynomials of matroids were first studied by Rota [6]. Heron [3] defined

chromatic polynomials of matroids and showed that they are equivalent to characteristic

polynomials. Here, we are concerned with arbitrary matroids, so we will refer to charac-

teristic polynomials , reserving the term chromatic polynomials for graphs. It is known (see

Jackson [4], Tutte [9] and Woodall [12]) that the chromatic polynomial of an arbitrary

graph P (G, t) has no zeros in the intervals (−∞, 0), (0, 1) and (1, 32
27

], that the multiplicity

of zeros at 0 is equal to the number of components of the graph and that the multiplicity

of zeros at 1 is equal to the number of blocks of the graph. Recently Thomassen [8] has

shown that the chromatic zeros of graphs are dense in ( 32
27
,∞). It follows that the maximal

zero-free intervals for chromatic polynomials of graphs are precisely (−∞, 0), (0, 1) and

(1, 32
27

]. He also showed that the chromatic polynomial P (G, t) of a connected graph G

with n vertices satisfies |P (G, t)| > |t(t− 1)n−1| for all t 6 32/27.

The facts that the characteristic polynomial of a graphic matroid has no zeros in the

intervals (−∞, 1) and (1, 32
27

] and that the multiplicity of zeros at 1 is equal to the number

of connected components of the matroid follow from the above results on chromatic

polynomials of graphs and the well-known equality tcP (M, t) = P (G, t) between the

chromatic polynomial P (G, t) of a graph G with c components, and the characteristic

polynomial P (M, t) of its associated graphic matroid M. It is also known that the
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characteristic polynomial of a cographic matroid has no zeros in the intervals (−∞, 1)

and (1, 32
27

], and that the multiplicity of zeros at 1 is equal to the number of connected

components of the matroid. This follows immediately from the corresponding results for

flow polynomials of graphs (see Wakelin [11]). We shall deduce that both these zero-free

intervals hold for the characteristic polynomial P (M, t) of a loopless matroid M with

c components and rank r by showing that (−1)rP (M, t) > (1 − t)r for t ∈ (−∞, 1) and

(−1)r+cP (M, t) > (t − 1)r for t ∈ (1, 32
27

]. We will also show that the multiplicity of the

zeros of P (M, t) at t = 1 is equal to c.

Given a matroid M, we shall use SM , CM , IM and rM to denote the groundset, the set

of circuits, the set of independent sets and the rank function, respectively, of M. These

will be simplified to S , C, I and r when it is obvious which matroid we are referring

to. We denote the rank of M by r(M), the number of elements of M by |M| and the

number of components of M by c(M). Thus r(M) = rM(S) and |M| = |S |. Let M − e and

M/e respectively denote the matroids resulting from the deletion and contraction of an

element e.

Sections 2–5 contain definitions and lemmas that will be used in the proofs of the main

results of the paper in Section 6. We refer the reader to Oxley [5] for basic definitions not

given in this paper.

2. Some elementary matroid results

Lemma 2.1. ([2], Proposition 4.1) Let M be a matroid with e ∈ S , A ⊆ S − e. Then

(a) rM−e(A) = rM(A)

(b) r(M − e) = r(M)− 1 if e is a coloop of M

(c) r(M − e) = r(M) if e is not a coloop of M.

By repeated application of Lemma 2.1(a) we obtain the following lemma.

Lemma 2.2. Let M be a matroid with A,B ⊆ S, A ∩ B = ∅. Then rM(A) = rM−B(A).

Lemma 2.3. ([2], Proposition 4.1) Let M be a matroid with e ∈ S , A ⊆ S − e. Suppose e

is not a loop in M. Then

(a) rM/e(A) = rM(A ∪ {e})− 1

(b) r(M/e) = r(M)− 1.

Lemma 2.4. ([5], Proposition 3.1.26) Let M be a matroid with e, f ∈ S . Then (M−e)/f =

(M/f)− e.

Lemma 2.5. ([9], Theorem 6.5) Let e ∈ S be an element of a connected matroid M. Then

either M − e or M/e is connected.

Lemma 2.6. ([9], Theorem 6.6) Let e be an element of a 3-connected matroid M. Then,

provided |M| > 4, both M − e and M/e are connected.
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3. Characteristic polynomials

The characteristic polynomial P (M, t) of a matroid M is a polynomial in t defined by

P (M, t) =
∑
A⊆S

(−1)|A|trM (S)−rM (A).

Lemma 3.1. ([3], Lemma 1.4) If the matroid M has a loop, then P (M, t) ≡ 0.

Lemma 3.2. ([3], Lemma 1.2) If M is a matroid and e ∈ S is not a loop or a coloop, then

P (M, t) = P (M − e, t)− P (M/e, t).

Lemma 3.3. ([3], Lemma 1.5) If e is a coloop in a loopless matroid M, then P (M, t) =

(t− 1)P (M − e, t).

Lemma 3.4. ([3], Lemma 3.10) Let M be a matroid and M1,M2, . . . ,Mn be the components

of M. Then P (M, t) =
∏n

i=1 P (Mi, t).

Lemma 3.5. If e is a parallel element in a matroid M, then P (M, t) = P (M − e, t).

Proof. Follows from Lemmas 3.1 and 3.2.

4. Parallel connections, series connections and 2-sums

Let M1 and M2 be matroids. We shall denote the direct sum of M1 and M2 by M1 ⊕M2.

We shall denote the parallel connection, series connection, and 2-sum of M1 and M2 about

basepoint p by M1 ‖p M2, M1 ∗p M2, and M1 ⊕p2 M2, respectively.

Given matroids Mi, 1 6 i 6 n, such that SMi
∩ SMj

= {p} for 1 6 i < j 6 n, where

p is not a loop or a coloop in Mi and |Mi| > 3 for 1 6 i 6 n, we define the 2-sum of

M1, . . . ,Mn to be the matroid

M1 ⊕p2 M2 ⊕p2 · · · ⊕
p
2 Mn = (M1 ‖p M2 ‖p · · · ‖p Mn)− p.

Lemma 4.1. ([5], Corollary 7.1.23) The class of graphic matroids is closed under parallel

connection, series connection and 2-sum.

Lemma 4.2. Let M = M1 ‖p M2 ‖p · · · ‖p Mn.

(a) r(M) =
∑n

i=1 r(Mi)− n+ 1.

(b) c(M) =
∑n

i=1 c(Mi)− n+ 1.

(c) M/p = M1/p⊕M2/p⊕ · · · ⊕Mn/p.

(d) P (M, t) = (t− 1)−n+1
∏n

i=1 P (Mi, t).

Proof. Follows from [1, Theorem 6.16(i) and (v), Propositions 5.5 and 5.8] by using

induction on n.
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Lemma 4.3. ([1], Proposition 5.8) Let M be a connected matroid and M/p = M1 ⊕M2,

where both M1 and M2 are nonempty. Then M = (M − SM1
) ‖p (M − SM2

).

Lemma 4.4. ([1], Theorem 6.16(i), (v) and Propositions 4.6, 4.7) Let M = M1 ∗p M2.

(a) r(M) = r(M1) + r(M2).

(b) c(M) = c(M1) + c(M2)− 1.

(c) M − p = (M1 − p)⊕ (M2 − p).
(d)

P (M, t) = (t− 2)(t− 1)−1P (M1, t)P (M2, t) + P (M1, t)P (M2/p, t)

+ P (M1/p, t)P (M2, t).

Lemma 4.5. ([1], Proposition 4.10) Let M be a connected matroid and M−p = M1⊕M2,

where both M1 and M2 are nonempty. Then

M = (M/SM1
) ∗p (M/SM2

).

Lemma 4.6. Let M = M1 ⊕p2 M2. Then

(a) r(M) = r(M1) + r(M2)− 1

(b) c(M) = c(M1) + c(M2)− 1

(c)

P (M, t) = P (M1/p, t)P (M2 − p, t)
+ P (M2, t)[(t− 1)−1P (M1, t)− P (M1/p, t)].

Proof. We obtain (a) and (b) by applying Lemma 2.1(c) to Lemma 4.2(a) and (b). To

prove (c) we let M ′ = M1 ‖p M2. By Lemma 3.2,

P (M, t) = P (M ′, t) + P (M ′/p, t). (4.1)

By Lemma 4.2(d),

P (M ′, t) = P (M1, t)P (M2, t)(t− 1)−1. (4.2)

By Lemma 4.2(c), M ′/p = M1/p⊕M2/p, so by Lemma 3.4,

P (M ′/p, t) = P (M1/p, t)P (M2/p, t). (4.3)

Hence, by equations (4.1), (4.2) and (4.3),

P (M, t) = P (M1, t)P (M2, t)(t− 1)−1 + P (M1/p, t)P (M2/p, t). (4.4)

By Lemma 3.2, P (M2/p, t) = P (M2 − p, t)− P (M2, t), so from (4.4) we obtain

(t− 1)P (M, t) = P (M1, t)P (M2, t)

+(t− 1)P (M1/p, t)(P (M2 − p, t)− P (M2, t))

= (t− 1)P (M1/p, t)P (M2 − p, t)
+P (M2, t)(P (M1, t)− (t− 1)P (M1/p, t)).
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Lemma 4.7. Let M be a matroid that can be expressed as a 2-sum about a basepoint p.

Then there exist matroids M1,M2, . . . ,Mk such that M = M1⊕p2 M2⊕p2 · · · ⊕
p
2 Mk and Mi/p

is connected for 1 6 i 6 k.

Proof. Suppose the number of components of the 2-sum, k, is as large as possible.

Suppose the lemma is false and there exists a component Mi, 1 6 i 6 k such that Mi/p is

disconnected. Without loss of generality assume this component is Mk . Because Mk/p is

disconnected, there exist matroids Nk and Nk+1 such that Mk/p = Nk ⊕Nk+1. By Lemma

4.3, Mk is the parallel connection of some matroids N ′k and N ′k+1 about basepoint p.

But this means we have M = M1 ⊕p2 M2 ⊕p2 · · · ⊕
p
2 Mk−1 ⊕p2 Nk ⊕p2 Nk+1, contradicting the

maximality of k and completing the proof of Lemma 4.7.

Lemma 4.8. Let M = M1 ⊕p2 M2 and q ∈ SM1
− {p}, where q is not parallel to p in M1.

Then (M1 ⊕p2 M2)/q = (M1/q ⊕p2 M2).

Proof. This follows from [1, Proposition 5.8], the definition of 2-sum, and Lemma 2.4.

Lemma 4.9. Let M1, M2 and M3 be matroids such that SMi
∩SMj

= {p} for 1 6 i < j 6 3.

Then M1 ⊕p2 (M2 ∗p M3) = (M1 ∗p M2)⊕p2 M3.

Proof. It can be seen that the set of circuits of the matroids on each side of the inequality

is given by CM1−p∪CM2−p∪CM3−p∪{(C1−p)∪ (C2−p)∪ (C3−p) : p ∈ Ci ∈ CMi
, 1 6 i 6 3}.

Lemma 4.10. ([7], 2.6) A connected matroid M is not 3-connected if and only if M =

M1 ⊕p2 M2 for some matroids M1 and M2.

5. Generalized coloops and 3-circuits.

Let M4 = A ‖p B, where A and B are each isomorphic to U2,3, the graphic matroid

of a circuit of length three. Thus M4 is a matroid with five elements, one of which is

distinguished as p, such that p is in a pair of 3-circuits, and such that M4−p is a 4-circuit.

Because A and B both have rank 2, it follows from Lemma 4.2(a) that the rank of M4 is

3. As A and B are both connected and graphic, by Lemmas 4.2(b) and 4.1, it follows that

M4 is also connected and graphic.

Given a matroid M we define a parallel subdivision of M to be a matroid MPS obtained

by first choosing a copy Mi
4 of M4 with distinguished element pi, then relabelling

one of the elements of M as pi, and putting MPS = M ⊕pi2 Mi
4. By Lemma 4.6(a),

r(MPS ) = r(M) + r(M4)−1 = r(M) + 2. By Lemma 4.6(b), if M is connected so is MPS . It

also follows, by Lemma 4.1, that if M is graphic so is MPS . This operation has the effect

of replacing pi ∈M by a pair of 2-cocircuits, which themselves form a 4-circuit.

A generalized p-coloop is either the rank one matroid with one element p, or M4 − p,
or any matroid that can be obtained from M4 − p by a sequence of parallel subdivisions.

Given a generalized p-coloop (other than the one-element matroid) M = (M4 − p) ⊕p1

2
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M1
4 ⊕

p2

2 M2
4 ⊕

p3

2 · · · ⊕
pn
2 Mn

4, we define its p-extension to be the matroid M ′ = M4 ⊕p1

2

M1
4⊕

p2

2 M
2
4⊕

p3

2 · · ·⊕
pn
2 M

n
4. Thus the p-extension of M4−p is M4 and, in general, p ∈ SM ′ .

Because M4 − p has rank 3, is connected and is graphic, by Lemma 4.6(b) and Lemma

4.1 its parallel subdivisions are connected and graphic. Hence generalized p-coloops are

the graphic matroids corresponding to the generalized edges defined in [4]. Because every

parallel subdivision increases the rank by 2, it follows that all generalized p-coloops have

odd rank.

Lemma 5.1. Let M be a generalized p-coloop with at least four elements and M ′ be the

p-extension of M. Then M ′/p is disconnected with exactly two components.

Proof. Since M4/p is disconnected with exactly two components we may suppose that

|M| > 4. Let M = (M4 − p) ⊕p1

2 M1
4 ⊕

p2

2 M2
4 ⊕

p3

2 · · · ⊕
pn
2 Mn

4. Then M ′ = M4 ⊕p1

2

M1
4 ⊕

p2

2 M2
4 ⊕

p3

2 · · · ⊕
pn
2 Mn

4 and M ′/p = (M4 ⊕p1

2 M1
4 ⊕

p2

2 M2
4 ⊕

p3

2 · · · ⊕
pn
2 Mn

4)/p =

(M4/p) ⊕p1

2 M1
4 ⊕

p2

2 M2
4 ⊕

p3

2 · · · ⊕
pn
2 Mn

4, by Lemma 4.8. Since M4/p has exactly two

components, it follows by repeated application of Lemma 4.6(b) that M ′/p is disconnected

with exactly two components.

A generalized 3-circuit is either the graphic matroid of a 3-circuit, U2,3, or any matroid

which can be obtained from U2,3 by a sequence of parallel subdivisions.

Because U2,3 has rank 2, is connected, and is graphic, it follows from Lemma 4.6(b)

and Lemma 4.1 that all generalized 3-circuits have even rank, are connected and graphic.

Hence generalized 3-circuits are the graphic matroids corresponding to the generalized

triangles defined in [4].

Lemma 5.2. Let M be a matroid with the following properties.

(a) M is connected.

(b) For every e ∈ S , M − e is disconnected with exactly two components.

(c) Whenever M is the 2-sum of n connected matroids Mi(1 6 i 6 n), with basepoint p,

such that Mi/p is connected for all i, 1 6 i 6 n, then n is odd.

(d) Whenever M is the 2-sum of two matroids M ′1 and M ′2, with basepoint q and such that

M1 = M ′1−q is a generalized q-coloop, then M2 = M ′2−q has exactly two components.

Then M is a generalized 3-circuit.

Proof. Suppose Lemma 5.2 is false and let M be a counterexample with |M| as small as

possible. Because M is connected and, by (b), has no parallel elements, if |M| = 3 then

M = U2,3 and hence is a generalized 3-circuit. So it follows that |M| > 4.

Claim 1. M can be expressed as a 2-sum of matroids Y1, Y2 and Y3 about the same

basepoint p.

Proof. By (a) and (b), M is connected but not 3-connected. Thus, by Lemma 4.10, M is

the 2-sum of matroids, M ′1 and M ′2 say, about basepoint p, p /∈ M. Claim 1 now follows

from Lemma 4.7 and (c).
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Claim 2. M can be expressed as a 2-sum of matroids Y1, Y2 and Y3 about some basepoint

p, where Y1 and Y2 are both 3-circuits.

Proof. By Claim 1, M can be expressed as M = Y1⊕p2Y2⊕p2Y3. Suppose p, Y1 and Y2 have

been chosen such that |Y1 ⊕p2 Y2| is as small as possible. It follows from (a) and Lemma

4.6(b) that Y1, Y2 and Y3 are connected. Assume that Y1 is not 3-connected. Hence, by

Lemma 4.10, Y1 can be expressed as a 2-sum. By Lemma 4.7, Y1 = X1⊕q2 X2⊕q2 · · · ⊕
q
2 Xk ,

and Xi/q is connected, (1 6 i 6 k). Using the minimality of |Y1 ⊕p2 Y2|, we have q 6= p.

Without loss of generality we may assume p ∈ Xk . We now have

M = (X1 ⊕q2 X2 ⊕q2 · · · ⊕
q
2 Xk−1 ⊕q2 Xk)⊕p2 Y2 ⊕p2 Y3

= X1 ⊕q2 X2 ⊕q2 · · · ⊕
q
2 Xk−1 ⊕q2 (Xk ⊕p2 Y2 ⊕p2 Y3).

As Xk/q is connected and (Xk ⊕p2 Y2 ⊕p2 Y3)/q = (Xk/q ⊕p2 Y2 ⊕p2 Y3) by Lemma 4.8, it

follows from Lemma 4.6(b) that (Xk ⊕p2 Y2 ⊕p2 Y3)/q is connected. Thus k is odd, by (c),

and k > 3. Now M = X1 ⊕q2 X2 ⊕q2 (X3 ⊕q2 · · · ⊕
q
2 Xk−1 ⊕q2 Xk ⊕p2 Y2 ⊕p2 Y3). Since X1 ⊕q2 X2

is contained in Y1, this contradicts the minimality of |Y1 ⊕p2 Y2|. Hence Y1 is 3-connected.

By a similar argument, Y2 is also 3-connected.

Because M is a 2-sum, |Y1| , |Y2| > 3. Also, every element of Y1 − p is in M, so we

can choose f ∈ M ∩ Y1. But, by Lemma 2.6, provided |Y1| > 4, Y1 − f is connected and

hence M − f is connected, contradicting (b). Hence |Y1| = 3, and by a similar argument,

|Y2| = 3. Since M has no parallel elements, it follows that Y1 and Y2 are 3-circuits, so

completing the proof of Claim 2.

Claim 3. M is a 2-sum of matroids M ′1 and M ′2, with basepoint p such that M ′1 = M4 and

so M1 = M ′1 − p is a generalized p-coloop.

Proof. Let Y1, Y2 and Y3 be as in Claim 2. Let M ′1 be the parallel connection of Y1

and Y2 and M ′2 = Y3. Then M = M ′1 ⊕
p
2 M

′
2 and M ′1 = M4. Hence M1 = M ′1 − p is a

generalized p-coloop.

We now return to the proof of Lemma 5.2. Let p, M ′1 and M ′2 be defined as in Claim 3.

Thus M1 is a generalized p-coloop.

Consider M ′2. We will show that it satisfies the hypotheses of Lemma 5.2.

(a) Because M is connected, by Lemma 4.6(b), M ′2 is also connected.

(b) Choose e ∈ M ′2. If e 6= p, then e ∈ SM . Applying (b) to M, we deduce that M − e is

disconnected with exactly two components. Since M − e = M4 ⊕p2 (M ′2− e), it follows

from Lemma 4.6(b) that M ′2−e is disconnected with exactly two components. If e = p,

then M ′2 − e = M2, which has exactly two components since M satisfies (d).

(c) Choose matroids N ′i (1 6 i 6 n), with basepoint q, such that N ′i /q is connected

for all i, 1 6 i 6 n and M ′2 is their 2-sum. Hence q /∈ M ′2, so q 6= p. Assume

without loss of generality that p ∈ N ′1. Because M ′1 and N ′1 are both connected,

L′1 = M ′1 ⊕
p
2 N

′
1 is connected and q ∈ L′1. Similarly, L′1/q = M ′1 ⊕

p
2 N

′
1/q is connected.

But M = L′1 ⊕
q
2 N

′
2 ⊕

q
2 · · · ⊕

q
2 N

′
n, and because M satisfies (c), n is odd. Thus M ′2 also

satisfies (c).
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(d) LetM ′2 be the 2-sum of matroidsN ′1 andN ′2 with basepoint q such thatN1 = N ′1−q is a

generalized q-coloop. We need to show that N2 = N ′2−q has exactly two components.

Because M satisfies (d) we know M2 = M ′2 − p has exactly two components and

p ∈M ′2, so p 6= q. There are two cases to consider.

• Suppose p ∈ N ′2. Then M = N ′1 ⊕
q
2 L
′
2, where L′2 = N ′2 ⊕

p
2 M4. Since N1 is a

generalized q-coloop we may apply (d) to M and deduce that L2 = L′2 − q has

exactly two components. But L2 = N2 ⊕p2 M4, so it follows from Lemma 4.6(b)

that N2 also has exactly two components.

• Suppose p ∈ N ′1. Then M = L′1 ⊕
q
2 N

′
2, where L′1 = N ′1 ⊕

p
2 M4. Because N1 is a

generalized q-coloop so is L1. Applying (d) to M we deduce that N2 has exactly

two components.

Since M ′2 satisfies all four conditions and has fewer elements than M, it follows that M ′2
is a generalized 3-circuit. Since M = M ′2 ⊕

p
2 M4, we deduce that M is also a generalized

3-circuit. This contradicts the choice of M and completes the proof of Lemma 5.2.

6. Zeros of characteristic polynomials

Theorem 6.1. Let M be a loopless matroid with rank r and characteristic polynomial

P (M, t). Then

(a) P (M, t) = tr−|M| tr−1 +kr−2t
r−2−· · ·+ (−1)rk0 where k0, . . . , kr−2 are positive integers

(b) (−1)rP (M, t) > (1− t)r for t ∈ (−∞, 1)

(c) P (M, 1) = 0.

Proof. We use induction on |M|. If M is a single element matroid then P (M, t) = t− 1,

which satisfies (a),(b) and (c). Using Lemma 3.5 we may assume that M has no parallel

elements. When |M| > 2 we choose e ∈ S and use Lemmas 2.1, 2.3, 3.2 and the inductive

hypothesis on M − e and M/e if e is not a coloop, and use Lemmas 2.1, 3.3 and the

inductive hypothesis on M − e if e is a coloop.

Theorem 6.2. Let M be a loopless matroid. Then the multiplicity of 1 as a zero of P (M, t)

is equal to the number of components of M.

Proof. We adopt the proof technique of Woodall [12] for chromatic polynomials of

graphs. If M is a single element matroid, P (M, t) = t− 1, and the theorem holds. Hence,

suppose |M| > 2. Using Lemma 3.5 we may assume that M has no parallel elements.

Suppose M is connected. We show that d
dt
P (M, t) is nonzero at t = 1. Choose e ∈ S .

By Lemma 3.2,

d

dt
P (M, t) =

d

dt
P (M − e, t)− d

dt
P (M/e, t). (6.1)

Using Theorem 6.1(b) and (c) and Lemma 2.1(c), d
dt
P (M − e, t) has sign (−1)r(M)−1 or is

zero when t = 1 and d
dt
P (M/e, t) has sign (−1)r(M) or is zero when t = 1. Thus d

dt
P (M−e, t)

and d
dt
P (M/e, t) are either zero or have opposite signs at t = 1. By Lemma 2.5, either
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M − e or M/e is connected. Thus, by induction, either d
dt
P (M − e, t) or d

dt
P (M/e, t) is

nonzero at t = 1. Hence, by (6.1), we have d
dt
P (M, t) is nonzero at t = 1.

Finally, if M is not connected then we apply the inductive hypothesis to each connected

component of M and use Lemma 3.4.

Theorem 6.3. Let M be a loopless matroid with rank r(M), and c(M) components. Then

(−1)r(M)+c(M)P (M, t) > (t− 1)r(M) (6.2)

for t ∈ (1, 32
27

].

Proof. Suppose Theorem 6.3 is false. Let M be a matroid and t ∈ (1, 32
27

] such that P (M, t)

does not satisfy (6.2), and assume that |M| is as small as possible. Clearly |M| > 2. Using

Lemma 3.5 we may deduce that M has no parallel elements. We shall show that M

satisfies the hypotheses of Lemma 5.2 and hence is a generalized 3-circuit.

Claim 4. M is connected.

Proof. We proceed by contradiction. Suppose M = M1 ⊕M2. By Lemma 3.4, P (M, t) =

P (M1, t)P (M2, t). As M is the smallest counterexample, M1 and M2 satisfy (6.2). Thus

(−1)r(M)+c(M)P (M, t) = (−1)r(M1)+c(M1)P (M1, t)(−1)r(M2)+c(M2)P (M2, t)

> (t− 1)r(M1)+r(M2)

= (t− 1)r(M).

This gives the required contradiction.

Claim 5. M/e is connected for all e ∈ S .

Proof. Suppose M/e is not connected. By Lemmas 4.3 and Claim 4, M is the parallel

connection of two connected matroids M1 and M2, about basepoint e. So, by Lemma 4.2,

we have r(M) = r(M1) + r(M2)− 1 and

P (M, t) = P (M1, t)P (M2, t)/(t− 1).

Applying (6.2) to M1 and M2 we obtain

(−1)r(M)+1P (M, t) = (−1)r(M1)+1P (M1, t)(−1)r(M2)+1P (M2, t)/(t− 1)

> (t− 1)r(M1)+r(M2)/(t− 1)

= (t− 1)r(M).

This gives the required contradiction.

Claim 6. M − e has exactly two components for all e ∈ S .

Proof. The proof will be in two stages. We first show that M − e has an even number of

components for all e ∈ S , and hence M − e is disconnected.
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Using Lemmas 2.1(c), 2.3(b), 3.2 and Claim 4 we deduce that

(−1)r(M)+1P (M, t) = (−1)r(M−e)+1P (M − e, t) + (−1)r(M/e)+1P (M/e, t).

Thus, if c(M − e) is odd we have

(−1)r(M)+1P (M, t) = (−1)r(M−e)+c(M−e)P (M − e, t) + (−1)r(M/e)+1P (M/e, t).

Using Claim 5 and applying (6.2) to M − e and M/e gives

(−1)r(M)+1P (M, t) > (t− 1)r(M−e) + (t− 1)r(M/e)

= (t− 1)r(M) + (t− 1)r(M)−1.

This contradicts the choice of M and t and hence c(M − e) is even.

Let M − e = M1 ⊕ · · · ⊕M2r , X1 = M1 ⊕ · · · ⊕Mr , X2 = Mr+1 ⊕ · · · ⊕M2r . Then

M − e = X1 ⊕X2. By Lemmas 4.5 and 4.4(a),(b), M = N1 ∗e N2, where N1 = M/SX1
, and

N1 = M/SX1
, N2 = M/SX2

are connected, and r(M) = r(N1) + r(N2). By Lemma 4.4(d),

(−1)r(M)+1P (M, t) = −
(
t− 2

t− 1

)
(−1)r(N1)+1P (N1, t)(−1)r(N2)+1P (N2, t)

+ (−1)r(N1)+1P (N1, t)(−1)r(N2/e)+1P (N2/e, t)

+ (−1)r(N1/e)+1P (N1/e, t)(−1)r(N2)+1P (N2, t).

If N1/e and N2/e are both connected then, applying (6.2), we obtain

(−1)r(M)+1P (M, t) >

(
2− t
t− 1

)
(t− 1)r(N1)+r(N2)

+ (t− 1)r(N1)+r(N2/e) + (t− 1)r(N1/e)+r(N2)

= (4− t)(t− 1)r(M)−1

> (t− 1)r(M)

since t ∈ (1, 32
27

]. This contradiction implies that at least one of N1/e and N2/e is

disconnected. Without loss of generality, N1/e is disconnected. Then, by Lemma 2.5,

N1 − e is connected. However, using Lemma 2.4, we have

N1 − e = M/SX1
− e = (M − e)/SX1

= (X1 ⊕X2)/SX1
= X2.

Thus, X2 = Mr+1 ⊕ · · · ⊕M2r is connected. Hence r = 1 and M − e has exactly two

components.

Claim 7. Suppose M is the 2-sum of n connected matroids Mi, with basepoint p, such that

Mi/p is connected for all i, 1 6 i 6 n. Then n must be odd.

Proof. Let M ′ denote the parallel connection of M1,M2, . . . ,Mn. Hence M = M ′ − p, and

by Lemma 4.2(c), M ′/p = M1/p⊕M2/p⊕ · · · ⊕Mn/p. By Lemmas 3.2, 4.2(d), 3.4,

P (M, t) = P (M ′, t) + P (M ′/p, t),

P (M ′, t) = (t− 1)−n+1
n∏
i=1

P (Mi, t)
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and

P (M ′/p, t) =

n∏
i=1

P (Mi/p, t).

Hence

P (M, t) = (t− 1)−n+1
n∏
i=1

P (Mi, t) +

n∏
i=1

P (Mi/p, t).

Using Lemmas 4.2(a) and 2.3(b) gives

(−1)r(M)+1P (M, t) = (t− 1)−n+1
n∏
i=1

(−1)r(Mi)+1P (Mi, t)

+ (−1)n
n∏
i=1

(−1)r(Mi/p)+1P (Mi/p, t).

If n is even then we may apply (6.2) to P (Mi, t) and P (Mi/p, t) for 1 6 i 6 n, to give

(−1)r(M)+1P (M, t) > (t− 1)−n+1
n∏
i=1

(t− 1)r(Mi) +

n∏
i=1

(t− 1)r(Mi/p)

= (t− 1)r(M) + (t− 1)r(M)−1.

This contradicts the choice of M and hence n must be odd.

Claim 8. Suppose M = M1 ⊕q2 M2 where M1 − q is a generalized q-coloop. Then M2 − q
has exactly two components.

Proof. Suppose |M2| 6 3. Then |M2| = 3 by the definition of 2-sum and, since M2 is

connected and has no parallel elements, M2 = U2,3. Thus the claim holds. Henceforth we

will assume that |M2| > 3.

Claim 8(a). (t− 1)−1P (M1, t)− P (M1/q, t) > 0.

Proof. Let N = M1⊕q2U2,3. By Lemma 4.6(b), N is connected. Since M1−q is a generalized

q-coloop we have that r(M1 − q) is odd. By Lemma 2.1(c), r(M1) = r(M1 − q). Using

Lemma 4.6(a) and the fact that r(U2,3) = 2, we have r(N) = r(M1) + 1. Thus r(N) is even.

Applying (6.2) inductively to N we deduce that

P (N, t) < 0. (6.3)

Applying Lemma 4.6(c) to N with N = M1 ⊕q2 U2,3, we obtain

P (N, t) = P (M1/q, t)(t− 1)2

+ (t− 1)(t− 2)[(t− 1)−1P (M1, t)− P (M1/q, t)]. (6.4)

Since r(M1) is odd, it follows from Lemma 2.3(b) that r(M1/q) is even. Since M1 − q is a

generalized q-coloop, by Lemma 5.1, M1/q is disconnected with exactly two components.

Applying (6.2) to M1/q we deduce that

P (M1/q, t) > 0. (6.5)
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Since t ∈ (1, 32
27

], it follows from (6.3) that (t− 1)P (N, t) < 0, from (6.5) that

(t− 1)2P (M1/q, t) > 0, and that (t− 1)(t− 2) < 0. Hence, from (6.4), we obtain

(t− 1)−1P (M1, t)− P (M1/q, t) > 0.

Claim 8(b). c(M2 − q) is even.

Proof. By Lemma 4.6 and Claim 4, M1 and M2 are connected, and

(−1)r(M)+1P (M, t) = (−1)r(M1/q)+1P (M1/q, t)(−1)r(M2−q)P (M2 − q, t) + αβ,

where α = (−1)r(M2)+1P (M2, t) and

β = (t− 1)−1(−1)r(M1)+1P (M1, t)− (−1)r(M1/q)P (M1/q, t).

Applying (6.2) to M2 gives α > 0. Using Claim 8(a) and the fact that r(M1) is odd we

may deduce that β > 0. Thus

(−1)r(M)+1P (M, t) > (−1)r(M1/q)P (M1/q, t)(−1)r(M2−q)+1P (M2 − q, t).

If c(M2−q) is odd then, since c(M1)/q has exactly two components, we may apply (6.2)

to deduce that

(−1)r(M)+1P (M, t) > (t− 1)r(M1/q)+r(M2−q)

= (t− 1)r(M).

This contradiction implies that c(M2 − q) is even.

Let M2 − q = X1 ⊕ · · · ⊕ X2r , Y1 = X1 ⊕ · · · ⊕ Xr and Y2 = Xr+1 ⊕ · · · ⊕ X2r . Then

M2−q = Y1⊕Y2 so, by Lemma 4.5, M2 = N1∗qN2 where N1 = M2/SY2
and N2 = M2/SY1

.

Thus M = M1 ⊕q2 (N1 ∗q N2). Since M is connected, it follows from Lemmas 4.6(b) and

4.4(b) that M1, N1 and N2 are connected. By Lemma 4.9, M = (M1 ∗q N1)⊕q2 N2.

Suppose r > 2. Then, since N1 − q = Y1, N1 − q is disconnected so, by Lemma 2.5,

N1/q is connected. Since M1 and N1 are connected, it follows from Lemma 4.6(b) that

(M1∗qN1)/q = M1⊕q2N1 is connected. Now the fact that M = (M1∗qN1)⊕q2N2 contradicts

Claim 7. Thus r = 1.

Using Claims 4, 6, 7 and 8 it follows that M satisfies the hypotheses of Lemma 5.2

and hence M is a generalized 3-circuit. Thus M is graphic. But, by [4, Theorem 5] and

[8, Theorem 2.4], Theorem 6.3 is known to be true for graphic matroids. This contradicts

the choice of M as a counterexample, and completes the proof of Theorem 6.3.

Lemma 6.1. ([8], Theorem 2.5) Let t0 >
32
27

, ε > 0. Then there exists a graph G such that

P (G, t) has a zero in (t0 − ε, t0 + ε).

Corollary 6.1. The maximal zero-free intervals for characteristic polynomials of loopless

matroids are precisely (−∞, 1) and (1, 32
27

].

Proof. The result follows directly from Theorem 6.1, Theorem 6.3 and Lemma 6.1.
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