

Variable Grouping in Multivariate Time Series
via Correlation

Allan Tucker, Stephen Swift, and Xiaohui Liu

Abstract--The decomposition of high-dimensional multivariate
time series (MTS) into a number of low dimensional MTS is a
useful but challenging task because the number of possible
dependencies between variables is likely to be huge. This
paper is about a systematic study of the “variable groupings”
problem in MTS. In particular, we investigate different
methods of utilising the information regarding correlations
among MTS variables. This type of method does not appear to
have been studied before. In all 15 methods are suggested and
applied to six datasets where there are identifiable mixed
groupings of MTS variables. This paper describes the general
methodology, reports extensive experimental results and
concludes with useful insights on the strength and weakness of
this type of grouping method.

Index terms--Multivariate Time Series, Grouping, Correlation,
Genetic Algorithms, Evolutionary Programming.

I. INTRODUCTION

There are many practical applications involving the
partition of a set of objects into a number of mutually
exclusive subsets. The objective is to optimise a metric
defined over the set of all valid subsets, and the term
grouping has been often used to refer to this type of
problem. Examples of the grouping applications include bin
packing, workshop layout design, and graph colouring [6].
Much research has been done on the grouping problem in
different fields, and it was established that many, if not all
grouping problems, are NP-hard [9]. Therefore, any
algorithm that is guaranteed to find the global optimum will
run in exponential time to the size of problem space, and a
heuristic or approximate procedure is normally required to
cope with most of the real world problems. A variety of
techniques have been proposed to develop this procedure,
including traditional clustering algorithms, hill-climbing
and evolutionary algorithms. These techniques utilise a
metric that takes relationships or dependencies between
objects into account, and partition them into a number of
mutually exclusive subsets [6].

 This is the author affiliation (AuthorInfo style) area, The authors are
adjuncts to IEEE Publishing Services, 445 Hose lane, Piscataway NJ.

 When it comes to the problem of decomposing a high-
dimensional multivariate time series (MTS) into a number
of low dimensional MTS, the number of possible
dependencies between time series variables becomes huge
because one variable could affect another after a certain
time lag. Therefore how to effectively utilise these
dependencies becomes an important issue: to use all the
possible dependencies in a variable grouping algorithm will
be computationally infeasible for many, especially real-
time, applications.

This paper is about a systematic study of the “variable
groupings” problem in MTS. We investigate different
heuristic methods for utilising the information regarding
dependencies among MTS variables; this type of method
does not appear to have been studied before. In all, 15 such
methods are suggested and applied to six datasets where
there are identifiable mixed groupings of MTS variables.
Our methodology scores possible groupings based on a list
of highly correlated pairings of variables. This list is not
necessarily constructed from an exhaustive search and,
therefore, makes the method applicable to massive data.
The list size will strongly influence the final groupings and
so a method for determining this parameter is sought for
based on probabilistic simulation.

II. GROUPING IN MULTIVARIATE TIME SERIES

MTS data are widely available in different fields including
medicine, finance, science and engineering. Modelling
MTS data effectively is important for many decision-
making activities. A MTS is a series of observations, xi(t);
[i=1, ...,n; t=1,...,T], made sequentially through time were i
indexes the measurements made at each time point t.

Although much research has been carried out on modelling
MTS for different purposes, little has been done on an
important pre-processing issue: the grouping of MTS.
When dealing with an n dimensional MTS, it is desirable to
model the data as a group of smaller MTS models as
opposed to a single one. Firstly, not all of the variables may
be related, and secondly the number of parameters to be
located in such a model would be very high. For example in
forecasting, there are many statistical MTS modelling

methods such as the Vector Auto-Regressive (VAR), and
other linear, non-linear and Bayesian systems [3,15,18].
Take the VAR(P) process as an example. There would be at
least n2P parameters to locate where P is the order of the
VAR process and n is the number of variables in the data
set. In explaining MTS, suppose we are trying to learn
Dynamic Bayesian Network (DBN) models [5,8] from a
MTS which has very high dimensionality, n, and large
possible time lags, then the number of possible candidate
networks will be where MaxLag is the maximum
time lag [23].

2
2 nMaxLag⋅

Decomposing the data into smaller dimensional time-series
that are independent to some degree would narrow the
search space a great deal allowing the speedier production
of MTS models. Therefore we are interested in finding out
how to decompose a high-dimensional MTS into groups of
smaller MTSs, where the dependency between variables
within the same group is high, but very low with variables
in another group. Note that this is different from
dimensionality reduction techniques such as principal
component analysis or factor analysis which make some
sort of multivariate transformation of the data [17].

III. METHODOLOGY

Given a MTS, we want to partition the variables into a
number of smaller dimensional time series. The proposed
methodology consists of two stages. Firstly a search over
combinations of both variables and time lags (because time
lag will affect the correlation between two MTS variables)
is carried out in order to find a list of highly correlated
variables. Let us call this list Q, which will be of length R.
Q will consist of triples where a triple is made up of two
variables and a time lag. For example, the triple (x1, x2, 5)
represents the correlation between x1 and x2 with a time lag
of 5. Essentially all of the triples in Q represent the variable
pairs that are deemed to be significantly correlated with the
corresponding time lag. Therefore, it is important to
estimate what R should be with a high degree of accuracy.
We discuss this further in section IV. Stage two consists of
an algorithm which is applied to Q where a specifically
designed metric is used to group the variables in the
original MTS based on the pairs of variables found in Q.
Note that the lag portion of the triple is no longer used once
the grouping algorithm is applied. This is because we are
interested in grouping highly correlated variables
irrespective of the time lag between them.

This section is arranged as follows. After, outlining the
basic notation in section A, we introduce three methods for
generating Q in section B. These methods are capable of
generating a list of highly correlated variable pairs, which
can then be used along with an appropriate metric by a
grouping algorithm. In section C, a grouping metric is
defined and its properties are studied. This is followed by

the presentation of five different grouping search
algorithms based on conventional clustering methods, hill
climbing or evolutionary methods in section D.

A. Preliminaries

Given a MTS with n variables and of length T we want to
partition each variable xi into m groups where the size of
each group will be denoted by ki. This will be achieved by
generating a list of “strong” correlations, Q, which will be
of length R. Q will be calculated by using different searches
through the number of possible correlations, s, where the
number of calls to the correlation coefficient will be
denoted by c. The aim of this search is to find the true
underlying dependencies that generated the data. The
number of “true” dependencies will be denoted by r.

B. The Correlation Search

The first stage of the methodology constructs Q which
contains R pairs of highly correlated variables over all
possible integer time lags from zero to some positive
maximum, MaxLag. We want to find these correlations
after exploring a fraction of the search space. Previously,
we have compared different methods for performing this
task [22] and have found that for operations where speed is
essential, an evolutionary programming approach performs
best. The correlation list generated using this method is
then used in conjunction with the grouping strategy
described below. Note that at time lag zero, the correlations
represented by the triples (xi,xj,0) and (xj,xi,0) are
effectively the same so duplicates are considered invalid.
All triples of the form (xi,xi,lag) will also be considered
invalid since these are auto-correlations and do not show
relationships between different variables. All invalid triples
are removed during the procedure.

1) The Exhaustive Search (EX)

The exhaustive search consisted of simply exploring all of
the variables, at each time lag. The algorithm is detailed
below.

Input: X (a T×n MTS)
Set Q = Empty List
For i = 0 to n-1

For j= 0 to n-1
For lag = 0 to MaxLag

If the triple (i, j,lag) is valid Then
Insert the new triple, (xi,xj,lag), into Q and order
(descending order of correlation magnitude)
If size of Q = R+1 Then remove the end triple of Q

End If
End For

End For
End For
Output: Q of length R

2) The Random Bag (RB)

This is a heuristic approach whereby a random selection of
triples is placed in a “bag” containing R triples. With each
iteration a new random triple is added to the bag. When the
bag overflows, the worst correlation falls out. This is
repeated for a predefined number of iterations. The
algorithm is described below:

Input: X (a T×n MTS)
Set Q = Empty List
For i = 0 to c

i = U(0,n-1), j = U(0,n-1), lag = U(0,MaxLag) where (i,j,lag) is valid
If a∉Q then insert new triple, (xi,xj,lag), into Q and order
(descending order of correlation magnitude)
If size of Q = R+1 then remove the end triple from Q

End For
Output: Q of length R

Note that c is the maximum number of allowed calls to the
correlation function and U(min,max) returns a uniformly
distributed random integer between min and max inclusive.

3) Evolutionary Programming (EP)

Evolutionary Programming is based on a similar paradigm
to Genetic Algorithms. However, the emphasis is on
mutation and the method does not use any recombination.
The basic algorithm is outlined as follows [2,7]:

Input: X (a T×n MTS)
Set Q = Empty List
Generate R random triples and insert into Q
Set CallCount = R
While CallCount < c

Set Children to Q
Apply Mutate operator to Children
Insert valid Children into Q
Update CallCount by the number of valid Children
Sort Q
Apply Survival operator to Q

End While
Output: Q of length R

A Child will be considered invalid if it is already in Q.
Traditionally, EP algorithms use Tournament Selection [1]
during the survival of the fittest stage and the best
chromosome out of the final population will be the solution
to the problem. However, it was decided that the entire
population would be the solution for our EP method as in
the RB method. That is, each individual chromosome
would represent a single correlation (a triple) while the
population would represent the set of correlations found
(Population Size=R). Hence the survival operator consisted
of keeping the best R individuals. Although the entire
population would represent the solution, it must be noted
that the fitness of each individual would still be
independent of the rest of the population. Each individual
would try to maximise the magnitude of the correlation
coefficient that it represents. This in turn would maximise
the population's fitness by improving the correlations
represented by the population.
The Mutate Operator

Within the EP a gene is either xi ,xj, or the lag. We have
used the idea of Self-Adapting Parameters [2] in this
context. Here each gene, genei, in each chromosome is
given a parameter, σi. Each gene within a chromosome is
mutated according to the Normal distribution with mean 0
and standard deviation equal to the gene's corresponding
standard deviation, σi, in equation 1. Each σi is then
mutated according to equation 2.

),0(iii Ngenegene σ+= (1)
)),0(),0(exp(iii NN ττσσ +⋅= (2)

len2
1

=τ
(3) len

i
2

1
=τ

(4)

Note that τ is constant for each gene in each chromosome
but different between chromosomes, and τi is different for
all genes. Both parameters are generated each time
mutation occurs. Each chromosome consisted of three
parameters and their corresponding σi values. The value of
len is the size of each chromosome, i.e. three. A check is
required after mutation for any duplicates and for any
invalid chromosomes. Any children that fell into this
category were repeatedly mutated until they became valid

The Survival Operator

The Survival operator involves removing triples from the
population based on their fitness (i.e. their correlation
magnitude irrespective of sign) until population is of size R
once again. Therefore, the R chromosomes with the highest
magnitude of correlation are preserved for the next
iteration.

C. The Partition Metric

The Partition metric, which we define below, is used to
group variables together where they have strong mutual
dependency and to separate them into different groups
where the dependency is low. Let n be the number of
variables, G be the list of groups and m = │G│(the number
of groups). Let gi be the ith member of the list G where 1 ≤
i ≤ m and let ki = │gi│. The notation gij refers to the jth
element of the ith list of G. G is restricted such that

 and U
m

i
ni xxg

1
1 }..{

=

= vugg vu ≠∀=∩ ,φ where ki ≥1.

Therefore . It is clear that in all cases m ≤ n. The

partition metric for any fixed list G, f(G), is defined as
follows, where corr(x

∑
=

=
m

i
ik

1

n

i, xj) returns true if there exists in Q
any triple of the form (xi, xj, lag) or (xj, xi, lag) for any valid
lag.

∑
=

=
m

i
ighGf

1

)()(
(5)

==

otherwise 1-
ba if 0

),corr(if 1
),(

ibia

ibia

gg
ggL

(6)

>

= ∑∑
= =

otherwise 0

1 if),(
)(

1 1
i

k

a

k

b
ibia

i
kggL

gh

i i

(7)

The metric has the following characteristics (proofs for
these can be found in the Appendix):

1. If there are no correlations, the maximum value is
obtained when all variables are in separate groups.

2. If a correlation exists for each pairing of variables (the
search space), then the maximum fitness is obtained
when all of the variables are in one group.

3. If the data generating the correlations came from a
mixed set of MTS observations, then the metric will be
maximised when the variables within the same group
have as many correlations within the list Q as possible
and variables within differing groups contain as few
correlations as possible.

In this paper we have chosen a correl that is a well
established correlation coefficient - Spearman's Rank
Correlation [20]. Spearman's Rank Correlation (SRC)
measures linear and non-linear relationships between two
variables, either discrete or continuous, by assigning a rank
to each observation. We can calculate the SRC between
two variables over differing time lags by shifting one
variable in time. The equation incorporates the sums of the
squares of the differences in paired ranks, according to the
formula:

()

−−−

+−

−=
∑
−

=

)1))(((

))(())((6
1),,(2

1

2

lagTlagT

lagtxranktxrank
lagxxcorrel

lagT

t
ji

ji

(8)

where T is the length of the MTS and rank(xi(t)) is
calculated from ordering and ranking every observation of
the variable xi on its value and recording the rank of the
value at position t.

We chose Spearman’s Rank as it is well recognised and not
limited to finding linear dependencies although the methods
are not restricted to using this particular coefficient and
others such as Pearson's could have easily been used.

D. The Grouping Search

We have looked at various methods for maximising the
metric outlined above in the context of grouping MTS. First
of all we describe the general Genetic Algorithm approach
that we have adopted before we explain three different
forms of this algorithm. Next we describe a hill climb
technique and finally a heuristic clustering method.

1) The Genetic Algorithms (GA)

The general Genetic Algorithm [12,10] described below
uses the notion of a Population of chromosomes which
represent a number of possible solutions to a particular
problem. Crossover and Mutation operators are applied to
these chromosomes according to CrossoverRate and
MutationRate, respectively. A selection process is applied
to Population in order to preserve “good” solutions and
discard “poor” ones. The process is iterated over the
Population chromosomes for a specified number of times,
Generations. The general algorithm for generating a set of
groups, G, from a set of correlations, Q, is given below:

Input: Q , Population, CrossoverRate, MutationRate, Generations
Fitness: The Partition Metric applied to a chromosome given Q
Generate Population chromosomes
Repeat Generation times

Select CrossoverRate × Population chromosomes (with fitter
chromosomes being chosen with higher probability and a
chromosome can be chosen more than once)
Randomly pair up selected chromosomes creating parent pairs
Crossover parents to generate Offspring1 and Offspring2
Mutate offspring based on MutationRate
Insert offspring into the population
Sort the population according to Fitness
Retain the Population fittest chromosomes

End Repeat
Output: G (a set of groups, constructed from the final fittest individual)

The following describes three different representations,
forms of crossover and mutation that were used with this
general algorithm. For the scope of this paper, the fitness
function for the methods will be the partition metric defined
in equation 5.

Gene Per Variable (GPV)

This representation consists of a chromosome with each
gene representing a variable in the domain. The value of the
gene determines which group the variable is a member of.
For example, 10 variables to be placed into three groups:

Group 0: 0 3 8 Group 1: 2 7 4 1 5 Group 2: 6 9
This would be represented by the following chromosome:
0 1 1 0 1 1 2 1 0 2. The Crossover operator we use for this
representation is Holland's [12] standard one point
crossover and the Mutation operator involves randomly
mutating genes within the chromosome. Each gene has
Mutation Rate probability of being mutated to a value from
a uniform distribution U(0,n-1). For example:

Parent 1: 0 1 1 0 1 1 2 1 0 2
Parent 2: 0 0 0 1 0 2 2 0 1 2

1. Crossover (Crossing Point = 3):

0 1 1 1 0 2 2 0 1 2 0 0 0 0 1 1 2 1 0 2
2. Mutate

0 1 0 1 0 2 1 0 1 2 0 2 0 0 1 1 2 1 0 2

Goldberg's Partially Mapped Crossover (PMX)

This form of crossover applies to a new representation of
the grouping problem where the chromosome consists of
variables interspersed with group dividers. For example, let
a group divider be represented by the symbol □i where the
subscript is unique and each of 10 variables within a
domain be represented by a unique integer. Therefore the
chromosome: 0 3 8 □1 2 7 4 1 5 □2 6 9 would represent the
groupings in the previous example. In other words,
variables within the same group dividers will be classed
within the same group. This representation requires a new
crossover operator in order to ensure that invalid offspring
are not produced. It can be seen that standard crossover as
used in the GPV representation would produce many
invalid offspring as it would be highly likely to result in
offspring with variables appearing in more than one group.
Goldberg introduced the PMX operator [11] which
prevented this and developed an o-schema theory (closely
linked to Holland's original schema theory). It ensures all
offspring are valid (i.e. it is a closed operator) and works as
follows:

1. Select two crossing points for both parents
2. Swap all elements between the crossing points
3. For all repeating elements in the old part of the

chromosome, replace with the value found on the
corresponding position on the other chromosome.

Mutation involves randomly swapping two genes within the
chromosome according to the Mutation Rate. Each gene
has Mutation Rate probability of being swapped with
another. For example:

Parent 1: 4 □3 0 □1 1 6 5 2 □2 3
Parent 2: 5 4 □2 2 3 □3 0 1 □1 6

1. Crossing points = 3 and 6
2. Swap elements “□1 1 6” with “2 3 □3”
 4 □3 0 2 3 □3 5 2 □2 3 5 4 □2 □1 1 6 0 1 □1 6
3. Replace repeated values
 4 6 0 2 3 □3 5 □1 □2 1 5 4 □2 □1 1 6 0 3 2 □3
4. Mutate
 4 □2 0 2 3 □3 5 □1 6 1 3 4 □2 □1 1 6 □3 5 2 0

Falkenauer's Grouping Genetic Algorithm (GGA)

This representation is similar to the GPV except that it also
has an extra part on the chromosome which represents each
group without any information about their contents. For
example the same groupings as the previous examples
would be represented by the following chromosome:
0 1 1 0 1 1 2 1 0 2 : 0 1 2. The second part of the
chromosome (after the colon) is simply a list of the existing
groups that are found in the first part. Crossover is only
applied to this part of the chromosome and is as follows:

1. Select two random crossing sites, delimiting the

crossing section in each of the two parents denoted as

[Start Position, End Position].
2. Inject the contents of the crossing section of the second

parent at the first crossing site of the first parent.
3. Remove any elements that are repeated from the

groups that were members of the first parent.
4. Remove any empty groups (groups that appear after

the colon but not before) and reinsert any unassigned
variables to existing groups.

5. Repeat (i) to (iv) to produce the second offspring by
reversing the roles of the first and second parent.

Example for first offspring:

Parent 1: 0 1 1 0 0 2 1 2 : 0 1 2
Parent 2: 4 5 3 4 5 6 3 6 : 3 4 5 6

1. Starting with a copy of Parent 2 with all the first

section undetermined and Cross Sites set as:
 Parent 1 = [0,1], Parent 2 = [1,3]

? ? ? ? ? ? ? ? : 3 4 5 6
2. Inject group 0 (determined from cross site limits [0,1]

on parent 1) into position 1
0 ? ? 0 0 ? ? ? : 3 0 4 5 6

3. Remove group 4 and 5 due to repeats (the new group,
0, clashes with the old position of these two groups on
the left part of the chromosome). Then fill in the
remaining groups on the left part according to their old
position (from parent 1).

0 ? 3 0 0 6 3 6 : 3 0 6
4. Reinsert variable 1 (which is at present unassigned)

into random group (here 6)
0 6 3 0 0 6 3 6 : 3 0 6

where ? denotes an unallocated variable (adapted from [6]).
Mutation involves randomly mutating groups (on the right
side of the colon) according to the Mutation Rate. Each
gene has Mutation Rate probability of being mutated so that
the group is randomly split into two new groups or
combined with another existing group. Therefore, for the
offspring in the previous example, group 0 may be mutated
by splitting the elements into two new groups (1 and 2) or
combining it with another group (say 3). Falkenauer proves
[6] that this method allows the schema theory to hold even
for grouping problems. In contrast, PMX and standard
crossover as used in GPV, with their schema and o-schema
theories, appear to collapse when applied to these sort of
problems.

2) Hill Climbing (HC)

A Hill Climbing Search [19] iteratively moves in the
direction of increasing value for some metric. Our version
of Hill Climb involves using the GPV representation and
making simple changes to the current groupings with each
iteration. Within each iteration one variable is moved into
another existing group or placed into a newly formed group
and if this change improves the score of the individual, it is
retained. The algorithm is outlined below.

Input: Q
Generate a random selection of groupings using the GPV representation
Set Score to the Partition Metric applied to Q given the grouping
For i = 1 to Iterations do

Make a random change to one gene in the chromosome
Set New_Score to the Partition Metric applied to Q
If New_Score < Score Then undo changes

End For
Output: G (a set of groups)

3) Mirkin's Separate and Conquer (S&C)

This method is based on the clustering technique of
Separate and Conquer [16]. The algorithm is amended to
allow it to cluster on the relationships between variables
rather than on the value of variables. The algorithm is as
follows and uses equation 7 to calculate :)(gih

Input: Q
Let G be a set of Groups (empty)
Let X be a set of variables {1..n}
Create a group g1 containing the best correlation pair in Q
Add g1 to G and set m = 1
For i = 1 to n

Set skip = false and j = 1
While j < m+1 and skip = false

If xi ∉gj Then
Add xi to gj to create jg′

If h > Then)g(j′)(g jh
Add xi to gj and set skip = true

 End If
End If
j = j + 1

End While
If skip =false Then

Create a group g* containing only xi

Add g* to G and set m = m + 1
End If

End for
Output: G (a set of groups)

To summarise, a new group is created containing the two
variables that have the highest correlation between them.
The next step is to take each variable in turn, and iterate
through each group that exists, seeing if adding the variable
to that group increases the groups’ score. If this is the case,
then the variable is added to that group. If there are no more
groups to test a given variable with, then it is placed into a
new group on its own.

IV. PARAMETER ESTIMATION

In order to retrieve groupings that correspond closely to the
correlations that represent actual dependencies, we will
have to determine the ideal set of parameters for the
correlation search, most importantly R, the size of the Q. As
this will determine the cut off point for significant
correlations, it will affect the overall algorithm a great deal.
For example, a cut off point that is too high will mean there
are too few significant correlations resulting in smaller

groups; a cut off point that is too low will mean there are
too many significant correlations and so groups will be
combined into larger ones due to the inclusion of low
correlated variables in the list. We have decided to try and
determine the parameters through simulations of the
random bag method described in section III.B. Random bag
was chosen since it is the simplest to model. It should also
be the weakest of the three methods for correlation search
and so by coming up with confidence intervals for selecting
all the true correlations for this method should mean we
have a worst case scenario for the chosen parameters;
namely 95% confidence on Random Bag should mean at
least 95% confidence on EP. This has been shown to be
true in our previous work in [21], and through the
experiments within this paper. These simulations were used
to generate probability distributions of selecting
correlations that represent actual dependencies. These
distributions could be used to determine confidence limits
for the correlation list size and the number of calls to the
correlation function.

A. Simulation of Random Bag

Simulations were carried out in order to mimic the way in
which the random bag searches for good correlations.
These consisted of setting the size R of Q, the size of the
total search space (s) and the number of calls to the
correlation function (c) to particular plausible instantiations
and then simulating the act of randomly selecting a
correlation from the search space and then recording
whether it was a pre-defined “true” dependency. This
process can be compared to repeatedly picking a selection
of c random cards from a pack without replacement and
recording the number of Aces found. Therefore for this
case R = 4 (the number of Aces) and s = 52 (the number of
cards in a pack). We were able, therefore, to generate
approximations of the distributions associated with the
probability of picking a “true” dependency. The number of
these “true” dependencies will be referred to as r, where r ≤
R. These distributions were then tested for normality using
the Lilliefors’ test (see section IV.B). The mean and
standard deviation were then calculated for each
distribution so that a method for symbolic regression could
be used to learn a function to determine the mean and
standard deviation given R, s and c (see section IV.C). The
simulation algorithm is as follows and was repeated for
Nsims different values of R, s and c.

Input: R, r, s, c and SimulationSize
Set dependencies = r randomly selected correlations
Set Distribution to be a zero array of length R
For i = 1 to SimulationSize

count = 0
For j = 1 to c

Randomly choose R different correlations
If (xi,xj) is in dependencies Then count = count + 1

End For
Distributioncount = Distributioncount + 1

End For
Output: Distribution
The probability distribution for selecting a true dependency
is found by dividing each element in the distribution array
by SimulationSize. SimulationSize is a variable that dictates
the number of times the process is repeated to ensure that a
good approximation to the random bag process is reached.

B. Lilliefors' Test

Lilliefors’ test [14] is a simple test for normality that can be
performed on a known distribution function. The
simulations performed in section IV.A can easily be
transformed into the required format for this method and
the test can be performed to see if the random bag method
can be approximated by a normal distribution. Given v
observations, a metric Dmax is computed as in equation 9.

)()(*max rSrFMAXD v−= (9)

where Sv(r) is the sample cumulative distribution function,
F*(r) is the cumulative normal distribution with µ equal to
the sample mean, σ2 equal to the sample variance, and v is
equal to R+1. Within the simulations, these two summary
statistics can be computed directly from the data. If the
value of Dmax exceeds the critical value supplied by
Lilliefors in his paper, one rejects the hypothesis that the
observations closely follow the normal distribution. For the
purpose of this paper we shall choose the 99% confidence
limit, which requires Dmax not to exceed v031.1 . From
the results of these tests we can assume that the random bag
can be approximated by a normal distribution with a 99%
certainty. In fact all of the 150 simulations passed the test
for normality at this level.

C. Finding µ and σ

Once it has been ascertained that the distribution of the
Random Bag process can be approximated as Normal, a
value for the mean and standard deviation is needed in
order to place confidence limits on the number of function
calls needed to find the required R, the size of Q. Since
many simulations have been performed, tabulating R, c, s
and the associated µ and σ, these can be used to evaluate
the relationship between µ and σ. We shall assume that µ is
a function of R, c and s, and that σ is another function of R,
s and c. The Genetic Programming technique of Symbolic
Regression is used for this, [13], rather than applying a set
of parameterised functions because there is no knowledge
whatsoever of relationships between any of the variables.

The functions for µ and σ, which shall be denoted µ(R,c,s)
and σ(R,c,s), will be assumed to be functions in terms of the
operators +,-,✕ ,/, and the terminal symbols R, c, s along
with the constant integers 0 to 9. The exact form is
unknown. A binary tree will be used to represent a regular
expression in terms of these symbols, with the terminal

nodes being a variable or constant and the non-terminals
being an operator. The worth of any given tree (its fitness)
will be the difference between the observed value of µ
and/or σ vs. the calculated value, using the equation formed
from the tree, and all of the available data. This is defined
in equations 10 and 11.

∑
=

−⋅−=
simsN

i
iiii scRNodes

1

2),,()(for Fitness µµµµ
(10)

∑
=

−⋅−=
simsN

i
iiii scRNodes

1

2),,()(for Fitness σσσσ
(11)

where Nodes(●) represents the number of nodes in the
corresponding binary tree, and i indexes a variable from the
table of simulated examples (where there are a total of Nsims
examples). As with a Genetic Algorithm, the initial
population will be a certain number of random binary trees
as described above. This population will be improved
(better fitness) over subsequent generations through the use
of the standard genetic programming operators of Mutation
and Crossover. Note that the negative fitness function
ensures that the process tries to improve the population by
minimising the fitness. Adjusting the fitness by penalising
it on the tree’s size will force the genetic program to look
for a smaller tree. The resulting functions for µ and σ can
be found in equations 12 and 13.

cs
cR
+

=
2
2µ (12)

s
cR 11

63
+=σ (13)

D. Confidence Limits on c

Once values for the mean and standard deviation have been
found, one can place confidence limits on the probability of
the random bag finding a number of correlations that lie
between r and R, where R is the size of the random bag and
r is the number of correlations being searched for. This is
the cumulative normal distribution where the probability
that the number of correlations found is greater than r. For
the purpose of this paper, we have chosen the ratio of R to r
as 5 and the confidence limit as 95%. The aim of this
exercise is to recommend a value for c based on the known
parameters R, r and s. Given that the pr(number of
correlations ≥ r) = 0.95, we can use the standard normal
distribution tables with z = (r-µ) /σ to find what the
corresponding value of c should be. For the 95% level, the
value of z should be –1.645. Since we know µ and σ, an
equation can be formed in terms of z, r, R, c and s where
only c is unknown. We start with equations 14 and 15.

σ
µ−

=
rz

(14)
scR
cs

cRr
z

1163
)2(

2

+
+−

=

(15)

Unfortunately this requires a lot of algebra to solve the
above equation for c. The final solution is a quadratic
equation, and when some reasonable approximations are
made, is as found in equation 16.

()

−+−+−≈)63(

63
883.12)23.1(

22
2 rRzrRRrsc

(16)

The parameter c is a guide towards how long the procedure
is going to take, in terms of how many correlation function
evaluations are made. For example if c is greater or equal to
the number of calls made by the exhaustive search (s), then
it is pointless to use the random bag to locate the required
number of correlations. As a guideline, we aim for a 95%
confidence at finding the required number of correlations.

V. EXPERIMENTAL RESULTS

We describe the generated datasets in section V.A and the
results of estimating the parameters for the algorithms in
section V.B. We then describe a metric for evaluating the
discovered groupings in section V.C which is followed, in
section V.D, by the results of numerous experiments which
compare different grouping strategies consisting of all
combinations of the proposed methods for grouping search
and for correlation search. These 15 strategies are applied
to six datasets where there are identifiable mixed groupings
of MTS variables. For each experiment we have recorded:

1. The Partition metric of the best solution after a varying

number of calls to the fitness function for various
different datasets. This is a measure of how well the
groupings represent the correlations that were
discovered during the correlation search.

2. The score as calculated by the Evaluation metric
described in V.C, which is independent of the
correlation search results. This can be considered as a
measure of accuracy of the resulting groupings. It is
essentially a measure of distance between the groups
that were used to generate the data and the resultant
groups found using our methods.

3. The number of function calls to find the solution with
the highest Partition metric (a measure of efficiency).

All stochastic grouping algorithms (all methods except
Separate and Conquer) were repeated 10 times and the
average recorded in order to remove any sampling bias. We
then calculated the marginal statistics over the correlation
searches, the grouping strategies and the datasets.

A. Multivariate Time-Series Datasets

Based on the two problems being tackled by the grouping
methods - the search for DBN structure and the generation
of VAR models, two types of datasets have been produced.
One set has been generated by hand-coded DBNs and the
other by VAR models. We have generated five datasets of
each type with varying dimensionality and order. These are
described below. For the experiments we mixed various
variables from these datasets to produce some which had
only DBN generated data, some which had only VAR
generated data and some with a mixture of the two. This

was to see how the methods performed under different
conditions and for different types of data.

1) Dynamic Bayesian Networks

Dynamic Bayesian Networks can be used to model MTS. A
Dynamic Bayesian Network consists of a set of nodes,
representing variables in the domain at different time lags
and directed links between these nodes. To each node, with
a set of parents, there is an associated probability table and
these can be used to infer probabilities about certain events
in the system [5]. Five different Dynamic Bayesian
Network topologies were created with the conditional
distributions hand-coded in order to generate 5 separate
MTS. The number of variables within each network was 3,
5, 5, 10 and 10. The size of the largest time lag for each
network varied between 5 and 60.

2) VAR Processes

Just under half of the test data was generated from a
selection of Vector Auto-Regressive MTS models. These
types of models have various applications from medical
domains [21] to economic domains [4]. A VAR process of
order P, written VAR(P), is defined in equation 17.

)()(A)(
1

titxtx
p

i
i ε+−= ⋅

=
∑

(17)

where)(tx is the next data vector of size n (the number of
variables in the model) at time t, Ai is a n×n coefficient
matrix at time lag i, and)(tε is a n length noise vector at
time t (usually Gaussian) with zero mean. The value of
each element in Ai is usually a real number in the range ±1.
In order for this process not to rapidly tend towards infinity
or zero over time, certain conditions must be placed on the
parameter matrices, referred to as stability [15]. This
condition can be imposed through the use of a genetic
algorithm to generate a random VAR(P) process and then
the use of Crossover and Mutation to improve its fitness
(which is a measure of its stability) through subsequent
generations.

3) Dataset Organisation

Table 1 describes the datasets that were generated using the
two methods described above:

MTS Order Dimensionality
a 10 3
b 20 5
c 5 5
d 30 10
e 60 10
f 2 10
g 3 7
h 4 6
i 5 3
j 2 2

Table 1 - The different MTS descriptions

These 10 MTS were grouped into various different
combinations to produce 6 datasets. The first consisted of
all 61 variables, the second consisted of only DBN
generated data, the third only VAR generated data and the
remaining three consisted of various mixtures. All datasets
except the first consisted of 28 variables so as to keep the
search space identical. Table 2 shows the breakdown of
each dataset.

Dataset MTS
1 a b c d e f g h i j
2 a b d e
3 f g h i j
4 a e f i j
5 a b c g h j
6 d g h i j

Table 2 - The Breakdown of each Dataset

B. Parameter Estimation Results

If we apply the parameter estimation analysis, from section
IV, to Datasets 1-6, we obtain the results as listed in table 3.
The equation for s represents the total possible number of
correlations at varying time lags, once invalid correlations
are removed (see section III.B). µ and σ are defined in
equations 13 and 14 respectively, z is the standard normal
variable, and c is defined by equation 17. Two new
parameters are introduced: γ and β. γ is the ratio of c to s
and gives an indication of how efficient the procedure is
going to be. As a guideline, we would suggest that for the
random bag to be effective, this value should be less than
1/3. The parameter β needs defining. This represents the
ratio r/R. We suggest a value of 0.2, this being found by
experimentation, and provides a good trade off between the
number of calls to the correlation function, c, and how
many correlations needed to be stored in memory. As can
be seen, the use of the approximation in equation 17 has
resulted in the confidence limit not being exactly 95%, but
rather 94.4% (on average).

Parameter Dataset 1 Dataset 2-6
MaxLag 75 75

n (number of variables) 61 28
r 150 64
R 750 320
c 72201 15585

)5.0)(1(+−= MaxLagnns 276330 57078

cs
cR
+

=
2
2µ

173.321 76.879

s
cR 11

63
+=σ

14.779 8.083

σ
µ−

=
rz

-1.578 -1.593

sc=γ 0.273 0.261

Rr=β 0.200 0.200

Confidence 0.943 0.945
Table 3 - Parameters for Datasets 1-6

Figure 1 shows an example where s = 1,000,000, β = 0.2, γ
is allowed to vary between 0.22 and 0.32, and three values
of R are displayed. The values of R corresponds to 2.5%,
0.25% and 0.025% respectively of s. It can be immediately
seen from the graph that R=250 requires more correlation
function calls for any level of confidence than for the other
two values of R. However there is not much between
R=25,000 and R=2,500. Other similar experiments have
shown that the optimal value for R/s is near the 0.25%
mark.
To conclude, we have shown that c should be calculated
from equation 17 once a confidence limit has been assigned
(e.g. 95%, giving a value for z: -1.645); here we
recommend the value for R/s to be about 0.25%. And
finally, we have found that having the ratio of r to R being
0.2 proves to be efficient. However a more systematic study
should be conducted on how these parameters relate to each
other.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.220 0.245 0.270 0.295 0.320
c as fraction of s

C
on

fid
en

ce
 P

ro
ba

bi
lit

y

R=25000
R=2500
R=250

Figure 1 – Confidence against γ with varying R

C. Evaluation Metric

A metric is needed to show how similar or dissimilar two
groups are. We define this by pairing all of the variables up
and incrementing the score each time that the pair appears
in the correct group within the two groups or when the pair
appears in different groups. The metric is scaled so that it
returns a value between 0 and 1 inclusive, where 0
represents very dissimilar groups and 1 represents very
similar groups. This metric is defined as follows:

Definition of the evaluation metric function EVM(G1,G2)

Let G1 and G2 be two groupings
Let n be the number of variables
Let EVM = 0
For i = 1 to n –1

For j = i+1 to n
Let g1 be the group within G1 containing i
Let g2 be the group within G2 containing j
If j in g1 and i in g2 Then EVM = EVM + 1

If j not in g1 and i not in g2 Then EVM = EVM + 1
End For

End For
Update EVM to)1(−nnEVM2

D. Results

In this section we first look at the results from the 15
different combinations of correlation search and grouping
strategy to see how they performed when averaged over the
6 datasets. We then look at some of the marginal statistics
to see how the correlation searches and the grouping
strategies performed irrespective of each other. We also see
how the different datasets affected the outcome by looking
at their marginal statistics. Finally we discuss the grouping
results using three examples.

The parameters for all the grouping genetic algorithms were
identical and are found in table 4. The exception to this was
GPV which was allowed to run for 1000 generations due to
its slow convergence.

Parameter Dataset 1 Dataset 2-6
Population 150 100

CrossoverRate 0.8 0.8
MutationRate 0.1 0.1

Generations (GPV) 150 100 (1000)
Table 4 - The Parameters for the GGAs

1) The 15 Methods

 Partition

Metric
Evaluation

Metric
Function

Calls
RB / GPV 110.60 0.91 232292.5
RB / PMX 114.90 0.92 12974.00
RB / GGA 121.10 0.93 8697.667
RB / HC 125.00 0.92 4881.200

RB / S&C 113.67 0.90 400.6667
EP / GPV 105.43 0.90 232327.7
EP / PMX 109.87 0.90 10545.67
EP / GGA 113.67 0.92 8152.333
EP / HC 118.80 0.91 5331.520

EP / S&C 109.33 0.89 427.6667
EX / GPV 117.80 0.91 232237.4
EX / PMX 122.50 0.92 11325.67
EX / GGA 128.87 0.93 8693.667
EX / HC 130.03 0.93 4778.470

EX / S&C 122.67 0.92 411.6667
Table 5 - The five Grouping Strategies applied to the

Three Methods for Generating Q

We can see from the results of the 15 different methods in
Table 5 that whilst there is a lot of variation in the number
of calls to the Partitioning Function (FC), the metrics, in
particular the evaluation metric does not vary a great deal at
all. This implies that the initial process of searching for Q
does not have to be exhaustive to get good results. This
property would be very useful for those applications where
the partitioning of a MTS must occur on a real time basis.
By far the fastest to converge is the Separate and Conquer

Method taking little more than 400 function calls.
However, it must be noted that this method is deterministic
and is not guaranteed to find the best groupings.

The most important statistic is the evaluation metric and the
method that seems to perform best over all the datasets is
the Exhaustive Search / Hill Climb. Although the
Falkenauer finds just as good a solution, it takes almost
twice as many function calls. However, as the marginal
statistics will show, the Falkenauer method performs better
when averaged over all the correlation search strategies.
Therefore, it appears that if the exhaustive search cannot be
carried out then a combination of Random Bag or
Evolutionary Program with Falkenauer is the best option.

2) A Note Regarding RB and EP

Table 6 displays the average of the top r correlations for
each method of correlation mining, and displays the
average over all of the datasets.

Dataset (r) EX RB EP
Dataset 1 (150) 0.592 0.527 0.547
Dataset 2 (64) 0.536 0.488 0.402
Dataset 3 (64) 0.694 0.629 0.659
Dataset 4 (64) 0.641 0.575 0.569
Dataset 5 (64) 0.548 0.509 0.497
Dataset 6 (64) 0.625 0.568 0.558
Dataset’s Avg. 0.606 0.549 0.539
Table 6 - The Average Top r Correlations for the Three

Methods for Generating Q

As can be seen in the table, the exhaustive search performs
the best, followed by the random bag, and then
evolutionary programming. It should be noted that this
result only applies to the situation where there are a large
number of correlation calls made (c is large). It has been
shown in [22] that the EP method outperforms the RB
method for smaller values of c. Based on the extensive
analysis and experiments performed so far we can
recommend that if c is more than 30% of s then the
exhaustive search method should be used. If this is not the
case and if z corresponds to less than 50%, use the EP
method, otherwise use the RB method.

3) Marginal Statistics

In order to explore more fully the effect of the different
correlation searches, grouping strategies and datasets, we
calculated various marginal statistics. Essentially this
involved averaging over the correlation searches, the
grouping strategies and the datasets to see how each of
these methods compared. These results can be found in
tables 7 to 9 below and each table is discussed in the next
section.

 Partition
Metric

Evaluation
Metric

Function
Calls

Average EX 124.373 0.923 51489.37

Average EP 111.420 0.905 51356.97
Average RB 117.053 0.915 51849.21
Table 7 - Averaging over Correlation Search

The correlation summary statistics (Table 7) support the
conclusion that the method used for generating a good set
of correlations does not have a very significant effect on the
final groupings. In other words, the evaluation metric
which measures the distance between the original
groupings and the discovered groupings are very similar for
all correlation search methods (approximately 0.9).
Therefore, it would make more sense to perform a fast
approximate correlation search on datasets where the search
space is so large that the exhaustive search is infeasible.

 Partition
Metric

Evaluation
Metric

Function
Calls

Average GPV 111.278 0.907 232285.8
Average PMX 115.756 0.916 11615.11
Average GGA 121.211 0.926 8514.556
Average HC 124.611 0.922 4997.061

Average S&C 115.222 0.903 413.3333
Table 8 - Averaging over Grouping Strategy

The best grouping strategies, as shown by the grouping
summary statistics (Table 8), are the Hill Climb method and
Falkenauer's GGA. This is probably due to the economical
use of function calls made by Hill Climb (unlike the GA
methods which require evaluating populations) and the
efficient crossover developed by Falkenauer. The other GA
methods used less efficient crossovers and the Separate and
Conquer method is deterministic and therefore can never be
guaranteed to find the global solution. It is, however, very
fast at finding a good set of groupings after a very small
number of function calls.

 Partition
Metric

Evaluation
Metric

Function
Calls

Avg. Dataset1 222.120 0.958 99294.81

Avg. Dataset2 69.227 0.830 42105.42

Avg. Dataset3 105.667 0.934 41916.15

Avg. Dataset4 101.200 0.896 42154.41

Avg. Dataset5 99.493 0.948 42003.80

Avg. Dataset6 107.987 0.922 41916.49

Table 9 - Averaging over Dataset

Looking at the dataset statistics (Table 9), it appears that
Dataset 1 (the mixture of both types of data) produced a
higher fitness and independent metric score than the rest
and Dataset 3 (the purely VAR data) produced better results
than Dataset 2 (the purely DBN data). A reason for this
could be that the VAR data generator produced variables
with higher correlations between true dependencies. These
may then have outflanked any spurious correlations. It is
encouraging to note that the largest dataset, Dataset 1, with
a mixture of DBN and VAR data produced such good
results. Datasets 4 to 6 which contain a mixture of VAR
and DBN exhibit the most variations in the evaluation

metric. This is most likely down to the strength of
correlations that were reflected in the generated data as well
as the existence of spurious correlations.

Table 10 shows a selection of groupings learnt from the 3
datasets using the Falkenauer algorithm with differing
correlation searches. It can be seen that the majority of
variables have been grouped correctly in the all three
experiments. In fact, 15 out of the 21 groups have been
perfectly recreated. Some of the variables have been placed
in a group on their own implying that they are independent
when in actual fact there should be some correlation
between them and other variables. This could be due to
spurious correlations which have prevented the true
correlations from being included on the correlation list.

This effect is also evident in the summary tables where the
independent metric (which simply measures the distance
between the discovered groupings and the original) is
higher for some experiments than others but the fitness
(which relies on the correlations between variables) is
lower. The opposite is also evident in the results. Once
again, this is most likely due to spurious correlations
between variables in different groups.

4) Sample of Groupings

Grouping Method Original MTS Groupings Discovered Groupings
EP / GGA
Dataset 1

0 1 2

3 4 5 6 7

8 9 10 11 12

13 14 15 16 17 18 19 20
21 22

23 24 25 26 27 28 29 30
31 32
33 34 35 36 37 38 39 40
41 42
43 44 45 46 47 48 49
50 51 52 53 54 55
56 57 58
59 60

0 6
1
2
3 4 5 7
8
9 10
11 12
13
14 15 20 21 22
16 17 18 19
23 24 25 26 27 28 29 30
31 32
33 34 35 36 37 38 39 40
41 42
43 44 45 46 47 48 49
50 51 52 53 54 55
56 57 58
59 60

EX / GGA
Dataset 5

0 1 2
3 4 5 6 7

8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25
26 27

0 1 2
3 4 5 6 7
8
9 10
11 12
13 14 15 16 17 18 19
20 21 22 23 24 25
26 27

RB / GGA
Dataset 3

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22
23 24 25
26 27

0 1 2 3 5 7 8 9
4
6
10 11 12 13 14 15 16
17
18 19 20 21 22
23 24 25
26 27

Table 10 - A sample of grouping results from the
Falkenauer method along with the original groupings that

were used to generate the MTS
An interesting result that was found in the DBN data
groups was that if a group of variables was incorrectly split
into 2 or more groups, then the divide(s) made topological
sense when compared to the structure of the DBNs that
generated the data. In some networks the algorithm split
them into relatively independent structures.

VI. CONCLUDING REMARKS

In this paper we have outlined a framework with which we
can decompose high dimension MTS into smaller
dimension MTS which are relatively independent of one
another based on the correlation between the variables. This
can be very useful in problems where the high
dimensionality of a MTS prevents certain algorithms from
being applied, for example the generation of Vector
AutoRegressive (VAR) models or Dynamic Bayesian
Networks (DBNs). Our results have shown that whilst the
initial search for good correlations to generate the
groupings does not have to be exhaustive to produce
equally good results, the best method of grouping search
appears to be either a Hill Climb strategy or Falkenauer's
Grouping Genetic Algorithm. The results have been very
promising on both VAR data and DBN data and, in most
cases, the metric used to find the groupings proved robust
enough to avoid mistaken groups due to spurious
correlations. We have also provided some concrete
practical recommendations on the correlation search step of
our methodology.

Future work will involve looking at how the grouping
methodology performs on some real world datasets with the
aim of building DBN and VAR models. We will also be
looking at ways of tackling the spurious correlations
problem using a combination of standard statistical
techniques and heuristics. Relationships between the
parameters as described in section IV also need a more
rigorous and in-depth study.

ACKNOWLEDGEMENTS

The authors wish to thank the project sponsors: Moorfields
Eye Hospital, UK; Honeywell Technology Centre, USA;
Honeywell Hi-Spec Solutions, UK and the Engineering and
Physical Sciences Research Council, UK. We would also
like to thank Jason Crampton for his mathematical
assistance.

BIBLIOGRAPHY

[1] T. Baeck, G. Rudolph and H.-P. Schwefel, “Evolutionary

Programming and Evolution Strategies: Similarities and
Differences”, D.B. Fogel and W. Atmar, editor: Proceedings of the
Second Annual Conference on Evolutionary Programming, 11-22,
1993.

[2] T. Baeck, “Evolutionary Algorithms: Theory and Practice”,
Oxford University Press, 1996.

[3] M. Casdagli, and S. Eubank, “Non-linear Modelling and
Forecasting”, Addison Wesley, 1992.

[4] C. Chatfield, “The Analysis of Time Series - An Introduction”,
Chapman and Hall, 4th edition, 1989.

[5] P. Dagum, A. Galper, E. Horvitz and A. Seiver, “Uncertain
Reasoning and Forecasting”, International Journal of Forecasting 11,
pp 73-87, 1995.

[6] E. Falkenauer, “Genetic Algorithms and Grouping Problems”,
Wiley, 1998.

[7] D.B. Fogel, “Evolutionary Computation - Toward a New
Philosophy of Machine Intelligence”, IEEE Press, 1995.

[8] N. Friedman, K. Murphy and S. Russell, “Learning the Structure
of Dynamic Probabilistic Networks”, Proceedings of the 14th
Conference on Uncertainty in AI, pp 139-147, 1998.

[9] M. Garey and D. Johnson, “Computers and Intractability - A
Guide to the Theory of NP-Completeness”, W.H. Freeman, San
Francisco, 1979.

[10] D. E. Goldberg, “Genetic Algorithms in Search, Optimisation,
and Machine Learning”, Addison Wesley, 1989.

[11] D.E. Goldberg and R. Lingle, “Alleles, Loci, and The Travelling
Salesman Problem”, Proceedings of an International Conference on
Genetic Algorithms and Their Applications, pp 154-159, 1985.

[12] J.H. Holland, “Adaptation in Natural and Artificial Systems”,
University of Michigan Press, 1995.

[13] J. Koza, “Genetic Programming: On the Programming of
Computers by Natural Selection”, MIT Press, 1992.

[14] H. W. Lilliefors, “On the Kolmogorov-Smirnov Test for
Normality with Mean and Variance Unknown”, Journal of the
American Statistical Association, 62, 399-402, 1967.

[15] H. Lutkepohl, “Introduction to Multivariate Time Series
Analysis”, Springer-Verlag, 1993.

[16] B. Mirkin, “Concept Learning and Feature Selection Based on
Square-Error Clustering”, Machine Learning 35, pp 25-39, 1999.

[17] D. Pena and G. Box, “Identifying a Simplifying Structure in
Time Series”, Journal of American Statistical Association 82, pp 836-
843, 1987.

[18] A. Pole, M. West, and P.J. Harrison, “Applied Bayesian
Forecasting and Time Series Analysis”, Chapman-Hall, 1994.

[19] S. Russell and P. Norvig, “Artificial Intelligence, A Modern
Approach”, Prentice Hall, 1995, Ch.4, pp 111-112.

[20] G. Snedecor and W. Cochran, “Statistical Methods”, Iowa State
University Press, 6th edition, 1967.

[21] S. Swift and X. Liu, “Modelling and Forecasting of
Glaucomatous Visual Fields using Genetic Algorithms”, Proceedings
of the Genetic and Evolutionary Computation Conference, pp 1731-
1737, Morgan Kaufmann, 1999.

[22] S. Swift, A. Tucker and X. Liu, “Evolutionary Computation to
Search for Strongly Correlated Variables in High-Dimensional Time-
Series”, Proceedings of Intelligent Data Analysis 99, LNCS 1642,
Springer-Verlag, pp 51-62, 1999.

[23] A. Tucker and X. Liu, “Extending Evolutionary Programming to
the Learning of Dynamic Bayesian Networks”, Proceedings of the
Genetic and Evolutionary Computation Conference, pp 923-929,
Morgan Kaufmann, (1999).

APPENDIX - PROOFS FOR GROUPING METRIC

Proof 1. When there are no correlations, then φ=Q .
Therefore max(f(G)) is 0, because there will never be any
cases where L is 1. This therefore requires that the size of
any of the groups in G will be 1. This is by definition of the
functions L and h.

Proof 2. If a correlation exists for each pairing of variables,

then the maximum size for Q will be
2

)1(−nn , because of

the duplicate restriction. It therefore follows that the value

for h(gi) will be
2

)1(−ii kk using the same logic. Using

equation 5, we have

))(max())(max(
1

∑
=

=
m

i
ighGf

therefore

 −
= ∑

=

m

i

ii kkGf
1 2

)1(max))(max(

since

−

=

 − ∑∑
==

nkkk m

i
i

m

i

ii

1

2

1

max
2
1

2
)1(max

then f(G) will be a maximum when is a maximum. ∑
=

m

i
ik

1

2

We shall assume that 1 ≤ k1 ≤ k2 ≤ …km. If we write
then 211 kkk +=′

()
() 2

2
2
1

2
1

21
2
2

2
1

2
21 2

kkk

kkkkkk

+>′∴

++=+

This process can be repeated until there is only one value k1
remaining where k1=n, and f attains its maximum value.
Hence when Q is at a maximum size (as above), the
arrangement with the maximum fitness will be all variables
in a single group.

Proof 3. If the data generating the correlations came from a
mixed set of multivariate time series observations, then for
a given grouping arrangement G and correlation set Q

=

=

∑∑

∑

= =

=

i ik

a

k

b
ibiai

m

i
i

ggLgh

ghGf

1 1

1

),(max))(max(

))(max())(max(

This will be a maximum when all instances of the function
L are 1. If Q contains an additional spurious correlation or
is missing a correlation, then this value will be reduced by
1, by definition of L and proof 2. Hence the maximum
value of the fitness for a given G will be when Q contains
the all of the correlations that can exist for each grouping.

GLOSSARY

X A Multivariate Time Series
n Number of variables in the MTS
T Number of cases / observations
xi(t) An observation of the MTS variable, i at time, t
lag Time lag of a correlation
MaxLag Maximum limit for a time lag
P The order of a VAR process
Q List of discovered high correlations
R Length of Q
G Set of groups
m Number of groups
gi The ith group
ki Size of the ith group
s Size of the search space of all possible

correlations with all lags up to Maxlag
r Number of true underlying dependencies (i.e.

excluding spurious correlations)
c Number of calls to the correlation coefficient
correl Correlation in the form of a triple, (xi, xj, lag)
corr Boolean Function that returns true if a

correlation pair exists in Q irrespective of
direction

z z statistic for the Normal Distribution
β The ratio c/s
γ The ratio r/R

	INTRODUCTION
	grouping in multivariate time series
	Methodology
	Preliminaries
	The Correlation Search
	The Exhaustive Search (EX)
	The Random Bag (RB)
	Evolutionary Programming (EP)

	The Partition Metric
	The Grouping Search
	The Genetic Algorithms (GA)
	Hill Climbing (HC)
	Mirkin's Separate and Conquer (S&C)

	Parameter Estimation
	Simulation of Random Bag
	Lilliefors' Test
	Finding µ and s
	Confidence Limits on c

	Experimental Results
	Multivariate Time-Series Datasets
	Dynamic Bayesian Networks
	VAR Processes
	Dataset Organisation

	Parameter Estimation Results
	Evaluation Metric
	Results
	The 15 Methods
	A Note Regarding RB and EP
	Marginal Statistics
	Sample of Groupings

	Concluding Remarks
	Acknowledgements
	Bibliography
	Appendix - Proofs for Grouping metric
	Glossary

