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Abstract--The decomposition of high-dimensional multivariate 
time series (MTS) into a number of low dimensional MTS is a 
useful but challenging task because the number of possible 
dependencies between variables is likely to be huge. This 
paper is about a systematic study of the “variable groupings” 
problem in MTS. In particular, we investigate different 
methods of utilising the information regarding correlations 
among MTS variables. This type of method does not appear to 
have been studied before. In all 15 methods are suggested and 
applied to six datasets where there are identifiable mixed 
groupings of MTS variables. This paper describes the general 
methodology, reports extensive experimental results and 
concludes with useful insights on the strength and weakness of 
this type of grouping method. 
 
Index terms--Multivariate Time Series, Grouping, Correlation, 
Genetic Algorithms, Evolutionary Programming. 
 

I. INTRODUCTION 
 
There are many practical applications involving the 
partition of a set of objects into a number of mutually 
exclusive subsets. The objective is to optimise a metric 
defined over the set of all valid subsets, and the term 
grouping has been often used to refer to this type of 
problem. Examples of the grouping applications include bin 
packing, workshop layout design, and graph colouring [6]. 
Much research has been done on the grouping problem in 
different fields, and it was established that many, if not all 
grouping problems, are NP-hard [9]. Therefore, any 
algorithm that is guaranteed to find the global optimum will 
run in exponential time to the size of problem space, and a 
heuristic or approximate procedure is normally required to 
cope with most of the real world problems. A variety of 
techniques have been proposed to develop this procedure, 
including traditional clustering algorithms, hill-climbing 
and evolutionary algorithms. These techniques utilise a 
metric that takes relationships or dependencies between 
objects into account, and partition them into a number of 
mutually exclusive subsets [6]. 
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 When it comes to the problem of decomposing a high-
dimensional multivariate time series (MTS) into a number 
of low dimensional MTS, the number of possible 
dependencies between time series variables becomes huge 
because one variable could affect another after a certain 
time lag. Therefore how to effectively utilise these 
dependencies becomes an important issue: to use all the 
possible dependencies in a variable grouping algorithm will 
be computationally infeasible for many, especially real-
time, applications. 
 
This paper is about a systematic study of the “variable 
groupings” problem in MTS. We investigate different 
heuristic methods for utilising the information regarding 
dependencies among MTS variables; this type of method 
does not appear to have been studied before. In all, 15 such 
methods are suggested and applied to six datasets where 
there are identifiable mixed groupings of MTS variables. 
Our methodology scores possible groupings based on a list 
of highly correlated pairings of variables. This list is not 
necessarily constructed from an exhaustive search and, 
therefore, makes the method applicable to massive data. 
The list size will strongly influence the final groupings and 
so a method for determining this parameter is sought for 
based on probabilistic simulation. 
 

II. GROUPING IN MULTIVARIATE TIME SERIES 
 
MTS data are widely available in different fields including 
medicine, finance, science and engineering. Modelling 
MTS data effectively is important for many decision-
making activities.  A MTS is a series of observations, xi(t); 
[i=1, ...,n; t=1,...,T], made sequentially through time were i 
indexes the measurements made at each time point t.  
 
Although much research has been carried out on modelling 
MTS for different purposes, little has been done on an 
important pre-processing issue: the grouping of MTS. 
When dealing with an n dimensional MTS, it is desirable to 
model the data as a group of smaller MTS models as 
opposed to a single one. Firstly, not all of the variables may 
be related, and secondly the number of parameters to be 
located in such a model would be very high. For example in 
forecasting, there are many statistical MTS modelling 



methods such as the Vector Auto-Regressive (VAR), and 
other linear, non-linear and Bayesian systems [3,15,18]. 
Take the VAR(P) process as an example. There would be at 
least n2P parameters to locate where P is the order of the 
VAR process and n is the number of variables in the data 
set. In explaining MTS, suppose we are trying to learn 
Dynamic Bayesian Network (DBN) models [5,8] from a 
MTS which has very high dimensionality, n, and large 
possible time lags, then the number of possible candidate 
networks will be where MaxLag is the maximum 
time lag [23].  
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Decomposing the data into smaller dimensional time-series 
that are independent to some degree would narrow the 
search space a great deal allowing the speedier production 
of MTS models. Therefore we are interested in finding out 
how to decompose a high-dimensional MTS into groups of 
smaller MTSs, where the dependency between variables 
within the same group is high, but very low with variables 
in another group. Note that this is different from 
dimensionality reduction techniques such as principal 
component analysis or factor analysis which make some 
sort of multivariate transformation of the data [17]. 
 

III. METHODOLOGY 
 
Given a MTS, we want to partition the variables into a 
number of smaller dimensional time series. The proposed 
methodology consists of two stages. Firstly a search over 
combinations of both variables and time lags (because time 
lag will affect the correlation between two MTS variables) 
is carried out in order to find a list of highly correlated 
variables. Let us call this list Q, which will be of length R. 
Q will consist of triples where a triple is made up of two 
variables and a time lag. For example, the triple (x1,  x2, 5) 
represents the correlation between x1 and x2 with a time lag 
of 5. Essentially all of the triples in Q represent the variable 
pairs that are deemed to be significantly correlated with the 
corresponding time lag. Therefore, it is important to 
estimate what R should be with a high degree of accuracy. 
We discuss this further in section IV. Stage two consists of 
an algorithm which is applied to Q where a specifically 
designed metric is used to group the variables in the 
original MTS based on the pairs of  variables found in Q. 
Note that the lag portion of the triple is no longer used once 
the grouping algorithm is applied. This is because we are 
interested in grouping highly correlated variables 
irrespective of the time lag between them. 
 
This section is arranged as follows. After, outlining the 
basic notation in section A, we introduce three methods for 
generating Q in section B. These methods are capable of 
generating a list of highly correlated variable pairs, which 
can then be used along with an appropriate metric by a 
grouping algorithm. In section C, a grouping metric is 
defined and its properties are studied. This is followed by 

the presentation of five different grouping search 
algorithms based on conventional clustering methods, hill 
climbing or evolutionary methods in section D.  

A. Preliminaries 
 
Given a MTS with n variables and of length T we want to 
partition each variable xi into m groups where the size of 
each group will be denoted by ki. This will be achieved by 
generating a list of “strong” correlations, Q, which will be 
of length R. Q will be calculated by using different searches 
through the number of possible correlations, s, where the 
number of calls to the correlation coefficient will be 
denoted by c. The aim of this search is to find the true 
underlying dependencies that generated the data. The 
number of “true” dependencies will be denoted by r.  

B. The Correlation Search 
 
The first stage of the methodology constructs Q which 
contains R pairs of highly correlated variables over all 
possible integer time lags from zero to some positive 
maximum, MaxLag. We want to find these correlations 
after exploring a fraction of the search space. Previously, 
we have compared different methods for performing this 
task [22] and have found that for operations where speed is 
essential, an evolutionary programming approach performs 
best. The correlation list generated using this method is 
then used in conjunction with the grouping strategy 
described below. Note that at time lag zero, the correlations 
represented by the triples (xi,xj,0) and (xj,xi,0) are 
effectively the same so duplicates are considered invalid. 
All triples of the form (xi,xi,lag) will also be considered 
invalid since these are auto-correlations and do not show 
relationships between different variables. All invalid triples 
are removed during the procedure. 
 

1) The Exhaustive Search (EX) 
 
The exhaustive search consisted of simply exploring all of 
the variables, at each time lag. The algorithm is detailed 
below. 
 
Input: X (a T×n MTS)  
Set Q = Empty List 
For i = 0 to n-1 

For j= 0 to n-1 
For lag = 0 to MaxLag 

If the triple (i, j,lag) is valid Then 
Insert the new triple, (xi,xj,lag), into Q and order 
(descending order of correlation magnitude) 
If size of Q = R+1 Then remove the end triple of Q  

End If 
End For 

End For 
End For 
Output: Q of length R 
 

2) The Random Bag (RB) 
 



This is a heuristic approach whereby a random selection of 
triples is placed in a “bag” containing R triples. With each 
iteration a new random triple is added to the bag. When the 
bag overflows, the worst correlation falls out. This is 
repeated for a predefined number of iterations. The 
algorithm is described below: 
 
Input: X (a T×n MTS)  
Set Q = Empty List 
For i = 0 to  c  

i = U(0,n-1), j = U(0,n-1), lag = U(0,MaxLag) where (i,j,lag) is valid 
If a∉Q then insert new triple, (xi,xj,lag), into Q and order 
(descending order of correlation magnitude) 
If size of Q = R+1 then remove the end triple from Q  

End For 
Output: Q of length R 
 
Note that c is the maximum number of allowed calls to the 
correlation function and U(min,max) returns a uniformly 
distributed random integer between min and max inclusive. 
 

3) Evolutionary Programming (EP) 
 
Evolutionary Programming is based on a similar paradigm 
to Genetic Algorithms. However, the emphasis is on 
mutation and the method does not use any recombination. 
The basic algorithm is outlined as follows [2,7]: 
 
Input: X (a T×n MTS) 
Set Q = Empty List 
Generate R random triples and insert into Q 
Set CallCount = R 
While CallCount < c 

Set Children to Q 
Apply Mutate operator to Children  
Insert valid Children into Q 
Update CallCount by the number of valid Children 
Sort Q 
Apply Survival operator to Q 

End While 
Output: Q of length R 
 
A Child will be considered invalid if it is already in Q. 
Traditionally, EP algorithms use Tournament Selection [1] 
during the survival of the fittest stage and the best 
chromosome out of the final population will be the solution 
to the problem. However, it was decided that the entire 
population would be the solution for our EP method as in 
the RB method. That is, each individual chromosome 
would represent a single correlation (a triple) while the 
population would represent the set of correlations found 
(Population Size=R). Hence the survival operator consisted 
of keeping the best R individuals. Although the entire 
population would represent the solution, it must be noted 
that the fitness of each individual would still be 
independent of the rest of the population. Each individual 
would try to maximise the magnitude of the correlation 
coefficient that it represents. This in turn would maximise 
the population's fitness by improving the correlations 
represented by the population. 
The Mutate Operator 
 

Within the EP a gene is either xi ,xj, or the lag. We have 
used the idea of Self-Adapting Parameters [2] in this 
context. Here each gene, genei, in each chromosome is 
given a parameter, σi. Each gene within a chromosome is 
mutated according to the Normal distribution with mean 0 
and standard deviation equal to the gene's corresponding 
standard deviation, σi, in equation 1. Each σi is then 
mutated according to equation 2. 
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Note that τ is constant for each gene in each chromosome 
but different between chromosomes, and τi is different for 
all genes. Both parameters are generated each time 
mutation occurs. Each chromosome consisted of three 
parameters and their corresponding σi values. The value of 
len is the size of each chromosome, i.e. three. A check is 
required after mutation for any duplicates and for any 
invalid chromosomes. Any children that fell into this 
category were repeatedly mutated until they became valid 
 
The Survival Operator 
 
The Survival operator involves removing triples from the 
population based on their fitness (i.e. their correlation 
magnitude irrespective of sign) until population is of size R 
once again. Therefore, the R chromosomes with the highest 
magnitude of correlation are preserved for the next 
iteration. 
 

C. The Partition Metric 
 
The Partition metric, which we define below, is used to 
group variables together where they have strong mutual 
dependency and to separate them into different groups 
where the dependency is low. Let n be the number of 
variables, G be the list of groups and m = │G│(the number 
of groups). Let gi be the ith member of the list G where 1 ≤ 
i ≤ m and let ki = │gi│. The notation gij refers to the jth 
element of the ith list of G. G is restricted such that 
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The metric has the following characteristics (proofs for 
these can be found in the Appendix): 
 

1. If there are no correlations, the maximum value is 
obtained when all variables are in separate groups. 

2. If a correlation exists for each pairing of variables (the 
search space), then the maximum fitness is obtained 
when all of the variables are in one group. 

3. If the data generating the correlations came from a 
mixed set of MTS observations, then the metric will be 
maximised when the variables within the same group 
have as many correlations within the list Q as possible 
and variables within differing groups contain as few 
correlations as possible. 

 
In this paper we have chosen a correl that is a well 
established correlation coefficient - Spearman's Rank 
Correlation [20]. Spearman's Rank Correlation (SRC) 
measures linear and non-linear relationships between two 
variables, either discrete or continuous, by assigning a rank 
to each observation. We can calculate the SRC between 
two variables over differing time lags by shifting one 
variable in time. The equation incorporates the sums of the 
squares of the differences in paired ranks, according to the 
formula:  
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where T is the length of the MTS and rank(xi(t)) is 
calculated from ordering and ranking every observation of 
the variable xi on its value and recording the rank of the 
value at position t. 
 
We chose Spearman’s Rank as it is well recognised and not 
limited to finding linear dependencies although the methods 
are not restricted to using this particular coefficient and 
others such as Pearson's could have easily been used. 

D. The Grouping Search 
 
We have looked at various methods for maximising the 
metric outlined above in the context of grouping MTS. First 
of all we describe the general Genetic Algorithm approach 
that we have adopted before we explain three different 
forms of this algorithm. Next we describe a hill climb 
technique and finally a heuristic clustering method. 
 

1) The Genetic Algorithms (GA) 
 
The general Genetic Algorithm [12,10] described below 
uses the notion of a Population of chromosomes which 
represent a number of possible solutions to a particular 
problem. Crossover and Mutation operators are applied to 
these chromosomes according to CrossoverRate and 
MutationRate, respectively. A selection process is applied 
to Population in order to preserve “good” solutions and 
discard “poor” ones. The process is iterated over the 
Population chromosomes for a specified number of times, 
Generations. The general algorithm for generating a set of 
groups, G, from a set of correlations, Q, is given below: 
 
Input: Q , Population, CrossoverRate, MutationRate, Generations 
Fitness: The Partition Metric applied to a chromosome given Q 
Generate Population chromosomes 
Repeat Generation times   

Select CrossoverRate × Population chromosomes (with fitter 
chromosomes being chosen with higher probability and a 
chromosome can be chosen more than once)  
Randomly pair up selected chromosomes creating parent pairs 
Crossover parents to generate Offspring1 and Offspring2  
Mutate offspring based on MutationRate 
Insert offspring into the population 
Sort the population according to Fitness   
Retain the Population fittest chromosomes   

End Repeat 
Output: G (a set of groups, constructed from the final fittest individual) 
 
The following describes three different representations, 
forms of crossover and mutation that were used with this 
general algorithm. For the scope of this paper, the fitness 
function for the methods will be the partition metric defined 
in equation 5.  
 
Gene Per Variable (GPV) 
 
This representation consists of a chromosome with each 
gene representing a variable in the domain. The value of the 
gene determines which group the variable is a member of. 
For example, 10 variables to be placed into three groups: 

Group 0: 0 3 8 Group 1: 2 7 4 1 5 Group 2: 6 9 
This would be represented by the following chromosome: 
0 1 1 0 1 1 2 1 0 2. The Crossover operator we use for this 
representation is Holland's [12] standard one point 
crossover and the Mutation operator involves randomly 
mutating genes within the chromosome. Each gene has 
Mutation Rate probability of being mutated to a value from 
a uniform distribution U(0,n-1). For example: 
 

Parent 1: 0 1 1 0 1 1 2 1 0 2 
Parent 2: 0 0 0 1 0 2 2 0 1 2 

 
1. Crossover (Crossing Point = 3): 

0 1 1 1 0 2 2 0 1 2 0 0 0 0 1 1 2 1 0 2 
2. Mutate 

0 1 0 1 0 2 1 0 1 2 0 2 0 0 1 1 2 1 0 2 
 
 



Goldberg's Partially Mapped Crossover (PMX) 
 
This form of crossover applies to a new representation of 
the grouping problem where the chromosome consists of 
variables interspersed with group dividers. For example, let 
a group divider be represented by the symbol □i where the 
subscript is unique and each of 10 variables within a 
domain be represented by a unique integer. Therefore the 
chromosome: 0 3 8 □1 2 7 4 1 5 □2 6 9 would represent the 
groupings in the previous example. In other words, 
variables within the same group dividers will be classed 
within the same group. This representation requires a new 
crossover operator in order to ensure that invalid offspring 
are not produced. It can be seen that standard crossover as 
used in the GPV representation would produce many 
invalid offspring as it would be highly likely to result in 
offspring with variables appearing in more than one group. 
Goldberg introduced the PMX operator [11] which 
prevented this and developed an o-schema theory (closely 
linked to Holland's original schema theory). It ensures all 
offspring are valid (i.e. it is a closed operator) and works as 
follows: 
 
1. Select two crossing points for both parents 
2. Swap all elements between the crossing points 
3. For all repeating elements in the old part of the 

chromosome, replace with the value found on the 
corresponding position on the other chromosome. 

 
Mutation involves randomly swapping two genes within the 
chromosome according to the Mutation Rate. Each gene 
has Mutation Rate probability of being swapped with 
another. For example: 

Parent 1: 4 □3 0  □1 1 6 5 2 □2 3 
Parent 2: 5 4 □2 2 3 □3 0 1 □1 6 

1. Crossing points = 3 and 6 
2. Swap elements “□1 1 6” with “2 3 □3” 
 4 □3 0 2 3 □3 5 2 □2 3  5 4 □2 □1 1 6 0 1 □1 6 
3. Replace repeated values 
 4 6 0 2 3 □3 5 □1 □2 1   5 4 □2 □1 1 6 0 3 2 □3 
4. Mutate 
 4 □2 0 2 3 □3 5 □1 6 1   3 4 □2 □1 1 6 □3 5 2 0 
 
Falkenauer's Grouping Genetic Algorithm (GGA) 
 
This representation is similar to the GPV except that it also 
has an extra part on the chromosome which represents each 
group without any information about their contents. For 
example the same groupings as the previous examples 
would be represented by the following chromosome: 
0 1 1 0 1 1 2 1 0 2 : 0 1 2. The second part of the 
chromosome (after the colon) is simply a list of the existing 
groups that are found in the first part. Crossover is only 
applied to this part of the chromosome and is as follows: 
 
1. Select two random crossing sites, delimiting the 

crossing section in each of the two parents denoted as  

[Start Position, End Position]. 
2. Inject the contents of the crossing section of the second 

parent at the first crossing site of the first parent. 
3. Remove any elements that are repeated from the 

groups that were members of the first parent. 
4. Remove any empty groups (groups that appear after 

the colon but not before) and reinsert any unassigned 
variables to existing groups. 

5. Repeat (i) to (iv) to produce the second offspring by 
reversing the roles of the first and second parent. 

 
Example for first offspring: 

Parent 1: 0 1 1 0 0 2 1 2 : 0 1 2 
Parent 2: 4 5 3 4 5 6 3 6 : 3 4 5 6 

 
1. Starting with a copy of Parent 2 with all the first 

section undetermined and Cross Sites set as: 
  Parent 1 = [0,1],  Parent 2 = [1,3] 

? ? ? ? ? ? ? ?  : 3 4 5 6 
2. Inject group 0 (determined from cross site limits [0,1] 

on parent 1) into position 1 
0 ? ? 0 0 ? ? ?  : 3 0 4 5 6 

3. Remove group 4 and 5 due to repeats (the new group, 
0, clashes with the old position of these two groups on 
the left part of the chromosome). Then fill in the 
remaining groups on the left part according to their old 
position (from parent 1). 

0 ? 3 0 0 6 3 6 : 3 0 6 
4. Reinsert variable 1 (which is at present unassigned) 

into random group (here 6) 
0 6 3 0 0 6 3 6 : 3 0 6 

 
where ? denotes an unallocated variable (adapted from [6]). 
Mutation involves randomly mutating groups (on the right 
side of the colon) according to the Mutation Rate. Each 
gene has Mutation Rate probability of being mutated so that 
the group is randomly split into two new groups or 
combined with another existing group. Therefore, for the 
offspring in the previous example, group 0 may be mutated 
by splitting the elements into two new groups (1 and 2) or 
combining it with another group (say 3). Falkenauer proves 
[6] that this method allows the schema theory to hold even 
for grouping problems. In contrast, PMX and standard 
crossover as used in GPV, with their schema and o-schema 
theories, appear to collapse when applied to these sort of 
problems. 
 

2) Hill Climbing (HC) 
 
A Hill Climbing Search [19] iteratively moves in the 
direction of increasing value for some metric. Our version 
of Hill Climb involves using the GPV representation and 
making simple changes to the current groupings with each 
iteration. Within each iteration one variable is moved into 
another existing group or placed into a newly formed group 
and if this change improves the score of the individual, it is 
retained. The algorithm is outlined below. 



 
Input: Q  
Generate a random selection of groupings using the GPV representation 
Set Score to the Partition Metric applied to Q given the grouping 
For i = 1 to Iterations do 

Make a random change to one gene in the chromosome 
Set New_Score to the Partition Metric applied to Q  
If New_Score < Score Then undo changes 

End For 
Output: G (a set of groups) 
 

3) Mirkin's Separate and Conquer (S&C) 
 
This method is based on the clustering technique of 
Separate and Conquer [16]. The algorithm is amended to 
allow it to cluster on the relationships between variables 
rather than on the value of variables. The algorithm is as 
follows and uses equation 7 to calculate : )(gih
 
Input: Q  
Let G be a set of Groups (empty) 
Let X be a set of variables {1..n} 
Create a group g1 containing the best correlation pair in Q 
Add g1 to G and set m = 1 
For i = 1 to n 

Set skip = false and j = 1 
While j < m+1 and skip = false 

If xi ∉gj Then  
Add xi to gj to create  jg′

If h  >  Then  )g( j′ )(g jh
Add xi to gj  and set skip = true 

   End If 
End If 
j = j + 1 

End While 
If skip =false Then  

Create a group g* containing only xi  

Add g* to G and set m = m + 1 
End If 

End for 
Output: G (a set of groups) 
 
To summarise, a new group is created containing the two 
variables that have the highest correlation between them. 
The next step is to take each variable in turn, and iterate 
through each group that exists, seeing if adding the variable 
to that group increases the groups’ score. If this is the case, 
then the variable is added to that group. If there are no more 
groups to test a given variable with, then it is placed into a 
new group on its own.  
 

IV.  PARAMETER ESTIMATION 
 
In order to retrieve groupings that correspond closely to the 
correlations that represent actual dependencies, we will 
have to determine the ideal set of parameters for the 
correlation search, most importantly R, the size of the Q. As 
this will determine the cut off point for significant 
correlations, it will affect the overall algorithm a great deal. 
For example, a cut off point that is too high will mean there 
are too few significant correlations resulting in smaller 

groups; a cut off point that is too low will mean there are 
too many significant correlations and so groups will be 
combined into larger ones due to the inclusion of low 
correlated variables in the list. We have decided to try and 
determine the parameters through simulations of the 
random bag method described in section III.B. Random bag 
was chosen since it is the simplest to model. It should also 
be the weakest of the three methods for correlation search 
and so by coming up with confidence intervals for selecting 
all the true correlations for this method should mean we 
have a worst case scenario for the chosen parameters; 
namely 95% confidence on Random Bag should mean at 
least 95% confidence on EP. This has been shown to be 
true in our previous work in [21], and through the 
experiments within this paper. These simulations were used 
to generate probability distributions of selecting 
correlations that represent actual dependencies. These 
distributions could be used to determine confidence limits 
for the correlation list size and the number of calls to the 
correlation function. 
 

A. Simulation of Random Bag 
 
Simulations were carried out in order to mimic the way in 
which the random bag searches for good correlations. 
These  consisted of setting the size R of Q, the size of the 
total search space (s) and the number of calls to the 
correlation function (c) to particular plausible instantiations 
and then simulating the act of randomly selecting a 
correlation from the search space and then recording 
whether it was a pre-defined “true” dependency. This 
process can be compared to repeatedly picking a selection 
of c random cards from a pack without replacement and 
recording the number of Aces found. Therefore for this 
case R = 4 (the number of Aces) and s = 52 (the number of 
cards in a pack). We were able, therefore, to generate 
approximations of the distributions associated with the 
probability of picking a “true” dependency. The number of 
these “true” dependencies will be referred to as r, where r ≤ 
R. These distributions were then tested for normality using 
the Lilliefors’ test (see section IV.B). The mean and 
standard deviation were then calculated for each 
distribution so that a method for symbolic regression could 
be used to learn a function to determine the mean and 
standard deviation given R, s and c (see section IV.C). The 
simulation algorithm is as follows and was repeated for 
Nsims different values of R, s and c. 
 
Input: R, r, s, c and SimulationSize 
Set dependencies = r randomly selected correlations 
Set Distribution to be a zero array of length R 
For i = 1 to SimulationSize 

count = 0 
For j = 1 to c 

Randomly choose R different correlations 
If (xi,xj) is in dependencies Then count = count + 1 

End For 
Distributioncount = Distributioncount + 1 



End For 
Output: Distribution 
The probability distribution for selecting a true dependency 
is found by dividing each element in the distribution array 
by SimulationSize. SimulationSize is a variable that dictates 
the number of times the process is repeated to ensure that a 
good approximation to the random bag process is reached.  
 

B. Lilliefors' Test 
 
Lilliefors’ test [14] is a simple test for normality that can be 
performed on a known distribution function. The 
simulations performed in section IV.A can easily be 
transformed into the required format for this method and 
the test can be performed to see if the random bag method 
can be approximated by a normal distribution. Given v 
observations, a metric Dmax is computed as in equation 9. 

)()(*max rSrFMAXD v−=  (9) 

where Sv(r) is the sample cumulative distribution function, 
F*(r) is the cumulative normal distribution with µ equal to 
the sample mean, σ2 equal to the sample variance, and v is 
equal to R+1. Within the simulations, these two summary 
statistics can be computed directly from the data. If the 
value of Dmax exceeds the critical value supplied by 
Lilliefors in his paper, one rejects the hypothesis that the 
observations closely follow the normal distribution. For the 
purpose of this paper we shall choose the 99% confidence 
limit, which requires Dmax not to exceed v031.1 . From 
the results of these tests we can assume that the random bag 
can be approximated by a normal distribution with a 99% 
certainty. In fact all of the 150 simulations passed the test 
for normality at this level. 

C. Finding µ and σ 
 
Once it has been ascertained that the distribution of the 
Random Bag process can be approximated as Normal, a 
value for the mean and standard deviation is needed in 
order to place confidence limits on the number of function 
calls needed to find the required R, the size of Q. Since 
many simulations have been performed, tabulating R, c, s 
and the associated µ and σ, these can be used to evaluate 
the relationship between µ and σ. We shall assume that µ is 
a function of R, c and s, and that σ is another function of R, 
s and c. The Genetic Programming technique of Symbolic 
Regression is used for this, [13], rather than applying a set 
of parameterised functions because there is no knowledge 
whatsoever of relationships between any of the variables. 
 
The functions for µ and σ, which shall be denoted µ(R,c,s) 
and σ(R,c,s), will be assumed to be functions in terms of the 
operators +,-,✕ ,/, and the terminal symbols R, c, s along 
with the constant integers 0 to 9. The exact form is 
unknown. A binary tree will be used to represent a regular 
expression in terms of these symbols, with the terminal 

nodes being a variable or constant and the non-terminals 
being an operator. The worth of any given tree (its fitness) 
will be the difference between the observed value of µ 
and/or σ vs. the calculated value, using the equation formed 
from the tree, and all of the available data. This is defined 
in equations 10 and 11. 
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where Nodes(●) represents the number of nodes in the 
corresponding binary tree, and i indexes a variable from the 
table of simulated examples (where there are a total of Nsims 
examples). As with a Genetic Algorithm, the initial 
population will be a certain number of random binary trees 
as described above. This population will be improved 
(better fitness) over subsequent generations through the use 
of the standard genetic programming operators of Mutation 
and Crossover. Note that the negative fitness function 
ensures that the process tries to improve the population by 
minimising the fitness. Adjusting the fitness by penalising 
it on the tree’s size will force the genetic program to look 
for a smaller tree. The resulting functions for µ and σ can 
be found in equations 12 and 13. 
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D. Confidence Limits on c 
 
Once values for the mean and standard deviation have been 
found, one can place confidence limits on the probability of 
the random bag finding a number of correlations that lie 
between r and R, where R is the size of the random bag and 
r is the number of correlations being searched for. This is 
the cumulative normal distribution where the probability 
that the number of correlations found is greater than r. For 
the purpose of this paper, we have chosen the ratio of R to r 
as 5 and the confidence limit as 95%. The aim of this 
exercise is to recommend a value for c based on the known 
parameters R, r and s. Given that the pr(number of 
correlations ≥ r) = 0.95, we can use the standard normal 
distribution tables with z = (r-µ) /σ to find what the 
corresponding value of c should be. For the 95% level, the 
value of z should be –1.645. Since we know µ and σ, an 
equation can be formed in terms of z, r, R, c and s where 
only c is unknown. We start with equations 14 and 15. 
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Unfortunately this requires a lot of algebra to solve the 
above equation for c. The final solution is a quadratic 
equation, and when some reasonable approximations are 
made, is as found in equation 16. 
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The parameter c is a guide towards how long the procedure 
is going to take, in terms of how many correlation function 
evaluations are made. For example if c is greater or equal to 
the number of calls made by the exhaustive search (s), then 
it is pointless to use the random bag to locate the required 
number of correlations. As a guideline, we aim for a 95% 
confidence at finding the required number of correlations. 

V. EXPERIMENTAL RESULTS 
 
We describe the generated datasets in section V.A and the 
results of estimating the parameters for the algorithms in 
section V.B. We then describe a metric for evaluating the 
discovered groupings in section V.C which is followed, in 
section V.D, by the results of numerous experiments which 
compare different grouping strategies consisting of all 
combinations of the proposed methods for grouping search 
and for correlation search. These 15 strategies are applied 
to six datasets where there are identifiable mixed groupings 
of MTS variables. For each experiment we have recorded: 
 
1. The Partition metric of the best solution after a varying 

number of calls to the fitness function for various 
different datasets. This is a measure of how well the 
groupings represent the correlations that were 
discovered during the correlation search. 

2. The score as calculated by the Evaluation metric 
described in V.C, which is independent of the 
correlation search results. This can be considered as a 
measure of accuracy of the resulting groupings. It is 
essentially a measure of distance between the groups 
that were used to generate the data and the resultant 
groups found using our methods. 

3. The number of function calls to find the solution with 
the highest Partition metric  (a measure of efficiency). 

 
All stochastic grouping algorithms (all methods except 
Separate and Conquer) were repeated 10 times and the 
average recorded in order to remove any sampling bias. We 
then calculated the marginal statistics over the correlation 
searches, the grouping strategies and the datasets. 

A.  Multivariate Time-Series Datasets 
 
Based on the two problems being tackled by the grouping 
methods - the search for DBN structure and the generation 
of VAR models, two types of datasets have been produced. 
One set has been generated by hand-coded DBNs and the 
other by VAR models. We have generated five datasets of 
each type with varying dimensionality and order. These are 
described below. For the experiments we mixed various 
variables from these datasets to produce some which had 
only DBN generated data, some which had only VAR 
generated data and some with a mixture of the two. This 

was to see how the methods performed under different 
conditions and for different types of data. 
 

1) Dynamic Bayesian Networks 
 
Dynamic Bayesian Networks can be used to model MTS. A 
Dynamic Bayesian Network consists of a set of nodes, 
representing variables in the domain at different time lags 
and directed links between these nodes. To each node, with 
a set of parents, there is an associated probability table and 
these can be used to infer probabilities about certain events 
in the system [5]. Five different Dynamic Bayesian 
Network topologies were created with the conditional 
distributions hand-coded in order to generate 5 separate 
MTS. The number of variables within each network was 3, 
5, 5, 10 and 10. The size of the largest time lag for each 
network varied between 5 and 60.  
 

2) VAR Processes 
 
Just under half of the test data was generated from a 
selection of Vector Auto-Regressive MTS models. These 
types of models have various applications from medical 
domains [21] to economic domains [4]. A VAR process of 
order P, written VAR(P), is defined in equation 17. 

)()(A)(
1

titxtx
p

i
i ε+−= ⋅

=
∑  

 
(17) 

where )(tx is the next data vector of size n (the number of 
variables in the model) at time t, Ai is a n×n coefficient 
matrix at time lag i, and )(tε is a n length noise vector at 
time t (usually Gaussian) with zero mean. The value of 
each element in Ai is usually a real number in the range ±1. 
In order for this process not to rapidly tend towards infinity 
or zero over time, certain conditions must be placed on the 
parameter matrices, referred to as stability [15]. This 
condition can be imposed through the use of a genetic 
algorithm to generate a random VAR(P) process and then 
the use of Crossover and Mutation to improve its fitness 
(which is a measure of its stability) through subsequent 
generations. 
 

3) Dataset Organisation 
 
Table 1 describes the datasets that were generated using the 
two methods described above: 
 

MTS Order Dimensionality 
a 10 3 
b 20 5 
c 5 5 
d 30 10 
e 60 10 
f 2 10 
g 3 7 
h 4 6 
i 5 3 
j 2 2 



Table 1 - The different MTS descriptions
 

These 10 MTS were grouped into various different 
combinations to produce 6 datasets. The first consisted of 
all 61 variables, the second consisted of only DBN 
generated data, the third only VAR generated data and the 
remaining three consisted of various mixtures. All datasets 
except the first consisted of 28 variables so as to keep the 
search space identical. Table 2 shows the breakdown of 
each dataset. 
 

Dataset MTS 
1 a b c d e f g h i j 
2 a b d e 
3 f g h i j 
4 a e f i j 
5 a b c g h j 
6 d g h i j 

Table 2 - The Breakdown of each Dataset 
 

B. Parameter Estimation Results 
 
If we apply the parameter estimation analysis, from section 
IV, to Datasets 1-6, we obtain the results as listed in table 3. 
The equation for s represents the total possible number of 
correlations at varying time lags, once invalid correlations 
are removed (see section III.B). µ and σ are defined in 
equations 13 and 14 respectively, z is the standard normal 
variable, and c is defined by equation 17. Two new 
parameters are introduced: γ and β. γ is the ratio of c to s 
and gives an indication of how efficient the procedure is 
going to be. As a guideline, we would suggest that for the 
random bag to be effective, this value should be less than 
1/3. The parameter β needs defining. This represents the 
ratio r/R. We suggest a value of 0.2, this being found by 
experimentation, and provides a good trade off between the 
number of calls to the correlation function, c, and how 
many correlations needed to be stored in memory. As can 
be seen, the use of the approximation in equation 17 has 
resulted in the confidence limit not being exactly 95%, but 
rather 94.4% (on average). 
 

Parameter Dataset 1 Dataset 2-6 
MaxLag 75 75 

n (number of variables) 61 28 
r 150 64 
R 750 320 
c 72201 15585 

)5.0)(1( +−= MaxLagnns  276330 57078 
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s
cR 11

63
+=σ  

14.779 8.083 

σ
µ−

=
rz  

-1.578 -1.593 

sc=γ  0.273 0.261 

Rr=β  0.200 0.200 

Confidence 0.943 0.945 
Table 3 - Parameters for Datasets 1-6 

Figure 1 shows an example where s = 1,000,000, β = 0.2, γ 
is allowed to vary between 0.22 and 0.32, and three values 
of R are displayed. The values of R corresponds to 2.5%, 
0.25% and 0.025% respectively of s. It can be immediately 
seen from the graph that R=250 requires more correlation 
function calls for any level of confidence than for the other 
two values of R. However there is not much between 
R=25,000 and R=2,500. Other similar experiments have 
shown that the optimal value for R/s is near the 0.25% 
mark. 
To conclude, we have shown that c should be calculated 
from equation 17 once a confidence limit has been assigned 
(e.g. 95%, giving a value for z: -1.645); here we 
recommend the value for R/s to be about 0.25%. And 
finally, we have found that having the ratio of r to R being 
0.2 proves to be efficient. However a more systematic study 
should be conducted on how these parameters relate to each 
other. 
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Figure 1 – Confidence against γ with varying R 

 

C. Evaluation Metric 
 
A metric is needed to show how similar or dissimilar two 
groups are. We define this by pairing all of the variables up 
and incrementing the score each time that the pair appears 
in the correct group within the two groups or when the pair 
appears in different groups. The metric is scaled so that it 
returns a value between 0 and 1 inclusive, where 0 
represents very dissimilar groups and 1 represents very 
similar groups. This metric is defined as follows: 
 
Definition of the evaluation metric function EVM(G1,G2) 
 
Let G1 and G2 be two groupings 
Let n be the number of variables 
Let EVM = 0 
For i = 1 to n –1  

For j = i+1 to n 
Let g1 be the group within G1 containing i 
Let g2 be the group within G2 containing j 
If j in g1 and i in g2 Then EVM = EVM + 1 



If j not in g1 and i not in g2 Then EVM = EVM + 1 
End For 

End For 
Update EVM to )1( −nnEVM2  

D. Results 
 
In this section we first look at the results from the 15 
different combinations of correlation search and grouping 
strategy to see how they performed when averaged over the 
6 datasets. We then look at some of the marginal statistics 
to see how the correlation searches and the grouping 
strategies performed irrespective of each other. We also see 
how the different datasets affected the outcome by looking 
at their marginal statistics. Finally we discuss the grouping 
results using three examples. 
 
The parameters for all the grouping genetic algorithms were 
identical and are found in table 4. The exception to this was 
GPV which was allowed to run for 1000 generations due to 
its slow convergence. 
 

Parameter Dataset 1 Dataset 2-6 
Population 150 100 

CrossoverRate 0.8 0.8 
MutationRate 0.1 0.1 

Generations (GPV) 150 100 (1000) 
Table 4 - The Parameters for the GGAs 

 
1) The 15 Methods 

 
 Partition 

Metric 
Evaluation 

Metric 
Function 

Calls 
RB / GPV 110.60 0.91 232292.5 
RB / PMX 114.90 0.92 12974.00 
RB / GGA 121.10 0.93 8697.667 
RB / HC 125.00 0.92 4881.200 

RB / S&C 113.67 0.90 400.6667 
EP / GPV 105.43 0.90 232327.7 
EP / PMX 109.87 0.90 10545.67 
EP / GGA 113.67 0.92 8152.333 
EP / HC 118.80 0.91 5331.520 

EP / S&C 109.33 0.89 427.6667 
EX / GPV 117.80 0.91 232237.4 
EX / PMX 122.50 0.92 11325.67 
EX / GGA 128.87 0.93 8693.667 
EX / HC 130.03 0.93 4778.470 

EX / S&C 122.67 0.92 411.6667 
Table 5 - The five Grouping Strategies applied to the 

Three Methods for Generating Q 
 

We can see from the results of the 15 different methods in 
Table 5 that whilst there is a lot of variation in the number 
of calls to the Partitioning Function (FC), the metrics, in 
particular the evaluation metric does not vary a great deal at 
all. This implies that the initial process of searching for Q 
does not have to be exhaustive to get good results. This 
property would be very useful for those applications where 
the partitioning of a MTS must occur on a real time basis. 
By far the fastest to converge is the Separate and Conquer 

Method taking little more than 400 function calls. 
However, it must be noted that this method is deterministic 
and is not guaranteed to find the best groupings.  
 
The most important statistic is the evaluation metric and the 
method that seems to perform best over all the datasets is 
the Exhaustive Search / Hill Climb. Although the 
Falkenauer finds just as good a solution, it takes almost 
twice as many function calls. However, as the marginal 
statistics will show, the Falkenauer method performs better 
when averaged over all the correlation search strategies. 
Therefore, it appears that if the exhaustive search cannot be 
carried out then a combination of Random Bag or 
Evolutionary Program with Falkenauer is the best option. 
 

2) A Note Regarding RB and EP 
 
Table 6 displays the average of the top r correlations for 
each method of correlation mining, and displays the 
average over all of the datasets. 
 

Dataset (r) EX RB EP 
Dataset 1 (150) 0.592 0.527 0.547 
Dataset 2 (64) 0.536 0.488 0.402 
Dataset 3 (64) 0.694 0.629 0.659 
Dataset 4 (64) 0.641 0.575 0.569 
Dataset 5 (64) 0.548 0.509 0.497 
Dataset 6 (64) 0.625 0.568 0.558 
Dataset’s Avg. 0.606 0.549 0.539 
Table 6 - The Average Top r Correlations for the Three 

Methods for Generating Q 
 

As can be seen in the table, the exhaustive search performs 
the best, followed by the random bag, and then 
evolutionary programming. It should be noted that this 
result only applies to the situation where there are a large 
number of correlation calls made (c is large). It has been 
shown in [22] that the EP method outperforms the RB 
method for smaller values of c. Based on the extensive 
analysis and experiments performed so far we can 
recommend that if c is more than 30% of s then the 
exhaustive search method should be used. If this is not the 
case and if z corresponds to less than 50%, use the EP 
method, otherwise use the RB method. 
 

3) Marginal Statistics 
 
In order to explore more fully the effect of the different 
correlation searches, grouping strategies and datasets, we 
calculated various marginal statistics. Essentially this 
involved averaging over the correlation searches, the 
grouping strategies and the datasets to see how each of 
these methods compared. These results can be found in 
tables 7 to 9 below and each table is discussed in the next 
section. 
 

 Partition 
Metric 

Evaluation 
Metric 

Function 
Calls 

Average EX 124.373 0.923 51489.37 



Average EP 111.420 0.905 51356.97 
Average RB 117.053 0.915 51849.21 
Table 7 - Averaging over Correlation Search 

 
The correlation summary statistics (Table 7) support the 
conclusion that the method used for generating a good set 
of correlations does not have a very significant effect on the 
final groupings. In other words, the evaluation metric 
which measures the distance between the original 
groupings and the discovered groupings are very similar for 
all correlation search methods (approximately 0.9). 
Therefore, it would make more sense to perform a fast 
approximate correlation search on datasets where the search 
space is so large that the exhaustive search is infeasible. 
 

 Partition 
Metric 

Evaluation 
Metric 

Function  
Calls 

Average GPV 111.278 0.907 232285.8 
Average PMX 115.756 0.916 11615.11 
Average GGA 121.211 0.926 8514.556 
Average HC 124.611 0.922 4997.061 

Average S&C 115.222 0.903 413.3333 
Table 8 - Averaging over Grouping Strategy 

 
The best grouping strategies, as shown by the grouping 
summary statistics (Table 8), are the Hill Climb method and 
Falkenauer's GGA. This is probably due to the economical 
use of function calls made by Hill Climb (unlike the GA 
methods which require evaluating populations) and the 
efficient crossover developed by Falkenauer. The other GA 
methods used less efficient crossovers and the Separate and 
Conquer method is deterministic and therefore can never be 
guaranteed to find the global solution. It is, however, very 
fast at finding a good set of groupings after a very small 
number of function calls.  
 

 Partition 
Metric 

Evaluation 
Metric 

Function  
Calls 

Avg. Dataset1 222.120 0.958 99294.81 

Avg. Dataset2 69.227 0.830 42105.42 

Avg. Dataset3 105.667 0.934 41916.15 

Avg. Dataset4 101.200 0.896 42154.41 

Avg. Dataset5 99.493 0.948 42003.80 

Avg. Dataset6 107.987 0.922 41916.49 

Table 9 - Averaging over Dataset 
 

Looking at the dataset statistics (Table 9), it appears that 
Dataset 1 (the mixture of both types of data) produced a 
higher fitness and independent metric score than the rest 
and Dataset 3 (the purely VAR data) produced better results 
than Dataset 2 (the purely DBN data).  A reason for this 
could be that the VAR data generator produced variables 
with higher correlations between true dependencies. These 
may then have outflanked any spurious correlations. It is 
encouraging to note that the largest dataset, Dataset 1, with 
a mixture of DBN and VAR data produced such good 
results. Datasets 4 to 6 which contain a mixture of VAR 
and DBN exhibit the most variations in the evaluation 

metric. This is most likely down to the strength of 
correlations that were reflected in the generated data as well 
as the existence of spurious correlations. 
 
Table 10 shows a selection of groupings learnt from the 3 
datasets using the Falkenauer algorithm with differing 
correlation searches. It can be seen that the majority of 
variables have been grouped correctly in the all three 
experiments. In fact, 15 out of the 21 groups have been 
perfectly recreated. Some of the variables have been placed 
in a group on their own implying that they are independent 
when in actual fact there should be some correlation 
between them and other variables. This could be due to 
spurious correlations which have prevented the true 
correlations from being included on the correlation list. 
 
This effect is also evident in the summary tables where the 
independent metric (which simply measures the distance 
between the discovered groupings and the original) is 
higher for some experiments than others but the fitness 
(which relies on the correlations between variables) is 
lower. The opposite is also evident in the results. Once 
again, this is most likely due to spurious correlations 
between variables in different groups. 
 

4) Sample of Groupings 
 
Grouping Method Original MTS Groupings Discovered Groupings 
EP / GGA 
Dataset 1 

0 1 2 
 
 
3 4 5 6 7 
 
8 9 10 11 12 
 
13 14 15 16 17 18 19 20 
21 22 
 
23 24 25 26 27 28 29 30 
31 32 
33 34 35 36 37 38 39 40 
41 42 
43 44 45 46 47 48 49 
50 51 52 53 54 55 
56 57 58 
59 60 
 

0 6 
1 
2 
3 4 5 7 
8 
9 10 
11 12 
13 
14 15 20 21 22 
16 17 18 19 
23 24 25 26 27 28 29 30 
31 32 
33 34 35 36 37 38 39 40 
41 42 
43 44 45 46 47 48 49 
50 51 52 53 54 55 
56 57 58 
59 60 
 

EX / GGA 
Dataset 5 

0 1 2 
3 4 5 6 7 
 
8 9 10 11 12 
 
13 14 15 16 17 18 19 
20 21 22 23 24 25 
26 27 
 

0 1 2 
3 4 5 6 7 
8 
9 10 
11 12 
13 14 15 16 17 18 19 
20 21 22 23 24 25 
26 27 
 

RB / GGA 
Dataset 3 

0 1 2 3 4 5 6 7 8 9 
 
 
10 11 12 13 14 15 16 
 
17 18 19 20 21 22 
23 24 25 
26 27 
 

0 1 2 3 5 7 8 9 
4 
6 
10 11 12 13 14 15 16 
17 
18 19 20 21 22 
23 24 25 
26 27 
 



Table 10 - A sample of grouping results from the 
Falkenauer method along with the original groupings that 

were used to generate the MTS 
An interesting result that was found in the DBN data 
groups was that if a group of variables was incorrectly split 
into 2 or more groups, then the divide(s) made topological 
sense when compared to the structure of the DBNs that 
generated the data. In some networks the algorithm split 
them into relatively independent structures. 

VI. CONCLUDING REMARKS 
 
In this paper we have outlined a framework with which we 
can decompose high dimension MTS into smaller 
dimension MTS which are relatively independent of one 
another based on the correlation between the variables. This 
can be very useful in problems where the high 
dimensionality of a MTS prevents certain algorithms from 
being applied, for example the generation of Vector 
AutoRegressive (VAR) models or Dynamic Bayesian 
Networks (DBNs). Our results have shown that whilst the 
initial search for good correlations to generate the 
groupings does not have to be exhaustive to produce 
equally good results, the best method of grouping search 
appears to be either a Hill Climb strategy or Falkenauer's 
Grouping Genetic Algorithm. The results have been very 
promising on both VAR data and DBN data and, in most 
cases, the metric used to find the groupings proved robust 
enough to avoid mistaken groups due to spurious 
correlations. We have also provided some concrete 
practical recommendations on the correlation search step of 
our methodology. 
 
Future work will involve looking at how the grouping 
methodology performs on some real world datasets with the 
aim of building DBN and VAR models. We will also be 
looking at ways of tackling the spurious correlations 
problem using a combination of standard statistical 
techniques and heuristics. Relationships between the 
parameters as described in section IV also need a more 
rigorous and in-depth study. 
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APPENDIX - PROOFS FOR GROUPING METRIC 
 
Proof 1. When there are no correlations, then φ=Q . 
Therefore max(f(G)) is 0, because there will never be any 
cases where L is 1. This therefore requires that the size of 
any of the groups in G will be 1. This is by definition of the 
functions L and h. 
 
Proof 2. If a correlation exists for each pairing of variables, 

then the maximum size for Q will be 
2

)1( −nn , because of 

the duplicate restriction. It therefore follows that the value 

for h(gi) will be 
2

)1( −ii kk using the same logic. Using 

equation 5, we have 
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This process can be repeated until there is only one value k1 
remaining where k1=n, and f attains its maximum value. 
Hence when Q is at a maximum size (as above), the 
arrangement with the maximum fitness will be all variables 
in a single group. 
 
Proof 3. If the data generating the correlations came from a 
mixed set of multivariate time series observations, then for 
a given grouping arrangement G and correlation set Q 
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This will be a maximum when all instances of the function 
L are 1. If Q contains an additional spurious correlation or 
is missing a correlation, then this value will be reduced by 
1, by definition of L and proof 2. Hence the maximum 
value of the fitness for a given G will be when Q contains 
the all of the correlations that can exist for each grouping. 

GLOSSARY 
 
X A Multivariate Time Series 
n Number of variables in the MTS 
T Number of cases / observations 
xi(t) An observation of the MTS variable, i at time, t 
lag Time lag of a correlation 
MaxLag Maximum limit for a time lag 
P The order of a VAR process 
Q List of discovered high correlations  
R Length of Q 
G Set of groups 
m Number of groups 
gi The ith group 
ki Size of the ith group 
s Size of the search space of all possible 

correlations with all lags up to Maxlag 
r Number of true underlying dependencies (i.e. 

excluding spurious correlations) 
c Number of calls to the correlation coefficient 
correl Correlation in the form of a triple, (xi, xj, lag) 
corr Boolean Function that returns true if a 

correlation pair exists in Q irrespective of 
direction 

z z statistic for the Normal Distribution 
β The ratio c/s  
γ The ratio r/R 
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