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In this paper, we explore the automatic explanation of Multivariate Time 
Series (MTS) through learning Dynamic Bayesian Networks (DBNs). We have 
developed an evolutionary algorithm which exploits certain characteristics of 
process MTS in order to generate good networks as quickly as possible. We 
compare this algorithm to other standard learning algorithms that have 
traditionally been used for static Bayesian networks but are adapted for DBNs 
in this paper. These are tested on both synthetic and real-world MTS. We 
evaluate sample explanations which have been generated from chemical 
process data using our methodology, and several useful heuristics, we have 
found that the proposed method is more efficient for learning DBNs from MTS 
with large time lags, especially in time-demanding situations. 
 

1. INTRODUCTION 
 Many complex dynamic processes record Multivariate Time-Series 
(MTS) data at frequent time periods. These data will be characterized by a 
large number of interdependent variables, though some may have no 
substantial impact on any others. There can be large time lags between 
causes and effects. Take the oil refinery process as an example. In reviewing 
oil refinery data, process engineers often come across trends with 
unexpected characteristics. In many cases these anomalous events have a 
significant adverse economic impact, whether in terms of reduced yield, 
excessive equipment stress, or violation of environmental constraints. The 
identification of such events is important but of greater importance still are 
adequate explanations of how they occur, which could then be used to 
modify operating practices, retrain operators or conduct anticipatory 
planning. 

In order to explain events, some method is required for reasoning about 
relationships between these variables back in time. For example, the reason 
for a particular temperature becoming extremely high may be that a flow 
rate dropped ten minutes ago and the flow dropped because, one minute 
before that, a valve was closed by a control engineer. A well-known 
paradigm for performing probabilistic inference about a system is the 
Bayesian Network [15, 21] and its dynamic counterpart can model a system 
over time [7, 11, 14, 17]. Most of this research, however, has not focussed 
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on learning models automatically or has focussed on models with small time 
lags. It would be desirable to learn a Dynamic Bayesian Network (DBN) for 
large datasets with large possible time lags such as the refinery time series. 
This is a challenging task, particularly if the DBN must be found quickly. In 
some applications such as analysis of oil refinery data, the explanation may 
be required in a very short space of time so that action can be promptly 
taken to prevent the escalation of abnormal events leading to possible plant 
shutdown.  

This paper introduces a methodology that learns DBNs efficiently from 
MTS with large possible time lags. In section 2 we give some general 
background to Bayesian Networks and learning them from data. Section 3 
introduces our methodology, including the representation and heuristics 
adopted, and the full algorithm is outlined in section 4. Other well 
established algorithms that exist for learning static networks are adapted to 
learn DBNs using our proposed representation. These are described in 
section 5 before being compared to one another for efficiency on synthetic 
datasets of varying size. Section 5 also documents extensive analysis of the 
efficiency and accuracy of our methodology which includes looking at how 
generated explanations compare to the expectations of experienced control 
engineers. Finally, section 6 discusses conclusions and future work. 
 

2.  BACKGROUND 

2.1 Dynamic Bayesian Networks 
A Bayesian network consists of the following: 
 

(1) A set of n nodes, {x1, …,xn}, representing the N variables in the 
domain and directed links between the nodes. Each node, xi, has a finite set 
of ri mutually exclusive states, to v .  1iv

iir

(2) To each node xi with a set of parents, iπ  there is an associated 
probability table, P(xi | iπ ). Let wij denote the parent iπ 's jth unique 
instantiation where there are qi possible instantiations. 

A DBN consists of the above where n nodes represent variables at 
differing time slices. Therefore links occur between nodes over different 
time lags (non-contemporaneous links) and within the same time lag 
(contemporaneous links). 

Figure 1 shows a DBN with five variables over six time lags where 
each node represents a variable at a certain time slice and each link 
represents a conditional dependency between two nodes. Given some 
evidence about a set of variables at time t, we can infer the most probable 
explanations for the current observations. 
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 Inference in DBNs is very similar to standard inference in static 
BNs. Within this paper we use a form of stochastic simulation, as described 
in [21], to generate the explanations in Section 5.5 through a process of 
scrolling and rollup. [6, 9], This involves entering observations about the 
state of a system at various time points, applying inference to obtain the 
effect of these observations on the distributions of other nodes, and then 
time-shifting the DBN backward so that variable 0 at time t becomes 
variable 0 at time t-1, variable 0 at t-2 becomes variable 0 at t-3, etc. 
Inference can then be re-applied using the newly computed distributions as 
observations and the process is repeated. As this process is projected further 
back in time, the inferred posterior probabilities will travel further from the 
true states of the system. However, in some problems where a system is 
monitored and the time-shifting is forward in time, the current states of a 
system are, in fact, available from the current sensor readings. Recently, 
there has been much work investigating ways to remedy this "wandering" of 
the projected states from their true values when monitoring [3, 17, 18]. 

 
Figure 1. A DBN with five variables over six time lags 

 
 

2.2 Learning Bayesian Networks 
There has been a great deal of research into learning good Bayesian 

network structures using many different approaches such as the K2/K3 
algorithms [5, 2], the Branch and Bound technique [25], and evolutionary 
methods [20, 29]. A good guide to the literature can be found in [4]. K2 and 
K3 use a greedy search which begins with an empty structure with no links. 
It then explores the effect of adding each of the possible links to the current 
structure with no links. It then explores the effect of adding each of the 
possible links to the current structure and the one that results in the best 
score is added. K2 uses this algorithm with a log likelihood metric and K3 
with a description length metric, both of which are explained later in this 
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section. The Branch and Bound technique offers a method for performing an 
efficient exhaustive search by stopping any further exploration along a 
search path based on a bound which is calculated on the scoring metric. 

When evolutionary methods are applied to static Bayesian networks 
the application of various operators is required to prevent the generation of 
cycles within the network. Larranaga et al. [20]  used a Genetic Algorithm 
(GA) and applied a repair operator to remove cycles within the network. 
Wong et al. [29] used Evolutionary Programming (EP) with three operators: 
freeze, defrost and a Knowledge Guided Mutation (KGM) to improve the 
scalability and speed of convergence as well as remove any cycles. Using a 
KGM involves generating a list of all single links, ordered on their 
description length (DL). This list guided the mutation within an EP by 
adding edges which appear in the higher ranks of the list and removing 
edges which appear in the lower ranks. Sahami [23] used the mutual 
information between a node and its parents to select networks. 

Missing data have been tackled while learning BNs in different ways. 
The structural EM algorithm [12] makes use of Dempster's Expectation 
Maximization algorithm [8] and incorporates structure search through the 
improvement of the likelihood of a network. Ramoni and Sebastiani use a 
bound and collapse method which places bounds on the final parameters of 
a network to account for the lack of information due to missing data [22].  

We are interested in finding out how evolutionary methods can be 
applied to the learning of Dynamic Bayesian Networks where time is 
limited. For example in a control situation, given a new set of refinery data, 
it would be useful to be able to automatically explain certain events as 
quickly as possible in order to identify how the plant is being operated.  

Learning BNs, both static and dynamic, involve scoring candidate 
network structures. In this paper we utilise two scoring metrics. Firstly, we 
use the log likelihood [5, 13] which is calculated using metric 1 and the 
higher this score the better the structure fits the dataset. Another well known 
metric that we use is the Description Length metric (DL) [19, 24], which has 
arisen out of information theory, and is constructed from the summation of 
the description length of a network structure (metric 2) and the description 
length of encoding the dataset given that model (metric 3). The lower this 
metric is, the better the network should fit the data. 
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where n is the number of nodes, Fijk is the frequency of occurrences in the 
dataset that the node xi takes on the value vik (where there are ri possible 
instantiations) and the parent nodes iπ  take on the instantiation wij (where 

there are qi possible instantiations) and . ∑
=

=
ir

k
ijkij FF

1

 

3. METHODOLOGY 
This section is in three parts. Firstly, an assumption is made about the 

time series in order to develop an appropriate representation for a DBN. 
Secondly, we describe some heuristics which are useful in learning the 
structure of a DBN using genetic algorithms with the DL metric. Finally, the 
general methodology is outlined. 
 

3.1 Representation 
We assume that a dynamic network contains no links within the same 

time slice (contemporaneous links). A DBN with only non-
contemporaneous links can be represented by a selection of  n = N + Q 
nodes, where N is the number of variables at a single time slice, and Q is the 
collection of nodes at previous time slices up to some maximum lag MaxT 
(Q ≤ N×MaxT) where all members of Q have a direct dependency on nodes 
at time slice t. We can use a list of triples to represent a possible network: 
(a,b,l) where a is the parent variable, b is the child variable and l is the time 
lag. Therefore, each triple maps directly to a link in the network. 

A list for N = 5, MaxT = 5 and Q = 9 such as {(2,4,5), (4,3,4), 
(0,1,3), (2,1,2), (0,0,1), (1,1,1), (2,2,1), (3,3,1), (4,4,1)} would represent the 
DBN in Figure 2. Note, as this network is for illustration only, a small 
number of time lags is used. 

 
Figure 2. An example DBN using the triple representation 
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In many applications where data is recorded frequently, the assumption that 
all variables take at least one time slice to impose any effect on another may 
well be true. Although this assumption has already significantly reduced the 
search space, the number of possible network structures is still very large. 
For N variables and MaxT possible time lags it will be . For 
example, for a multivariate time series with 10 variables and a maximum 
possible time lag of 120, the search space will be 2

2
2 NMaxT ⋅

12000. 
 

3.2 Useful Heuristics 
In the context of learning dynamic networks, we can apply a standard 

GA [16] to the representation described in the above section by using the list 
of triples of each DBN  as a chromosome. These triples can then be 
optimised through the recombination and mutation operators. However, this 
technique still takes too long to converge to a good solution as the number 
of variables increases. Useful heuristics or knowledge are required to speed 
up the convergence. 

 (i) As there are no contemporaneous links in our proposed 
representation, each node at time t, along with its parents, will be 
independent of the other nodes at time t. Therefore, we can treat the problem 
of finding a good network structure as a parallel problem of finding a group 
of simple tree structures where each tree consists of a node at time t and all 
of its parents. So for variable 1 in Figure 2, the tree is represented by the 
triples {(0,1,3), (2,1,2), (1,1,1)}. A change to one tree does not mean the 
entire structure has to be re-evaluated but only the tree in question. 

(ii) Observing how the score of an individual triple varies with 
differing lags shows the resultant curve to be relatively smooth (Figure 3 is 
an example of the DL of a link with differing time lags using two oil 
refinery variables). For this reason a specific mutation has been applied to 
the lags of a triple (which we call LagMutation) and is such that each 
mutation is based on a uniform distribution with mean equal to the present 
lag. 

300
310
320
330
340
350
360
370
380
390
400

1 11 21 31 41 51

Lag

D
L

DL of link
(4,6) over
differing lags

 
Figure 3. The DL of a single link between two oil refinery variables over 

60 time lags. Note the relative smoothness of the curve. 

 6



(iii) Experimentation has shown that autoregressive links with a time 
lag of one (triples of the form (a,a,1)) are always the most common in 
chemical process data. This is most likely to the relatively smooth nature of 
the data. For this reason, these links were excluded from possible triples and 
automatically inserted into the networks before evaluation. 

 

3.3 Seeded GA for Search 
The sort of algorithm that will be of use to rapid explanation 

generation is one where a good but not necessarily optimal DBN can be 
discovered very quickly. The application of a standard GA [20] using the 
list of triples of each DBN as a chromosome should perform a relatively 
efficient search over triples through recombination. However, useful 
heuristics or knowledge may be required to increase efficiency and speed up 
the convergence. EP has been shown to be a more efficient method [26] 
when making use of the pre-processed single link scores through KGM. 
However, this knowledge is only used each time the operator is applied. The 
random starting population will be generally poor in quality. If the single 
link knowledge is to be exploited as soon as possible in order to find better 
networks in fewer generations we can seed [28] the entire first population 
with links found from the single link analysis. If the pre-processing of these 
single links can, itself, take a long time (if the MTS length, dimensionality 
or MaxT is relatively large), it may be preferable to implement an 
approximate method to find a list of good scoring links. Therefore, the 
algorithm would be given a head start for the search of good DBN structure 
in two ways: firstly, by using an approximate method to find a good list of 
single links rather than scoring the entire set; secondly, by exploiting this 
knowledge in the first population by seeding it entirely with a random 
selection of good links.  

We have found in [26] that an EP method is particularly efficient at 
finding a good selection of links with good correlation, particularly when 
we make use of self-adapting parameters (SAPs) which are able to `home in' 
on structures within the dataset (such as over time lags in process data). We 
can use an approximate algorithm such as an EP for finding good triples. In 
an EP an individual could be represented as a single triple and the SAP 
operators can be used to exploit structure within the data to quickly find 
good single links. This representation would result in the entire population 
being the solution to the problem as opposed to the fittest individual. An EP 
should be better suited to this job since recombination, such as the GA’s 
crossover, does not make much sense when chromosomes are particularly 
short in length, i.e. triples in this case. GAs, on the other hand,  are better 
suited to exploring combinations of these triples. Note that the size of the 
EP population will determine the size of the list of good triples. It will be 
important to consider this value as it will have a large effect on the goodness 
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of triples that are discovered. The discovered list can then be used to seed an 
initial GA population. This is explained more fully in section 4.  

If the initial population contains links with good scores as found using 
an EP, it would be useful if the next stage of search emphasised the 
recombination of these links. For this reason a uniform crossover operator is 
used which will maximise the recombination of the high-ranking single 
links. 

4 ALGORITHM 
Given a multivariate time series with N variables we can generate a 

DBN with a maximum time lag of MaxT. This is achieved firstly by 
applying Evolutionary Programming methods to a random selection of 
single triples in order to produce a list, List, of good links of length ListSize 
where the number of calls to the scoring function for the single links is 
limited to a pre-defined value, c (see steps 1-10 in the algorithm). A random 
selection of triples within EPList is then used to seed the initial generation 
of a GA of size GAPopSize, where each individual comprises a selection of 
triples. After GAGenerations, the fittest individual comprises Q triples 
which correspond to the DBN learned from the multivariate time series (see 
steps 11-19). We also use a parameter MaxBranch to prevent the maximum 
number of parents for one node becoming too high. The algorithm is 
described more fully below and figure 4 illustrates the general process. 

 
 

Figure 4. The Process of using an Evolutionary Program to Seed the 
Population of a Genetic Algorithm with a list of good scoring single 

triples. 
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 EP-Seeded-GA 
I/P MTS with N variables, MaxT,  
1 If the MTS is not discrete then apply an appropriate 

discretisation procedure. 
2 Initialize N to the number of variables and MaxT  to the 

maximum possible time lag, ListSize to be the size of List and 
c_count to 0,  c to be the maximum number of function calls. 

3 Set the initial EP population, List, to a random selection of 
links (a,b,l)  
where 0 ≤ a < N, 0 ≤ b < N, 1 ≤ l ≤ MaxT. 

4 While c_count < c 
5 Score each individual triple using metric 1 or the sum of 

metric 2 and metric 3, and increment c_count for each one 
6 Sort List according to each triple's score 
7 Make a copy of each link and apply the EPMutation 

operator to each duplicate 
8 Add the mutated duplicates back to the population 
9 Remove the lower ranking links until the population is 

back to its original size, namely ListSize. 
10 End While 
11 Set GAPopulation to a set of GAPopSize valid triple lists of 

random length from the distribution U(1,MaxBranch*N)  where 
each triple is selected from List. 

12 Construct the network represented by each individual’s triple list 
and set the fitness using metric 1 or the sum of metric 2 and metric 
3 

13 For i = 1 to GAGenerations 
14 Sort population according to their fitness 
15 Apply UniformCrossover depending on GACrossover Rate 

to randomly selected individuals biased on their fitness to 
generate offspring 

16 Apply LagMutation to the  chromosome of the offspring 
17 Apply standard mutation to GAMutationRate percent of the 

chromosome of the offspring, essentially making a random 
change to those triples. 

18 Add offspring to the population and remove the least fittest 
individuals thus reducing the population to its original size, 
GAPopSize. 

19 End For 
O/P The best network structure will be the one with the smallest DL / 

largest Log Likelihood within the last generation of 
GAPopulation. 
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For the proposed algorithm the following operators were used: 
 

EPMutation Operator 
EPMutation uses the notion of self adapting parameters to quickly 

converge to a good selection of links with good score. Within the EP, a gene 
can be any element of a triple (a,b,l). The idea of self-adapting parameters 
[1] has been used in this context to mutate the genes using a normal 
distribution that is rounded up to the nearest discrete value. While this is 
unlikely to have any effect on mutating variables (the ordering of the 
variables is arbitary), it is hoped that this controlled mutation will assist the 
EP in 'homing in' on the best time lag for a triple, as we have found 
previously [26]. Here each gene, ai, in each chromosome is given a 
parameter, σi. Mutation is defined as follows: 

),0( iii Naa σ+=′  (4) 
)),0(),0(exp( iii NN ττσσ +⋅=′  (5) 

len2
1

=τ  
(6) 

len
i

2

1
=τ  

(7) 

 
Note that τ is constant for each gene in each chromosome but different 
between chromosomes, and τi is different for all genes. Both parameters are 
generated each time mutation occurs. Each chromosome consisted of three 
parameters and their corresponding σi values. The value of len is the size of 
each chromosome, i.e. three. Each gene within a chromosome is mutated 
according to the Normal distribution with mean 0 and standard deviation 
equal to the gene's corresponding standard deviation, σi, in equation 4. Each 
σi is then mutated according to equation 5. 
 

UniformCrossover Operator 
Uniform crossover [27] works through the use of multiple crossover points. 
In the context of the DBN representation, each triple in each parent is 
selected to form part of one of the two offspring based on an unbiased 
random number generator. Therefore, each triple has a fifty percent chance 
of forming part of either offspring's chromosome (see Figure 5). 
 

LagMutation Operator 
This simply mutates the lag of the individual’s genes with the probability 
Lag Mutation Rate to a value from a uniform random distribution, U(lag-X, 
lag+X).  
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Figure 5. Uniform Crossover on the DBN Triple Representation. Any 
triple from either parent ahs a 50% chance of being assigned to either 

child. 
 

 

5 EVALUATION 
Within this section we investigate two aspects of the learnt DBNs: 
(i) Efficiency: First of all in section 5.1, we describe existing 

methods for learning static BNs which were adapted to search for DBN 
using our proposed representation. In section 5.2 the efficiency of these 
methods were compared to one another on synthetic datasets with varying N 
and MaxT. This involved examining the shapes of the learning curves to 
determine which were the best performers on larger datasets. Section 5.3 
compares the best of these methods to our proposed algorithm on larger 
synthetic datasets and the oil refinery dataset. We also investigate how the 
parameters of our algorithm can affect efficiency. 

(ii) Accuracy: Next, in section 5.4, the accuracy of the algorithm was 
tested by looking at structural differences (SD) between networks learnt 
from the synthetic data and the original network. This is repeated after 
varying numbers of function calls to see how the quality of the model 
depends upon learning time. Finally, in section 5.5, accuracy was 
investigated using the oil refinery dataset through comparisons of learnt 
structures with causal diagrams drawn up by control engineers and feedback 
concerning the explanations that have been generated using the discovered 
networks. 

5.1 Adapting Static BN Search Algorithms for DBN Search 
Taking existing methods for searching for static BNs, we investigated 

how well they could be adapted to efficiently learn DBNs. This involved 
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converting the algorithms to work with the representation that we have 
proposed in section 3.1. 

 
K2 / K3 (adapted for DBNs from [5] and [2]) 

This algorithm usually requires an ordering on the nodes. However, 
due to the assumption that is made based on ignoring contemporaneous 
links, this ordering can be ignored as all nodes will be ordered based upon 
their time slice. It works by iterating through each node at time, t, scoring 
the effect of adding all possible single parents to the current node. The 
parent that increases the score the most is then added to that that node's list 
of parents. This procedure is repeated until there are no parents that can be 
added to any nodes at time t that will increase the network's score. 

 
I/P MTS with N variables, MaxT 
1 For i=0 to N-1 (each node at time t) 
2 iπ =∅ 
3 oldP = ),( iig π  
4 Proceed = True 
5 While Proceed  
6 Let be the node that maximises z }){,( zig i ∪π where 

, Qz∈ iz π∉  
7 newP = }){,( zig i ∪π   
8 If  is a better score than  Then newP oldP
9 oldP =  newP
10 iπ = }{zi ∪π  
11 Else 
12 Proceed = False 
13 End If 
14 End While 
15 End For 
O/P Set of parents iπ  for each of the N variables 

 
where ),( iig π  is calculated using either metric 1 or the summation of 
metric 2 and metric 3 but only applied to the node i. Rather than iterating 
over all nodes, we only apply this to nodes at time t. These are the only 
nodes which have changing parents and so all other nodes scores will 
remain fixed. Step 8 depends on the metric being used (a lower score is 
better for DL and a higher score is better for log likelihood). 
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Genetic Algorithm (adapted for DBN from [20]) 
The Genetic Algorithm (introduced by [16]) searches for the global 
optimum through the application of recombination and mutation operators. 
These operators are applied to a population of candidate solutions which we 
will represent using the triple list method. The Genetic Algorithm 
determines parents based on their fitness, the fitter being more likely to be 
selected. Crossover Rate determines the number of times two parents are 
selected to perform crossover. Mutation Rate determines the likelihood that 
a chromosome has one triple mutated. The general algorithm is as follows: 
 
I/P MTS with N variables, MaxT 
1 Initialise random Population of varying length triple lists 
2 Calculate the fitness of each individual using either metric with the 

MTS 
3 For g=1 to Gens 
4 Select parents from Population based on their fitness 

according to Crossover_Rate 
5 Generate children from selected parents using Crossover 
6 Mutate individuals using Mutation according to Mutation 

Rate 
7 Add children to Population and calculate their fitness 
8 Remove the least fittest individuals until Population is of 

size Popsize 
9 End For 
O/P The fittest individual in Population 

 
Many different forms of operator exist, the most common being single point 
crossover and standard mutation. These operators have been adapted for the 
application to two triple list parents where each parent can be of varying 
length, and is described below. 
 
The Crossover Operator (see Figure 6) is defined below. 
I/P Two triple lists: par1, par2 containing len1 and len2 triples 

respectively 
1 Cp1 and cp2 are set to random values in the uniform distribution 

U(0,len1) and U(0,len2), respectively 
2 Set Child1 to the triples: { } )2,...,2(2)1,...,1(1 lencpparcppar ∪
3 Set Child2 to the triples: { } )1,...,1(1)2,...,1(2 lencpparcppar ∪
O/P Child1, Child2 
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Figure 6. The Crossover Operation Applied to two Parent Triple Lists to 

generate two new Children Triple Lists. Crossover points were 2 and 5 for 
Par1 and Par2 respectively. 

 
The mutation operator involves randomly adding or removing a 

triple from the triple list in question. Any new triple is generated using 
random values from uniform distributions of the form: 
 

( )),1(),1,0(),1,0( MaxTUNUNU −−  
 

Fitness is calculated using either of the scoring metrics. As we wish 
to increase fitness with each successive generation, the DL is inverted 
whenever a comparison is made (steps 4 and 8 in the algorithm).  
 

Evolutionary Program (adapted for DBN from [29]) 
The Evolutionary Program (EP) described here is a simplified  

version of Wong's EP which was applied to static BNs in that it makes use 
of a specialised operator called the Knowledge Guided Operator. An EP is 
similar to a GA in that it uses a population of chromosomes whose fitness 
we try to improve through mutation. However, in EP there is no 
recombination.  
 Knowledge Guided Mutation (KGM) requires calculating the DL of 
all possible single links in the network in order to bias the mutations. For 
DBNs the DL must be calculated over all possible time lags as well as 
between all possible variables. This means that a pre-processing stage is 
required in the same way as our methodology. However, rather than using 
an approximate pre-processing method, Wong used an exhaustive search 
over all single links. For our experiments, the log likelihood of a single link 
was used to bias the mutation where the log likelihood metric was used. 
KGM takes a list, List, of all possible links (triples) in the DBN which have 
been scored according to Log Likelihood or Description Length. Given a 
parent, it then randomly adds or deletes a triple. A triple is more likely to be 
added if it has a better score and is more likely to be deleted if it has a worse 
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score. Mutation is identical to the Mutation operator applied to the GA and 
once again, as in the GA, the DL is inverted whenever a comparison is made 
as we are trying to maximise the fitness. 
 
I/P MTS with N variables, Pre-processed List of all scored single links 
1 Initialise random Population 
2 Calculate the fitness of each individual using either metric with the 

MTS 
3 For g=1 to Gens 
4 Generate a child for each member of Population using KGM 

and List 
5 Add each child to Population and 
9 Randomly Mutate all individuals in new Population and 

score their fitness 
10 Select the Popsize individuals with the highest scores to 

recreate the next Population 
11 End For 
O/P The Fittest Individual in Population 

 

5.2 Comparing Efficiency of Adapted Methods on Synthetic Data 
The algorithms were tested on various synthetic datasets generated 

from DBNs. Each DBN consisted of differing numbers of variables and 
time. The generated data contained 1000 data points for each Boolean 
variable. We used a stochastic simulation inference scheme to generate the 
datasets. This involved starting with random values for all nodes at time < t, 
and using these values as observations to the inference algorithm. New 
values could then be assigned to variables at time t based on the computed 
posterior distributions. By time-shifting the DBN forward one time slice, 
each successive time point in the MTS could be assigned values based on 
the previous values. For more information on stochastic simulation as 
inference in Bayesian networks see [21]. 

Figure 7 shows the learning curves of the search methods on synthetic 
DBN data of varying N and MaxT using the description length metric. The 
y-axis represents description length and the x-axis represents the number of 
Function Calls (FC). Figure 8 shows the results of exactly the same 
experiments carried out using the log likelihood scoring metric on the same 
set of synthetic datasets. Notice that the GA starts off on a large number of 
FC. This is due to the best population size being found was 100 resulting in 
many FC required for the initial population. EP on the other hand is found to 
have optimal performance when its initial population (of size 10) contains 
no links, and K"/K3 does not use a population of candidates. 
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Figure 7. Comparing the Search Methods on DBN-Generated MTS using 
Minimum Description Length (a) N=5, MaxT=10; (b) N=10, MaxT =10; 

(c) N =5, MaxT =30; (d) N =10, MaxT =30; (e) N =10, MaxT =60 
 

It is evident from graphs 7(a) and 8(a) that on the smaller synthetic 
datasets the K2 and K3 algorithms are the fastest at finding a good structure. 
However, these algorithms can suffer from local maxima and some of the 
experiments using other global methods have found structures with better 
scores after a larger number of function calls. Notice that as either N or 
MaxT increases, graphs 7(b), (c) and (d), and 8(b), (c) and (d), the EP 
method appears to find better networks in a shorter number of function calls. 
The KGM heuristic is of assistance in speeding the convergence of the 
algorithm. What is more, as the networks increase in both dimensionality 
and time lag, K2 and K3 become less and less efficient. This is probably due 
to the unnecessary search over the addition of every possible single link to 
the network (including all variables and time lags). The GA does not appear 
to perform that well, particularly in the smaller networks but performs better 
than K2 and K3 in the earlier generations on larger networks, graphs 7(e) 
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and 8(e). This is likely to be due to the efficient recombination of good links 
in the first few generations followed by the reliance upon chance mutation 
to find any further links. In short, on datasets with larger dimensionality and 
larger maximum time lag, EP performs more efficiently than any of the 
other methods. We will now see how our proposed methodology compares 
to EP on synthetic and real-world datasets with larger N and MaxT. 
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Figure 8. Comparing the Search Methods on DBN-Generated MTS using 
Maximum Log Likelihood (a) N=5, MaxT=10; (b) N=10, MaxT =10; (c) 

N =5, MaxT =30; (d) N =10, MaxT =30; (e) N =10, MaxT =60. 
 

5.3 Comparing Efficiency of EP-Seeded GA with Standard EP on 
Larger Synthetic and Real World Datasets 

 
The efficiency of our proposed algorithm was assessed through 

comparing its learning curves to the standard EP on synthetic data and the 
oil refinery MTS. The refinery data consisted of 1000 datapoints over 11 
variables that were discretised into four states. For these experiments, the 
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algorithms were parametrised as shown in the table below. Notice that the 
number of calls during the pre-processing stage, c, was varied between 20% 
of the total search space and 100%. In the 100% case, the time taken for pre-
processing is identical to that of the pre-processing stage of the standard EP 
algorithm. It must be noted that ListSize and c can be set according to the 
available time and required accuracy of the final DBN. For all these 
experiments MaxT=60 and MaxBranch=3. 

Figures 9a to 9f show the learning curves of the methods: standard EP 
and the proposed EP-Seeded-GA with c=20% and c= 100%. Notice that EP-
Seeded GA where c is 100%, which takes the same amount of time to pre-
process as the standard EP, not only begins with better scoring network 
structures but continues to improve at a similar gradient to the standard EP 
method. When the curves finally do meet, they generally converge at a 
similar rate. In contrast, the EP-Seeded-GA with c=20% starts off with a 
score higher than standard EP. However, as the function calls increase this 
method slows down in convergence rate. In fact on the real dataset at the 
later stages of the experiments, it is overtaken by the standard EP. 
 Figure 10 shows how the number of calls in the EP Seeding stage 
affects the overall efficiency of the EP-Seeded-GA when learning DBN 
structure. The number of calls, c, is varied between 10% and 100% of the 
entire search space. An interesting feature of this graph is that the 
performance when c is 30% is almost identical to that when c is 100%. 
 
 

 c PopSize GAPop-
Size 

ListSize GACross-
overRate

GAMutat-
ionRate 

LagMutat-
ionRate 

Standard 
EP 

100% 10 - 100% - - - 

EP-Seeded 
GA 

20 / 100% - 10 2.5% 0.8 0.1 0.1 

 
Table 1. Parameters for the Standard EP and EP-Seeded GA 
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Figure 9. Performance on Synthetic Datasets: (a) (b) N=10, MaxT=60;  

(c) (d) N=20, MaxT=60; and Oil Refinery Datasets: (e) (f) N=11, 
MaxT=60. 

 
 To sum this section up, on larger MTS the pre-processing stage 

(learning the single link information) requires much more time and so if 
good networks are required rapidly, it appears that the approximate 
approach utilised by EP-Seeded-GA with a lower value of c (around 30%) is 
the most suitable. If time is not as expensive, the EP-Seeded GA with 
c=100% is recommended as it takes the same amount of time to pre-process 
the single links as the standard EP and is more likely to converge quicker. 
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Figure 10. Performance on Synthetic Dataset with N=10 and MaxT=60 
with varying number of calls, c,  in the EP-Seeding Stage of EP-Seeded-

GA. 
 

5.4 Structural Comparison of DBNs learnt using EP-Seeded GA 
and Standard EP 

In this section the resulting structures generated from the synthetic 
datasets after varying number of function calls (FC) were investigated by 
calculating the Structural Difference (SD). The SD is the summation of all 
the links that were found within the resulting structures but should not have 
been due to spurious correlations and implicit dependencies, and all links 
that were missing from the resultant structures but which should have 
appeared. The smaller the SD the better the structure is deemed to be. If the 
time lag of a parent is out by three or less, then it is not deemed to be 
different from the original network. This value was arrived at as it was 
decided that an explanation that was incorrect in the time aspect by three 
minutes or less would not affect the overall quality. Anything larger than 
three minutes, however, may be misleading to a control engineer using the 
tool. What is more, discretisation of the data may affect the accuracy so that 
precise time lags may be shifted a few minutes in either direction. We only 
show results from this analysis using the log likelihood metric. DL scores 
produce almost identical results. 

The SD analysis (Table 2) shows a surprising result in the standard EP 
algorithm. Whilst the SD of the EP-Seeded-GA steadily decreases as 
function calls increase, the standard EP actually increases in SD for some 
time before falling. This is most probably due to the EP initially finding 
structures that produce relatively good DBN metric scores against the 
dataset even though they bear little relation to the original generating 
structure. This may be through the discovery of the correct links at the 
expense of also finding spurious correlations or implicit dependencies. A 
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spurious correlation is a dependency that appears to exist between two 
nodes due to a common parent between the two nodes (see figure 11a), an 
implicit dependency is one which appears to exist due to indirect causes (see 
figure 11b). 

 
EP-Seeded-GA 

 
Standard EP FC 

N=10 
MaxT=60 

N=20 
MaxT=60 

N=10 
MaxT=60 

N=20 
MaxT=60 

100 16 25.6 12.5 11.2 
500 14 22.6 19.2 15 
1000 12.8 20.4 16.4 21 
2000 11.2 22 18.4 26.6 
5000 9.2 20.6 24.6 31.4 

10000 7.6 19.2 8.7 31 
 

Table 2. The Average Structural Differences (SD) between the original 
DBN and the discovered DBN using EP-Seeded-GA and Standard EP 

with Log Likelihood after varying numbers of FC. 
 

 
(a) 

 

(b) 

 
Figure 11. (a) Spurious Correlation denoted by a dotted line between 
node A and node B. (b) Implicit Dependency between node A-1 and 

node B. 
 

The hypothesis that spurious correlations account for the rise in SD 
for standard EP is supported by figure 12b. This shows the breakdown of 
the SD into implicit dependencies, spurious correlations and missed links. 
The actual number of missed links decreases as function calls progress. 
However, the number of spurious correlations actually increases. It appears 
that the EP-Seeded-GA avoids this growth in spurious correlations with all 
elements of SD generally decreasing (see figure 12a). 
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Figure 12. Breakdown of Structural Difference on Synthetic Dataset 
where N=10 and MaxT=60 using (a) EP-Seeded-GA and (b) Standard 

EP. 
 

5.5 Quality of Explanations 
For the oil refinery dataset, an analysis is required of how accurately 

the learnt network structure represents the sort of relationships an expert 
would find. This is done by asking control engineers, who have extensive 
knowledge of the refinery process and data, to produce some dependency 
diagrams that represent the expected relationships between the variables in 
the oil refinery MTS (see Figure 14). These diagrams are then compared to 
explanations generated using the discovered networks. To generate these 
explanations, evidence about a subset of variables at various time slices is 
entered into the network and inference is performed on the network. 

Figure 13 shows some of the explanations that were generated from 
the learnt structures using two oil refinery datasets, one with N = 11 and the 
other with N = 20.  The algorithm used to learn these structures was EP-
Seeded-GA with ListSize being 2.5% of the entire search space, c being 
20%, and the algorithm was stopped after 1500 and 2000 function calls for 
the 10 variable and 20 variable dataset, respectively. Shaded boxes in figure 
13 represent observed nodes. 

It is very encouraging to note that the current algorithm detects all of 
the relationships within figure 14 correctly except for those limited by 
MaxBranch being set to 3. For example, the explanation in figure 13a has 
captured tail gas flow (TGF) as being dependant upon sponge oil flow (SOF 
and top temperature (TT). However, the algorithm generates more 
explanations than those found in the dependency diagram. This is to be 
expected since the diagram is not meant to be exhaustive in that it only 
captures some of the obvious relationships that should exist within the 
dataset. From figure 13b we can see that bottom product flow (BPF) is 
affected by three variables but mostly by its controller setpoint BPF_SP. 
This is discovered from the data (the probability of BPF_SP being in state 3 
if BPF is in state 3 in the next time step is 0.999). However, if we observe 
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BPF_SP as being in state 0 at t-1 (figure 13c), we see an increase in the 
probability of other variables being the cause of BPF's current state. 

(a) 
 

 
 

 

 
(b) 

 
(c) 

 
Figure 13 - Sample explanations generated using the refinery data. Shaded 

blocks represent observed variables. 
 
It must also be pointed out that there were a few relationships found 

within the network structure that were known to be false, leading to some 
incorrect explanations. These are likely to have occurred for various 
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reasons. For example, a false link in the opposite direction of causality, is 
most likely caused by spurious correlations. These are likely to occur due to 
the smoothness of the CCF between two variables (see figure 3) where a 
strong dependency from variable 4 to variable 6 will produce a strong 
correlation in the CCF in the opposite direction, from 6 to 4. Other reasons 
include loss of information during discretisation or if some related variables 
are missing. For example, in figure 14 if feed flow (FF) affects TGF and 
BPF but is missed out of the dataset, it is quite possible that a dependency 
will be found between TGF and BPF. It is, therefore, important to ensure 
that all of the relevant variables are included within the dataset and a good 
discretisation policy is adopted. 

 

 
Figure 14 - Example Dependency Diagrams constructed from advice of 

Control Engineer 
 

7. CONCLUSIONS 
The learning of dynamic probabilistic models with large time lags is 

an important issue, not only for complex process applications but also for 
many AI problems (e.g. learning domain behaviour for robot navigation, 
data-mining for temporal sequences, learning to control a complex plant). 
It is a very challenging task and we have investigated the use of 
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evolutionary methods in achieving this. The number of possible network 
structures can be huge, even when dealing with a small number of 
variables due to the consideration of large possible time lags. Tested on 
synthetic datasets and oil refinery data, the proposed algorithm has 
demonstrated some success in managing this complexity, especially in 
comparison to algorithms that exist for static networks and which we 
have adapted for dynamic models. When good quality explanations must 
be produced in as short amount of time as possible, our EP-Seeded GA is 
far more efficient than any other methods and the accuracy of 
explanations generated from oil refinery datasets are very encouraging. 

Future research will involve exploring ways to improve the 
accuracy of this algorithm through better handling of discretisation (such 
as [10]) and parameterisation, and ways to extend this sort of algorithm 
to more complex data such as those multivariate time series where 
dependencies can change over time. 
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