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Correspondence________________________________________________________________________

Sampled-Data Filtering with Error Covariance Assignment

Zidong Wang, Biao Huang, and Peijun Huo

Abstract—In this correspondence, we consider the sampled-data
filtering problem by proposing a new performance criterion in terms of
the estimation error covariance. An innovation approach to sampled-data
filtering is presented. First, the definition of the estimation covariance for
a sampled-data system is given, then the sampled-data filtering problem is
reduced to the Kalman filter design problem for a fictitious discrete-time
system, and finally, an effective method is developed to design discrete-time
Kalman filters in such a way that the resulting sampled-data estimation
covariance achieves a prescribed value. We derive both the existence
conditions and the explicit expression of the desired filters and provide
an illustrative numerical example to demonstrate the directness and
flexibility of the present design method.

Index Terms—Continuous-time systems, discrete-time systems, Kalman
filtering, sampled-date filtering, intersample behavior.

I. INTRODUCTION

Owing to the advances in digital computers, discrete-time filtering
of continuous-time systems has been developed and used in numerous
applications, and thus, optimal sampled-data filter design problem has
well been studied; see, e.g., [2] and references therein. The aim of
the optimal sampled-data filtering problem is, for continuous-time sys-
tems with continuous-time measurements, to design discrete-time filter
that, with A/D averaged measurements and D/A zero-order-hold esti-
mates,minimizesthe least squares estimation criterion. The optimal
sampled-data filtering approach, however, is not suitable for the case
when the performance objectives are expressedexplicitlyin terms of the
steady-state estimation error variance, that is, the estimation error vari-
ance is not necessarily minimal but should meet certain upper bound
constraints. This case is quite common in practical filtering problems,
such as tracking of maneuvering target and recognition of flight paths
from multiple sources [5]. Traditional optimal filtering theories could
minimize a selected weighted scalar sum of the error variances of the
state estimation in order to indirectly achieve the steady-state error vari-
ance constraints, but minimizing a scalar sum does not ensure that the
multiple variance requirements will be satisfied.

Recently, a novel filtering method, namely, error covariance assign-
ment (ECA) theory (see, e.g., [14] and [15]) was developed to provide
an alternative and more straightforward methodology for designing
filter gains that satisfy the error covariance constraints. This method-
ology could provide a closed-form solution fordirectly assigning the
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specified steady-state estimation error covariance, and thus, the desired
error variance constraints could be achieved. With the ECA theory, we
are able to parameterize all filters/estimators in terms of the perfor-
mance criterion of the state estimation error covariance that is physi-
cally meaningful in practice and to deal with the system noise or output
noise directly. Subsequently, [9], [10], [12], and [13], extended the
ECA theory to the parameter uncertain systems by assigning a pre-
scribed upper bound to the steady-state error variance. The purpose of
this correspondence is to generalize the ECA theory to sampled-data
systems, i.e., design discrete-time Kalman filters for a continuous-time
system such that the sampled-data estimation covariance can be as-
signed to a prespecified value. We develop here an equivalent present-
state dependent discrete-time model (see, e.g., [2], [6], and [7]) to ob-
tain the desired sampled-data filters. Note that the dual problem for
sampled-data feedback controller design was initially studied in [1]
with state covariance assignment and was further investigated for a
class of uncertain systems in [11].

In this correspondence, we consider the sampled-data filtering
problem by proposing a new performance criterion in terms of the
estimation error covariance. An innovation approach to sampled-data
filtering is presented. First, the definition of the estimation covariance
for a sampled-data system is given, then the sampled-data filtering
problem is reduced to the Kalman filter design problem for a fictitious
discrete-time system, and finally, an effective method is developed to
design discrete-time Kalman filters in such a way that the resulting
sampled-data estimation covariance achieves a prescribed value.
We derive both the existence conditions and the explicit expression
of the desired filters and provide an illustrative numerical example
to demonstrate the directness and flexibility of the present design
method. The results obtained in the this note are counterparts of the
ECA theory for purely continuous- and discrete-time systems [14].

Throughout this correspondence, superscriptT denotes matrix trans-
pose, parentheses(�) around an independent variable indicate an analog
function of continuous time or the Laplace transform of such a func-
tion, whereas square brackets[�] indicate a discrete sequence or the
z-transform of a sequence.Ef�g means the expection operator of the
argument.

II. DEFINITIONS AND PROBLEM FORMULATION

Consider the following linear time-invariant continuous stochastic
system

_x(t) = Ax(t) + w(t) (1)

with continuous-time measurements

y(t) = Cx(t) + v(t) (2)

where
x n-dimensional state vector;
y m-dimensional measured output vector;
w(t) zero mean Gaussian white noise process with covariance

W > 0;
v(t) zero mean Gaussian white noise process with covariance

V > 0;
wherew(t) andv(t) are uncorrelated.

Apparently, one of the most important steps in designing a satis-
factory sampled-data filter is to choose a proper discrete-time model
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(DTEM) for the continuous-time system. It should be pointed out that
the direct sampling of measurements containing white components is
not allowed because the equivalent discrete-time measurement noise
would have an unbounded covariance. Therefore, we employ an aver-
aging-type A/D device

y[k] :=
1

�

k�

(k�1)�

y(t) dt; (k � 1)� � t < k�

where� > 0 is the sampling period, and then obtain a present-state-
dependent DTEM for (1), (2) as follows (see, e.g., [7]):

x[k + 1] =A�x[k] + w� [k] (3)

y[k] =C�x[k] + v� [k] (4)

where

A� := e
A�
; C� :=

1

�
C

�

0

e
A(���)

d�

w� [k] :=
�

0

e
A(���)

w(k� + �) d�

v� [k] :=
1

�

�

0

v((k� 1)� + �) d�

�
1

�

�

0

�

�

e
A(���)

w((k� 1)� + �) d� d�

andw� [k] andv� [k] are zero mean white noise sequences with

E
w� [k]

v� [k]
[wT

� [k] v
T
� [k]]

=
Wd1 Wd3

WT
d3 Wd2

:= Wd (5)

where

Wd1 :=
�

0

e
A�
We

A �
d�

Wd2 :=
1

�
V +

1

�2

�

0

F (�)WF
T (�) d�

Wd3 := �
1

�

�

0

e
A(���)

WF
T (�) d�

F (�) :=C
�

0

e
A(���)

d�:

The discrete Kalman filter used to reconstruct the statex(t) of (1) is of
the form

x̂[k + 1] = Gx̂[k] +Ky[k] (6)

whereG andK are filter gains to be designed.
By defining"d[k] := x[k] � x̂[k], we obtain from (3), (4), and (6)

that

"d[k + 1] =G"d[k] + (A� �G�KC�)x[k]

+ w� [k]�Kv� [k] (7)

and subsequently obtain the augmented system of (3) and (7) as fol-
lows:

xd[k + 1] = (Ad +BHM)xd[k] + (D +BHJ)wd[k] (8)

where

xd[k] :=
x[k]

"d[k]
; wd[k] :=

w� [k]

v� [k]

Ad :=
A� 0

A� 0
; B :=

0

�I
(9)

H := [G K]; M :=
I �I

C� 0

D :=
I 0

I 0
; J :=

0 0

0 I
(10)

andwd[k] is a zero mean white noise sequence with covarianceWd >

0.
Assumption 1:The white noise sequencesw� andv� have no cor-

relation withxd, i.e.,

E
x[k1]

"d[k1]
[wT

� [k2]quadv
T
� [k2]] = 0; 8 k1; k2 2 :

Noting that the statexd[k] in (8) represents the state behavior at sam-
pling instants of (1) and (7), we now define the sample-time estimation
covariance as follows.

Definition 1: The covarianceXd of (8) given by

Xd := lim
k!1

Efxd[k]x
T
d [k]g

= lim
k!1

E
x[k]

"d[k]
[xT [k] "

T
d [k]] :=

Xd1 Xd3

XT
d3 Xd2

(11)

is said to be the sample-time estimation covariance.
Remark 1: Note that the sample-time estimation covariance is a

covariance in discrete-time sense and does not take account of the
signal at the whole of the intersample but at the sampling instant. Typi-
cally, sampled-data systems have been analyzed and designed through
their discrete-time behavior, i.e., their behavior at the sampling in-
stants. While a few performance criteria such as stability or deadbeat
response can be judged based only on the discrete-time behavior, many
others such as disturbance and noise attenuation, and transient proper-
ties (overshoot, settling time, etc.), require a closer look at the inter-
sample behavior [1]. Moreover, in the event of filtering for an inher-
ently time-continuous system in terms of a discrete-time “equivalent,”
the question of sampling is not trivial [8] since the very small sampling
period that is naturally required may result in computational difficul-
ties. In the case when it is necessary to preserve the disturbance atten-
uation and transient properties of the original continuous-time systems
and reduce the computational complexity, the signal is sometimes not
suitable to be sampled at the Nyquist rate, and therefore, there should
come more interest in the behavior during the intersample periods. It
is worth mentioning that in recent years, much attention has been paid
to the intersample behavior of continuous-time signals rather than the
behavior at sampling instant; see, e.g., [4] and references therein for
more details.

Remark 2: Assume that there exists sample-time estimation covari-
anceXd for the system (8). Then, under Assumption 1, it is easy to
see thatXd is the unique positive definite solution of the discrete Lya-
punov equation

Xd := (Ad +BHM)Xd(Ad +BHM)T

+ (D +BHJ)Wd(D+BHJ)T : (12)

Define"s(t) := x(t)� x̂(t), wherex̂(t) = x̂[k]; k� � t < (k +
1)� . We are now able to provide the definition of the sampled-data
estimation covariance as follows.
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Definition 2: The sampled-data estimation covarianceXs is defined
as

Xs := lim
k!1

1

�

(k+1)�

k�

Efxs(t)x
T
s (t)g dt

:=
Xs1 Xs3

XT
s3 Xs2

; xs(t) :=
x(t)

"s(t)
: (13)

Remark 3: The sampled-data estimation covariance takes account
of intersample behavior and is thus a more exact performance criterion
for sampled-data estimation than the sample-time estimation covari-
ance. Next, we need to show that the definition of sampled-data es-
timation covariance is compatible with the covariances of augmented
systems for purely continuous- and discrete-time estimation. For purely
continuous estimation [i.e., the system to be estimated and the filter are
both continuous, and hence,x(t) and"s(t) are both continuous sig-
nals], Definition 2 leads to

Xs := lim
k!1

1

�

(k+1)�

k�

Efxs(t)x
T
s (t)g dt

= lim
t!1

Efxs(t)x
T
s (t)g

and for purely discrete estimation [i.e., the system to be estimated and
the filter are both discrete, and hence,x(t) and"s(t) are both discrete
signals], Definition 2 turns out to be

Xs := lim
k!1

1

�

(k+1)�

k�

Efxs(t)x
T
s (t)g dt

= lim
k!1

Efxs[k]x
T
s [k]g:

We are now in a position to state the main objective of this note as
follows: For the continuous-time system (1) and (2), find all the dis-
crete-time Kalman filters being of the structure (6) such that the sam-
pled-data estimation covariance achieves a prespecified valueXs > 0.
We refer to this problem as the sampled-data estimation covariance as-
signment (SDECA) problem, which is actually the generalization of
the problem studied in ECA theory [14], [15].

Remark 4: We briefly discuss the principle on how to prespecify the
sampled-data estimation covarianceXs > 0. Note that the 11-block
of Xs in (13) (Xs1 > 0) represents the steady-state state covariance
of system (1), which can be calculated in advance sinceA is Hurwitz.
The 22-block ofXs in (13) (Xs2 > 0) is the steady-state estimation
error covariance and is just the item of interest in this note as stated
in Section I.Xs2 can be prescribed according to the practical perfor-
mance requirements, and its diagonal elements (i.e., the steady-state
estimation error variance) should not be less than the minimal values
obtained from the optimal sampled-data filtering theory. The main aim
of this correspondence is actually to design sampled-data filters such
that the resulting steady-state error covariance is successfully assigned
to a prespecified valueXs2 > 0. The 12-block ofXs in (13) (Xs3,
which makesXs positive definite) is free, and this freedom offers the
possibility to consider other desired performance objectives.

III. SOLUTION TO PROBLEM SDECA

The following theorem reveals the relationship between the sam-
pled-data estimation covarianceXs and the sample-time estimation co-
varianceXd.

Theorem 1: Suppose that the sampled-data estimation covariance
Xs > 0 exists; then,Xs is given by the following expression:

Xs =
1

�

�

0

[Cs(u)XdC
T
s (u) +Ws(u)] du (14)

whereXd is the sample-time estimation covariance, and

Cs(u) :=
eAu 0

eAu � I I

Ws(u) :=
W1(u) W1(u)

W1(u) W1(u)

W1(u) :=
u

0

e
A�
We

A �
d� (15)

for all 0 � u < � .
Proof: Fork� � t < (k + 1)� and0 � u < � , we have

xs(t) =
x(t)

"s(t)
=

x(k� + u)

x(k� + u)� x̂[k]

=
eAu 0

eAu � I I

x[k]

"d[k]

+
I

I

u

0

e
A(u��)

w(k� + �) d�:

Observing thatw andxd are uncorrelated, we have

Efxs(k� + u)xTs (k� + u)g

= Cs(u)Efxd[k]x
T
d [k]gC

T
s (u) + ws(u)

and therefore

Xs = lim
k!1

1

�

�

0

Efxs(k� + u)xTs (k� + u)g du

=
1

�

�

0

fCs(u)XdC
T
s (u) +Ws(u)g du:

This proves the theorem.
To make the problem SDECA more tractable, we give the following

definition.
Definition 3: Consider the discrete Kalman filter (6) with parame-

tersG andK. A prespecifiedXs > 0 is said to beassignableif there
exists a set of matricesH = [G K] such that the sampled-data estima-
tion covariance achievesXs.

It follows from Theorem 1 thatCs(u) andWs(u) do not depend on
G andK. Hence, the following theorem offers the conditions for the
solvability of the problem SDECA (or the assignability of a prespeci-
fied Xs > 0).

Theorem 2: Consider the sampled-data system defined in (1)–(6).
A prespecifiedXs > 0 is assignable if and only if there exist a unique
positive definite matrixXd > 0 and a set of matricesH = [G K]
that, respectively, meet (14) and (12).

Proof: We only need to show the uniqueness ofXd meeting (4),
and the rest follows from Theorem 1 and Remark 2 immediately.

Suppose that bothXd1 > 0 andXd2 > 0 satisfy (14), that is

Xs =
1

�

�

0

[Cs(u)Xd1C
T
s (u) +Ws(u)] du

Xs =
1

�

�

0

[Cs(u)Xd2C
T
s (u) +Ws(u)] du



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 3, MARCH 2001 669

and then we have

1

�

�

0

Cs(u)(Xd1 �Xd2)C
T

s (u) du = 0:

The definition (15) ofCs(u) indicates thatCs(u) 6= 0, and hence,
Xd1 = Xd2. The proof of Theorem 2 is completed.

Theorem 2 means that the proposed problem SDECA can be divided
into the following two sequential problems.

• Problem 1:For a specified sampled-data estimation covariance
Xs > 0, find a positive definite matrixXd > 0 satisfying (14).

• Problem 2:For the positive definite matrixXd > 0 determined
in Problem 1, find a set of matricesH = [G K] satisfying (12).

We first consider Problem 1. Note that (14) can be rearranged as

�

0

e
Âu
Xde

Â u
du = Q̂ (16)

where

Â :=
A 0

A 0
; Q̂ := � Xs �

�

0

Ws(u) du :

Since (16) has a similar form with [1, (3.18)], we can calculateXd by
using the algorithm proposed in [1].

Next, the following theorem solves Problem 2.
Theorem 3: Assume thatMXdM

T + JWdJ
T > 0. There exists

a solutionH that solves (12) if and only ifXd > 0 satisfies

Rd :=Xd � AdXdA
T

d �DWdD
T + (AdXdM

T +DWdJ
T )

� (MXdM
T + JWdJ

T )�1(AdXdM
T +DWdJ

T )T

� 0 (17)

rank [Rd] � n+m (18)

(I �BB
+)(Xd �AdXdA

T

d �DWdD
T )

� (I �BB
+) = 0 (19)

whereB+ denotes the Moore-Penrose inverse of matrixB. Further-
more, if conditions (17)–(19) are satisfied, allH solving (12) can be
parametrized by

H =B
+[LdVd � (AdXdM

T

+DWdJ
T )(��1

d
)T ]��1

d
+ (I �BB

+)Z (20)

whereZ is an arbitrary matrix with appropriate dimension,Ld and�d
are, respectively, any matrix factors ofRd andMXdM

T + JWdJ
T ,

i.e.,Rd := LdL
T

d ; Ld 2 R2n�(n+m)

MXdM
T + JWdJ

T := �d�
T

d

andVd is given by

Vd := Vd1
I 0

0 Ud
V
T

d2

whereVd1 andVd2 come from the following singular value decom-
positions of matrices(I � BB+)Ld and(I � BB+)(AdXdM

T +
DWdJ

T )��1
d

:

(I �BB
+)Ld =Ud1�d1V

T

d1

(I �BB
+)(AdXdM

T +DWdJ
T )��1

d
=Ud1�d1V

T

d2

andUd is an arbitrary orthogonal matrix with proper dimension.
Proof: After a standard algebraic manipulation of (12), the proof

of this theorem is completely analogous to the proof of the main results
of [5] and is thus omitted.

Remark 5: Note thatB is of full column rank, and hence, the last
term on the right-hand side of (20) is equal to zero. Consequently, the
filter parametersG andK can be obtained by

H = [G K]

=B
+[LdVd � (AdXdM

T +DWdJ
T )(��1

d
)T ]��1

d
:

Remark 6: It is clear that if the set of desired filters is not empty,
it must be very large. We may utilize the freedom (such as the choice
of the orthogonal matrixUd) contained in the filter design to improve
other system properties. An interesting problem for future research is
how to exploit the freedom to achieve the specified robust and/or reli-
able constraints on the filtering process.

Remark 7: It is worth pointing out the differences between the
SDECA problem addressed in this correspondence and the optimal
sampled-data Kalman filtering problem. The goal of the latter problem
is to design anoptimal filter that minimizes the estimation error
variance, and therefore, the resulting optimal filter is usually unique;
it seems that there is not much freedom to be used to achieve other
performances, such as robustness and theH1 (disturbance attenuation
rejection) requirement. Note that the “reverse problem” of identifying
a continuous-time system from measurements was studied in [3]. On
the other hand, since the specified variance (the diagonal element
of the specified error covariance) constraints may not be minimal
but should meet engineering requirements, the addressed SDECA
problem in this correspondence is actually a multiobjective design
task that often yields nonunique solutions. After assigning to the
system a specified error covariance, there remainsmuchfreedom that
can be used to attempt todirectly achieve other desired performance
requirements, but the traditional optimal sampled-data Kalman
filtering methods maybe lack such an advantage in the case that the
filtering performance objectives are expressedexplicitly in terms of
the steady-state estimation error variance. This implies that the study
on the addressed SDECA problem would be suitable to the case when
the error variance constraints are not necessary to be minimal, and the
design freedom is highly desirable for achieving further performance
requirements. In this sense, the results of this paper may complement
those of standard optimal sampled-data Kalman filtering.

IV. I LLUSTRATIVE EXAMPLE

Consider the following system:

_x(t) =�1:7329x(t) + w(t);

W =2; y(t) = 0:8x(t) + v(t); V = 0:64:

Setting� = 0:4, we have the following DTEM:

x[k + 1] = 0:5x[k] + w� [k]; y[k] = 1:1542x[k] + v� [k]

with

Wd =
Wd1 Wd3

WT

d3 Wd2
=

0:4328 �0:8325

�0:8325 1:8970
:

The Kalman filter to be designed iŝx[k+1] = Gx̂[k]+Ky[k], and our
purpose is to determine the parametersG andK such that the following
specified sampled-data estimation covariance:

Xs =
0:5769 0:2930

0:2930 0:4449

is assigned to the augmented system

xd[k + 1] = (Ad +BHM)xd[k] + (D+BHJ)wd[k]
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wherexd[k] andwd[k] are defined in (9), and

Ad =
0:5 0

0:5 0
; B =

0

1

H = [G K]; M =
1 �1

0:8 0

D =
1 0

1 0
; J =

0 0

0 1
:

We can obtain from Theorem 1 that

Xs =
1

�

�

0

[Cs(u)XdC
T

s (u) +Ws(u)] du

where

Cs(u) =
e�1:7329u 0

e�1:7329u � 1 1

Ws(u) =
W1(u) W1(u)

W1(u) W1(u)

W1(u) = 0:5771(1� e�3:4658u):

By exploiting the computational algorithm proposed in [1], we have

Xd =
0:5771 0:1834

0:1834 0:2256
:

It is easy to verify thatXd > 0 meets all the conditions of Theorem 2,
and thus,Xs > 0 is assignable. Next, it follows from Theorem 3 that

Rd =
0:36032 �0:03335

�0:03335 0:00855

Ld =
0:60026 0

�0:03335 0:07591

�d =
0:62618 0:20920

0 1:50543
; Vd1 =

1 0

0 1

V
T

d2 =
0:74612 �0:66581

�0:66581 0:74612
:

Finally, by selecting the orthogonal “matrix”Ud asUd = 1 and
Ud = �1, respectively, we obtain two desired filters achieving the
expected performance as follows:

x̂[k + 1] =0:70072x̂[k] � 0:42504y[k]

x̂[k + 1] =0:86215x̂[k] � 0:37223y[k]:

V. CONCLUSIONS

In this correspondence, we have considered the sampled-data
estimation problem for continuous-time systems. The definition of
sampled-data estimation covariance is proposed by taking account

of intersample behavior. The sampled-data estimation covariance
assignment problem has been formulated and solved through two
steps. The first step converts the sampled-data estimation covariance
to the sample time estimation covariance, and the second step is to
assign the sample time estimation covariance determined in the first
step to a discrete-time system. The existence conditions of the desired
filters and the set of these filters have been derived. Finally, we point
out that the main subject of future investigation is to utilize the design
freedom to meet further performance requirements such as robustness
and/or reliability subjected to measurement uncertainties.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and three anony-
mous referees for critical reading and comments. The first author is also
grateful to Prof. H. Unbehauen of Ruhr-University Bochum for fruitful
discussions and to Prof. D. Prätzel-Wolters of University of Kaiser-
slautern for helpful suggestions.

REFERENCES

[1] H. Fujioka and S. Hara, “State covariance assignment for sampled-data
feedback control,”Int. J. Contr., vol. 61, no. 3, pp. 719–737, 1995.

[2] W. M. Haddad, D. S. Bernstein, H.-H. Huang, and Y. Halevi,
“Fixed-order sampled-data estimation,”Int. J. Contr., vol. 55, no. 1, pp.
129–139, 1992.

[3] R. H. Jones, “Fitting multivariable models to unequally-spaced data,”
in Times Series Analysis of Irregularly Observed Data, D. F. Findley,
Ed. Heiderberg, Germany: Springer, 1984, pp. 158–188.

[4] P. T. Kabamba and S. Hara, “Worst case analysis and design of sampled
data systems,”IEEE Trans. Automat. Contr., vol. 38, pp. 1337–1357,
1993.

[5] R. E. Skelton and T. Iwasaki, “Liapunov and covariance controllers,”
Int. J. Contr., vol. 57, no. 3, pp. 519–536, 1993.

[6] W. J. Steinway and J. L. Melsa, “Discrete linear estimatsion for previous
stage noise correlation,”Automatica, vol. 7, no. 3, pp. 389–391, 1971.

[7] S. Shats and U. Shaked, “Exact discrete-time modeling of linear ana-
logue systems,”Int. J. Contr., vol. 49, no. 1, pp. 145–160, 1989.

[8] H. Unbehauen and G. P. Rao, “Continuous-time approaches to system
identification-a survey,”Automatica, vol. 26, pp. 23–35, 1990.

[9] Z. Wang, Z. Guo, and H. Unbehauen, “RobustH =H -state estimation
for discrete-time systems with error variance constraints,”IEEE Trans.
Automat. Contr., vol. 42, pp. 1431–1435, 1997.

[10] Z. Wang and B. Huang, “RobustH =H filtering for linear systems
with error variance constraints,”IEEE Trans. Signal Processing, vol. 48,
pp. 2463–2467, Aug. 2000.

[11] Z. Wang, P. Huo, and H. Unbehauen, “Robust constrained covariance
controller design for uncertain sampled-data systems,” inProc. Second
Asian Contr. Conf., vol. I, Seoul, Korea, July 22–25, 1997, pp. 777–780.

[12] Z. Wang and H. Unbehauen, “RobustH =H -state estimation for sys-
tems with error variance constraints: The continuous-time case,”IEEE
Trans. Automat. Contr., vol. 49, pp. 1061–1465, 1999.

[13] Z. Wang, J. Zhu, and H. Unbehauen, “Robust filter design with time-
varying parameter uncertainty and error variance constraints,”Int. J.
Contr., vol. 72, pp. 30–38, 1999.

[14] E. Yaz and R. E. Skelton, “Continuous and discrete state estimation
with error covariance assignment,” inProc. IEEE Conf. Decision Contr.,
Brighton, U.K., 1991, pp. 3091–3092.

[15] E. Yaz and W. Nacara, “Nonlinear estimation by covariance assign-
ment,” in Prep. 12th IFAC World Congr., vol. 6, Sydney, Australia,
1993, pp. 87–90.


