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Abstract—Glaucoma is one of the main causes of blindness
worldwide. Segmentation of vascular system and optic disc is
an important step in the development of an automatic retinal
screening system. In this paper we present an unsupervised
method for the optic disc segmentation. The main obstruction
in the optic disc segmentation process is the presence of blood
vessels breaking the continuity of the object. While many other
methods have addressed this problem trying to eliminate the
vessels, we have incorporated the blood vessel information into
our formulation. The blood vessel inside of the optic disc are
used to give continuity to the object to segment.

Our approach is based on the graph cut technique, where
the graph is constructed considering the relationship between
neighboring pixels and by the likelihood of them belonging to
the foreground and background from prior information.

Our method was tested on two public datasets, DIARETDB1
and DRIVE. The performance of our method was measured by
calculating the overlapping ratio (Oratio), sensitivity and the
mean absolute distance (MAD) with respect to the manually la-
beled images. Experimental results demonstrate that our method
outperforms other methods on these datasets.

Index Terms—Retinal images, vessel segmentation, optic disc
segmentation, graph cut technique.

I. INTRODUCTION

The morphology of the eye structures is an important

indicator to evaluate the retinal health. Due to the non-

invasive characteristics, image analysis is considered as the

root of the research. Blood vessels can be seen as thin

elongated structures in the retina, with variation in width and

length, while the optic disc is the round brightest area where

the blood vessels converge.

The segmentation of the blood vessels and optic disc

represents the starting point of a retinal screening system.

Firstly the morphology of these structures can provide

information that indicates the presence of any abnormality.

Furthermore the analysis can focus on the lesions (exudates

and hemorrhage) once the eye structures have been identified.

The localization of the optic disc is the first step for its

segmentation. Many methods for retinal image analysis have

been presented in the literature. These can be classified as

those that only localize the optic disc, and those that perform

the segmentation as well.

Hoover et al [1] proposed a method for optic disc location

based on finding the convergence of the blood vessels. In the

absence of a confident convergence result the algorithm will

identify the optic disc location as the brightest region in the

image. In [2] the optic disc location relies on the vascular

system segmentation, combining feature characteristics as

retinal luminance, density, thickness and orientation of the

vessels. In [3] the optic disc location is performed using a

filter to match the expected directional pattern of the blood

vessels. A prior vessel segmentation and a kNN regression

are used to approximate the optic disc location in [4]. Kauppi

et al [5] propose the use of a training stage, where PCA is

adopted to determine an eigenspace that characterizes the

optic disc in retinal color images. The templates are extracted

from the training images and used to localize the optic disc.

The algorithms designed for the optic disc segmentation

can be divided into supervised and unsupervised methods.

Supervised segmentation methods can be seen as human

guided classification. In [6] the location of the optic disc is

performed by PCA, and a modified Active Shape Model is

used to detect the disk boundary. Niemeijer et al [7] address

the problem by fitting a single Point Distribution Model to

the retinal images. The model contains points in the center

and four extremes of the optic disc; the distances from the

extremes to the center point are interpolated to find a radius

r. A rough segmentation is marked by drawing a circle

around the center point with radius r. The disadvantages

of supervised systems are the requirement of a training

process and hand labeled images, which is time and resource

consuming.

Unsupervised segmentation is performed without sample

classes provided by human. In [8] a multi-scale hybrid Snake

is used to segment the optic disc. The method places the

initial curve considering the dark area around the central

bright region in Heidelberg retinal tomographs. In [9] the

optic disc location is achieved using a matching template,

while the segmentation is done by a deformable Contour
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Model. A complete automatic algorithm for the segmentation

of the optic nerve is presented in [10] using scanned laser

tomography images. The method is based on morphological

operations, Hough transform and an anchored Active Contour

Model. Walfer et al [11] present an adaptive method using

mathematical morphology on fundus images.

Our purpose is to create a complete automatic and

unsupervised method capable of working on different

datasets. In this paper, we present an unsupervised method

for automatic optic disc segmentation using the graph cut

technique. Our approach takes as a first step the localization of

the optic disc based on the convergence of the blood vessels.

The graph is constructed considering the relationship between

neighboring pixels and the likelihood of them belonging to

the foreground and background from prior information. A

small sample with center in the detected optic disc area is

taken as foreground seeds, while a band of pixels around the

perimeter of the image are considered as background seeds.

The main contribution of this paper is the use of blood vessels

to provide continuity in the segmentation of the optic disc.

We have introduced a compensation factor for the foreground

likelihood weight using previous blood vessel segmentation.

The rest of the paper is organized as follows. In Section

II we provide a brief review on graph cut technique and two

different types of approximation to assign weights to the

edges. The optic disc localization is described in Section III.

Section IV shows our method for the optic disc segmentation

including the graph construction details. Experimental results

on two public datasets and performance comparison with

other methods are presented in Section V.

II. GRAPH CUT

Graph cut is an interactive image segmentation technique

in computer vision and medical image analysis [12][13][14].

The general idea is to map an image onto a graph with

weighted connections. The graph is then cut (separating

foreground and background), minimizing the energy function

and producing the optimal segmentation for the image.

A graph G(ν, ǫ) is defined as a set of nodes ν and edges ǫ

connecting neighboring nodes. An example of graph is shown

in Figure 1. There are two special nodes called terminals,

S source (foreground) and T sink (background) [15]. Edges

between pixels are called n-links, while t-links are referred

to the edges connecting pixels to terminals. A cut is a subset

of edges C ∈ ǫ that separates the graph into two regions,

foreground and background G (c) = 〈ν, ǫ\C〉. Each cut has a

cost which is defined as the sum of the weights of the edges

that it break. A globally minimum cut on a graph with two

terminals can be computed efficiently in low order polynomial

time via standard maxflow or push-relabel algorithms from

combinatorial optimization [7].

Fig. 1. Example of a graph system with terminals S (foreground) and T
(background).

All graph edges e ∈ ǫ including n-links and t-links are

assigned some non negative weights. The edge weight

assignment depends on different applications scenarios, but

it should ensure that the energy function minimization will

produce the optimal segmentation. In this paper we use two

different types of approximations to assign weights to the

edges: flux incorporation for blood vessel segmentation and

the traditional boundary and regional terms for the optic disc.

A. Graph for Blood Vessel Segmentation

The minimization of the energy function using the boundary

term has a tendency to follow short edges, frequently referred

to as the shrinking bias problem [16]. This problem creates

particular difficulties when segmenting thin elongated

structures like the blood vessels. The incorporation of flux

can improve edge alignment and helps to segment thin

objects such as blood vessels by keeping a balance between

shrinking (length) and stretching (flux) along the boundary.

The blood vessel segmentation is performed based on [17].

This approach includes the flux term into the construction of

the graph designed for blood vessel segmentation.

It has been demonstrated that the flux of any given

field of vector v can be optimized in order to improve the

segmentation of elongated narrowing structures, like vessels

[18] and [19]. In our implementation image gradients of the

blood vessels are taken as vectors v, and the flux of these

vectors is incorporated into the graph and optimized.

The graph construction can be divided in two parts:

the symmetric and antisymmetric parts. The symmetric

part corresponds to cut geometric length and is related

directly with the n-link connections. The antisymmetric

part corresponds to a flux of vector field v over a cut.

Specific weights for t-links are based on the decomposition

of vector v. We consider a decomposition along grid edges

using a natural choice of n-links oriented along the main axes.

B. Graph for Optic Disc Segmentation

We adopt the traditional edge weight assignment presented

in [15]. The energy function consists of regional and boundary



terms. Regional term is calculated from the likelihood of

a pixel p belonging to the foreground and background

generating the t-link weights. The boundary term is based

on the own pixel properties (i.e. intensity), which is used to

assign weights to the n-links.

For our particular purpose we have designed a compensation

factor for the foreground t-link. Details of the construction and

weight assignment are presented in Section IV.

III. OPTIC DISC DETECTION

The convergence of the blood vessels is used to locate the

optic disc detection. Inspired by the work presented in [11],

the vessel network is segmented and the resultant binary

image is pruned using a morphologic open process in order

to keep the main arcade. Afterward the centroid of the arcade

is located. The centroid is calculated according to:

Cx =

K
∑

i=1

xi

K
Cy =

K
∑

i=1

yi

K
(1)

where xi and yi are the coordinates of the pixel in the binary

image and K is the number of pixels set to “1”, which is the

pixels marked as blood vessels in the binary image.

Using the blue channel of the RGB retinal image, 1% of

the brigthest pixels are selected. The algorithm detects the

brightest area with most number of elements in the image

to determine the position of the optic disc with respect to

the centroid (left, right, up, down, etcetera). Considering that

the main arcade is narrowing until the vessels converge, the

algorithm adjusts the centroid point iteratively until it reaches

the center of the arcade. The centroid point is adjusted by

reducing the distance with the optic disc, and correcting

its central position inside the arcade. The center of the

arcade is presumed to be the vessels convergence point and

the center of the optic disc. It is important to detect with

accuracy the center of the optic disc, since this point will be

used to automatically mark foreground seeds. A point just

inside the border of the optic disc may result in some false

foreground seeds. Figure 2 shows an example of optic disc

center localization.

We constrain the image to a small area in order to minimize

the processing time. The region of interest is constrained to

a square of 200 by 200 pixels concentric with the detected

optic disc center. We have selected an automatic initialization

of seeds (foreground and background) for the graph. A

neighborhood of 20 pixels of radius around the centre of the

optic disc is marked as foreground pixels. While a band of

pixels around the perimeter of the image are considered as

background seeds(see Figure 3).

a) b)

c) d)

Fig. 2. Optic disc detection. a) retinal image, b) blood vessel segmentation,
c) blood vessel segmentation after pruning and d) sequence of points from
the centroid to the vessels convergence.

Fig. 3. a) constrained image, b) foreground F and background B seeds
initialization in the constrained image.

IV. OPTIC DISC SEGMENTATION

The main difficulty in the optic disc segmentation process

is the presence of blood vessels breaking the continuity of

the object. Different types of approximation have attempted

to solve this problem applying morphologic operation as

preprocessing, in order to minimize their interference. Our

approach incorporates the blood vessel information into the

graph construction giving continuity to the optic disc. Prior

vessel segmentation is used to perform the optic disc segmen-

tation.

A. Preprocessing

The original image is constrained to a region of interest

concentrating the analysis in a smaller area and minimizing

the processing time. The constrained image is preprocessed

by applying a histogram equalization in order to enhance its

contrast.

B. Graph Construction

We have considered a grid of 16 pixels neighborhood. The

n-link weights are defined by:



Bp,q = exp

(

−
(Ip − Iq)2

2σ2

)

·
1

dist(p, q)
(2)

where Ip and Iq are the pixel intensities between the pixel

p and its neighbor q. The distance between p and q is

represented by dist(p, q). Using the definition of equation

(2), it is obvious that pixels with similar intensities have

strong connections. If pixels are very different, the connection

between them will be very weak. The pixel links with the

terminals S (foreground) and T (background) are defined

by the likelihood of the pixel with the seeds. Fgseeds and

Bgseeds are represented by the intensity distribution of the

foreground and background seeds respectively. This link is

calculated according to:

if (p 6= V essel)

Slink = −lnPr (Ip|Fgseeds)

Tlink = −lnPr (Ip|Bgseeds)

else

Slink = −lnPr(Ip|Fgseeds) + V ad

Tlink = −lnPr(Ip|Bgseeds)

where

V ad = maxp∈V essel(−lnPr (Ip|Fgseeds)

p 6= V essel implies that the pixel is not part of the vessel

network. For the pixels that belong to the blood vessel network

a compensation factor V ad is added for the foreground link.

The dark intensity characteristic of the blood vessel pixels

makes them more likely to belong to the background than the

foreground. Even when vessels inside of the optic disc are less

dark, the weak connection with their neighbors makes them

more likely to be segmented as background.

By adding a compensation factor V ad to the foreground

t-link we equilibrate this behavior. Vessels inside of the

optic disc will be classified according with their neighbors

connections (Foreground). Vessel pixels outside of the optic

disc will have the same compensation for the foreground t-

link, but because of their strong n-links to their neighbors, and

those with strong t-links to the background, the segmentation

will be successful.

In summary, the blood vessel classification (foreground

or background) is made primarily by their neighborhood

characteristics instead of their own characteristics. Finally the

maxflow-v3.01 implemented by Komolgorov 1 is used in our

implementation to compute the optimal segmentation.

1maxflow-v3.01 is available at
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html.

a) b) c)

d) e) f)

Fig. 4. Optic disc segmentation via graph cut with different foreground t-link
compensation factor V ad for blood vessels: a) V ad = 20, b) V ad = 50, c)
V ad = 100, d) V ad = 150, e) V ad = 200 and f) V ad = 250

Figure 4 shows an example of our method applied to

a retinal image. The image is segmented using different

values of Vad. For a low value of Vad, the segmentation is

affected by the presence of the blood vessels inside or near

by the optic nerve. When Vad is increased, the segmentation

performance improves until it starts to segment the blood

vessels as part of the foreground as well.

V. EXPERIMENTS AND RESULTS

Our proposed method was tested on two public datasets,

DIARETDB1 [20] and DRIVE[21]. DIARETDB1 dataset

consists of 89 images, of which 84 contain at least one sign

of disease, so only 5 are considered as normal. According

to [20], the data correspond to real practical situation, and

images can be used to evaluate the general performance

of diagnosis methods. The DRIVE dataset consists of 40
digital images, which were captured from a Canon CR5

non-mydriatic 3CCD camera at 45◦ field of view (FOV). The

images have a size of 768 × 584 pixeles, eight bit per color

channel.

Our algorithm detected the optic disc successful in 96.7%
on the DIARETDB1 dataset and in 97.5% of the images on

DRIVE. The detection of the optic disc is used to initialize

foreground and background seeds.

We created hand labeled sets for DIARETDB1 and

DRIVE in order to have a ground truth to compare our

results. The optic disc ground truth for the DIARETDB1 and

DRIVE datasets are available for research purposes at 2. The

performance of the methods was evaluated by the overlapping

ratio (Oratio) and the mean absolute distance(MAD). The

overlapping ratio is defined as:

2http://www.brunel.ac.uk/∼cspgags.



Oratio =
G

⋂

S

G
⋃

S

where G represents the manually segmented area and S is the

area as result of the algorithm segmentation. MAD is defined

as:

MAD(Gc, Sc) =
1

2

{

1

n

n
∑

i=1

d(gci, S) +
1

m

m
∑

i=1

d(sci, G)

}

where Gc and Sc are the contour of the segmented area in

the ground truth and the resulting images, and d(ai, B) is the

minimum distance from the position of the pixel ai on the

contour A to the contour B. A good segmentation implies a

high overlapping ratio and a low MAD value.

We calculated as well the sensitivity of the methods when

they perform on DIARETDB1 and DRIVE, which is defined

as:

Sensitivity =
Tp

Tp + Fn

where Tp and Fn are the number of true positives

and the number of false negatives respectively. Sensitivity

is an indicator of the foreground pixels detected by the

segmentation method.

Our results are compared to those provided in [11]. This

method was tested on the same datasets (DIARETDB1

and DRIVE) and results were meassured under the same

parameters. Also we have included the results of the

traditional graph cut technique without compensation and the

ones using the topology cut technique [22]. Topology cut

technique introduces a label attribute for each node to handle

the topology constrains, and uses a distant map to keep track

of the nodes that are closest to the boundary. Unfortunately

most of the methods do not present a trustworthy way to

measure the results of the segmentation, making comparison

of the results difficult.

Figures 5 and 6 present the segmentation results using

different methods on DIARETDB1 and DRIVE datasets. The

manually labeled images have been included to have a visual

reference. It can be seen that our method performs better

over the blood vessel interference. Particularly the traditional

graph cut technique tends to segment the optic disc along the

blood vessels edges. The topology cut technique succeeds in

the brightest area of the optic disc where the blood vessels are

more likely to look like part of the foreground. The topology

cut technique was applied to the color image directly without

any preprocessing. The topology cut is not an automatic

technique, it requires a manual marking of foreground seeds.

Figure 7 shows the segmentation results by our method

on four representative images. The images represent different

challenges due to their illumination, contrast, and focal

characteristics. We have included the overlapping ratio

Fig. 5. Optic disc segmentation using different methods for DIARETDB1
dataset. First row: Topology cuts, second row: Graph cut, third row: Graph
cut with compensation factor V ad for blood vessels and fourth row: hand
labeled

Fig. 6. Optic disc segmentation using different methods for DRIVE dataset.
First row: Topology cuts, second row: Graph cut, third row: Graph cut with
compensation factor V ad for blood vessels and fourth row: hand labeled



(Oratio) and MAD values of the segmentation result. Some

authors [7] consider a minimum Oratio of 0.50 as a successful

segmentation. In this direction the 100% of the images in the

Figure 6 have been segmented correctly.

a) b) c) d)

e) f) g) h)

Fig. 7. Top Row: optic disc segmentation using graph cut with compensation
factor V ad for blood vessels: a) Oratio = 0.9003 MAD = 2.26, b) Oratio
= 0.8320 MAD = 3.94, c) Oratio = 0.7857 MAD = 5.58 and d) Oratio =
0.6393 MAD = 9.80. Bottom row: hand labeled images

Figures 8 and 9 show the distribution of the overlapping

ratio on DIARETDB1 and DRIVE using different

segmentation methods. We have include lines as a reference

at Oratio = 50% and Oratio = 70%. It is obvious that our

method has outperformed the traditional graph cut and the

topology cut techniques. It can be seen that few images were

not segmented by any method due to the poor quality of the

images.

Following the suggestion in [7], which takes a minimum

overlapping ratio of 50% as a sucessful segmentation, we

can see in the figures that the 90.6% of the images on

DIARETDB1 resulted on successful segmentation using our

method, and 86.5% of the images on DRIVE.

Figures 10 and 11 show the cumulative histograms

comparison, for normalized overlapping ratio on DIARETDB1

and DRIVE datasets using different methods. The cumulative

histogram shows the frequency of the Oratio value when

the segmentation is compared with the hand labelled image.

In the case of a perfect matching, Oratio = 1, for all the

images in the dataset the area under the curve would be cero.

Since our method shows the minimum area under the curve,

it is clear that graph cut technique using the compensation

factor Vad outperforms over other techniques. The cumulative

histograms provide a complete summary of the success of

our method.

Table 1 and Table 2 show the comparison with different

methods in terms of Oratio, MAD and Sensitivity. Our

method achieved the highest overlapping ratio with the

minimum MAD value. It can be seen that an increase in

the overlapping ratio does not mean a decrease on MAD

value necessarily. MAD value does not represent the best

Fig. 8. Overlapping Ratio for DIARETDB1. Top: Topology cut. Centre:
Graph cut. Bottom: Graph cut with compensation factor Vad for blood vessels.

way to measure the segmentation results, but it provides a

good reference of the contour matching with the ground truth

contour reference.

TABLE I
PERFORMANCE COMPARISON ON THE DIARETDB1 DATASET.

Average Average Average

Method ORatio % MAD Sensitivity

Topoly Cut 38.43% 17.49 55.30%
Adaptive morphologic [11] 43.65% 8.31 —

Graph Cut 54.03% 10.74 76.35%
Graph Cut with V ad 75.74% 6.38 86.55%



Fig. 9. Overlapping Ratio for DRIVE. Top: Topology cut. Centre: Graph
cut. Bottom: Graph cut with compensation factor Vad for blood vessels.

Fig. 10. Cumulative histogram for normalized overlapping ratio on DI-
ARETDB1 dataset using different methods.

Fig. 11. Cumulative histogram for normalized overlapping ratio on DRIVE
dataset using different methods.

TABLE II
PERFORMANCE COMPARISON ON THE DRIVE DATASET.

Average Average Average

Method ORatio MAD Sensitivity

Topoly Cut 55.91% 10.24 65.12%
Adaptive morphologic [11] 41.47% 5.74 —

Graph Cut 55.32% 9.97 73.98%
Graph Cut with V ad 70.70% 6.68 84.44%

VI. CONCLUSIONS

Optic disc segmentation is an important process in the

analysis of retinal images. An unsupervised method based on

the construction of a graph has been presented in this paper.

The method incorporates the blood vessel segmentation into

the graph construction, giving strength to the algorithm to

avoid the blood vessel interference. Experimental results on

DIARETDB1 and DRIVE datasets have clearly demonstrated

that our method outperform other techniques such as Adaptive

Morphologic [11], Topology Cut [22] and the traditional Graph

Cut [15].
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