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Abstract. Real-time road sign recognition has been of great interest for
many years. This problem is often addressed in a two-stage procedure
involving detection and classification. In this paper a novel approach to
sign representation and classification is proposed. In many previous stud-
ies focus was put on deriving a set of discriminative features from a large
amount of training data using global feature selection techniques e.g.
Principal Component Analysis or AdaBoost. In our method we have cho-
sen a simple yet robust image representation built on top of the Colour
Distance Transform (CDT). Based on this representation, we introduce
a feature selection algorithm which captures a variable-size set of local
image regions ensuring maximum dissimilarity between each individual
sign and all other signs. Experiments have shown that the discrimina-
tive local features extracted from the template sign images enable simple
minimum-distance classification with error rate not exceeding 7%.

1 Introduction

Recognition of traffic signs has been a challenge problem for many years and
is an important task for the intelligent vehicles. Although the first work in this
area can be traced back to the late 1960’s, only in the 1990’s, when the idea
of autonomous intelligent navigation was popularised, significant advances were
made. Nevertheless, there is still an apparent gap between what human and
machine can do, making the attentive driver an irreplaceable guarantor of safety
in the traffic environment.

Road signs have unique properties distinguishing them from the multitude
of other outdoor objects. These properties were benefited from in numerous
attempts to build an efficient detection and recognition system. In the majority of
published work a two-stage sequential approach was adopted, aiming at locating
the regions of interest first, and subsequently passing them to the classifier [1,2,3].
To detect possible sign candidates traditionally colour information is extracted
[1,2], followed by the geometrical edge [1,4] or corner analysis [2]. Alternative
approaches utilise distance transform [5] or neural networks [6]. In several studies
the geometrical tracking aspect was given consideration [1,6,7]. However, reliable
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prediction of the geometrical properties of signs from a moving vehicle is complex
in general as the vehicle’s manoeuvres are enforced by the actual traffic situa-
tion and therefore cannot be apriori known. To overcome this problem in the
absence of on-line external sensor measurements, the above approaches impose
simplified motion model, e.g. assuming constant velocity. In the classification
stage a pixel-based approach is often adopted and the class of the detected sign
is determined by the cross-correlation template matching [1] or neural network
[2]. Feature-based approach is used for instance in [3]. More recently, Bahlmann
et al. [9] adopted the ideas of Viola and Jones [8] to detect traffic signs based
on the colour-sensitive Haar wavelet features and AdaBoost framework. In the
classification stage, assuming Gaussian class distribution and the independence
of consecutive frame observations, Bayes classifier is used to fuse the individual
observations over time. Only 6% error rate is reported using this method. Pacĺık
et al. [10] introduced a different strategy built upon the claim that a candidate
sign can be represented as a set of similarities to the stored prototype images.
For each class similarity assessment is made with respect to a different set of
local regions refined in the training process.

In this work we have developed a two-stage road sign detection and classifi-
cation system. Figure 1 shows an example frame from video input with a road
sign detected and recognised. More specifically, our detector is a form of well-
constrained circle/regular polygon detector introduced in [4], augmented with the
appropriate colour pre-filtering. In the classification stage, motivated by [10], we
introduce a novel feature selection algorithm built on top of the Colour Distance
Transform (CDT) image representation. We show that although our algorithm
generates sign descriptors of variable dimensionality, individual classification
scores can be made directly comparable due to the global selection criterion used.

Fig. 1. Screenshot from our traffic sign recognition
system in action

In consequence the proposed
method seems to be a more
natural way of discrimination
among signs, as not the same
amount of information is nec-
essary to tell different classes
apart. The rest of this paper
is organised as follows: In sec-
tion 2 traffic sign detection and
tracking are briefly described.
Sections 3 and 4 discuss the
main contributions of this work,
discriminative region selection
and sign classification. Section
5 presents experimental results
on the real traffic video se-
quences. Finally, conclusions
are drawn in section 6.
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2 Sign Detection and Tracking

Our road sign detector is triggered every fixed number of frames to capture
new candidates emerging in the scene. It makes use of the apriori knowledge
about the model signs, which are uniquely identified in terms of the general
shape, colour and contained ideogram. Based on the first two properties four
sign categories corresponding to the well-known semantic families are identified:
instruction (blue circular), prohibitive (red circular), cautionary (yellow triangu-
lar), and informative (blue square) signs. As we believe the shape of a sign and
its boundary colour are sufficient visual cues to locate the candidates reliably,
the proposed detector operates on the colour gradient and edge maps of the
original video frames. Furthermore, it uses a generalisation of Hough Transform
introduced in [4], which is motivated by the fact that targeted objects are all
instances of equiangular polygons, including circles that can be though of as such
polygons with the infinite number of sides. Original regular polygon transform is
augmented with the appropriate image preprocessing intended to enhance edges
of specific colour. For each RGB pixel x = [xR, xG, xB ] and s = xR + xG + xB ,
a simple colour enhancement is provided by a set of transformations:

fR(x) = max(0, min((xR − xG)/s, (xR − xB)/s))
fB(x) = max(0, min((xB − xR)/s, (xB − xG)/s))
fY (x) = max(0, min((xR − xB)/s, (xG − xB)/s))

. (1)

First two transforms extract these parts of the image where the red or blue
component respectively dominate the most over both remaining components.
The third formula has similar meaning, but as the pure yellow colour has equal
value in the red and green channels and zero in blue channel, it attempts to
enhance pixels where both former components dominate the most over the latter.

In the resulting images red, blue, and yellow edge maps are extracted by a
simple filter which for a given pixel picks the highest difference among the pairs
of neighbouring pixels that could be used to form a straight line through the
middle pixel being tested. Obtained values are further thresholded and only in
the resulting edge pixels values of directional and magnitude gradient are calcu-
lated. This technique is adequate to our problem as it enables quick extraction of
edges and avoids expensive computation of the whole gradient magnitude map
which, with the exception of the sparse edge pixels, is of no use to the shape
detector. For a given pair of gradient and edge images associated with colour
c, circle and regular polygon detectors yield a number of possible sign shapes.
This number depends on the actually set detector’s sensitivity defined by a fixed,
relatively low threshold value specifying a percentage of the maximum possible
number of votes which would be accumulated in presence of the regular shape of
known radius and ideally sharp gradient along the contour. As each candidate
has known shape (either circle, or equilateral triangle, or square), and border
colour c, detector serves as a pre-classifier reducing the number of possible tem-
plates to analyse to the ones contained in either category. When signs are in the
cluttered background, a number of false candidates may be produced. To address
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this problem, an additional step is taken to verify the presence of sign-interior
colours appropriate for the just found category.

Once a candidate sign is detected, exhaustive search in consecutive frames is
unnecessary. Assuming motion with constant velocity along the optical axis of
the camera, we have employed a Kalman filter [11] to track a sign detected in a
previous frame of an input video. The state of the tracker is defined by (x, y, s),
where x, y are coordinates of the sign’s centre in the image, and s is the scale
factor to the standard sign templates. In the current implementation we use the
mean and variance estimates from the Kalman filter to locate the centroid and
the size of the local search region in the next frame. Therefore, computation has
been significantly reduced compared to exhaustive search over the whole image.

3 Image Representation and Feature Selection

Selecting an optimal feature set for a large number of template images is a non-
trivial task. We have experimented with several techniques such as Principal
Component Analysis and AdaBoost. Aiming at retrieving the global variance
of a whole data set, PCA is not capable of capturing features critical to the
individual templates. AdaBoost on the other hand, although generating efficient
classifiers, is not entirely convincing in terms of the fixed cardinality of the feature
set being extracted. Clearly, certain signs are very distinctive and analysis of
only a few small regions enables distinguishing them even among tens of others.
Meanwhile, there are groups of very similar signs that look tightly clustered, even
in a highly multidimensional feature space. This complex nature of similarity
between templates raises a question whether there is sufficient justification for
classifying signs based on the same set of features.

Motivated by [10], we propose here an algorithm that relaxes the above limi-
tation by extracting for each model sign a limited number of local image regions
in which it looks possibly the most different from all other templates residing in
the same category. The same discriminative regions are further used to compare
a video frame image with the templates and make a reliable on-line classifica-
tion. Below we first outline the process of converting the raw bitmap images
into a more suitable discrete-colour representation. Second, we introduce the
notion of local image region and dissimilarity. Finally, the implementation of the
discriminative region selection algorithm is formalised and discussed.

3.1 Colour Discretisation

Detected sign images come as rectangular regions containing the target object
and, depending on its shape, also background fragments, as depicted in Fig. 2.
In order to prepare the candidate for classification, the image is first scaled to a
common size, typically 60 × 60 pixels. Undesirable background regions are then
masked out using the information about the object’s shape and orientation pro-
vided by the detector [4]. It is important to note that the full colour spectrum
is far more than necessary to identify the object, as the template signs contain
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only up to four distinctive colours per category. Therefore, the candidate images
are finally subject to colour discretisation as follows:

1. For the template sign images, which already contain ideal colours, discreti-
sation merely aims at changing the physical representation from 24-bit RGB
bitmap to 2-bit image with the specific colour indices encoded. A set of
thresholds similar to these used in [12] is applied to the templates in Hue-
Saturation-Value space to complete this task.

2. For on-line colour segmentation category-specific colours are learned from
a set of training images taken from the real video sequences. Expectation
Maximisation algorithm [13] is employed to estimate an optimal Gaussian
Mixture model for each colour. The procedure is restarted several times for
the increasing number of randomly initialised Gaussian components to refine
the estimation. The best model in terms of mean data likelihood is selected.
In order to speed up the on-line segmentation, off-line learned models are
used by a Bayes classifier to assign the appropriate colour to each possible
RGB triple, yielding a look-up table with 2553 entries for each sign category.
Sample results of on-line colour discretisation are illustrated in Fig. 2.

Fig. 2. Sample images obtained by sign detector before (above) and after (below)
background masking and colour discretisation; 2 bits encode colours in each image

3.2 Discriminative Local Regions

The space of regions is obtained from the colour-segmented template sign images.
First, for each discrete colour present in the image a separate distance transform
[14] is computed, producing images similar to these shown in Fig. 3. In DT
computation pixels of given colour are simply treated as feature pixels and all
the remaining ones as non-feature pixels. (3, 4) Chamfer metric [15] is used to
approximate Euclidean distance between the feature pixels. To emphasise the
strong relation to colour, we call this variant of DT a Colour Distance Transform
(CDT). In the next step image is divided into 4 × 4-pixel regions. Within each
region rk local dissimilarity between the images I and J can be calculated using
discrete colour image of I and CDT images of J by averaging pixel-wise distances:

drk
(I, J) =

1
m

m∑

t=1

dCDT (I(pt), J(pt)) , (2)

where for each of m pixels pt contained in the region, distance dCDT (I(pt), J(pt))
is picked from the appropriate CDT image of J , depending on the colour of this
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pixel in I. Let us also denote by d̂S(I, J) and d̂S,W(I, J) a normal and weighted
average local dissimilarities between the images I and J computed over regions
rk ∈ S (weighted by wk ∈ W):

d̂S(I, J) =
1
M

M∑

k=1

drk
(I, J) , (3)

d̂S,W(I, J) =
∑M

k=1 wkdrk
(I, J)

∑M
k=1 wk

. (4)

Obviously, as distance transforms for template signs are pre-computed, on-line
comparison between the corresponding regions of the detected candidate image
and model sign images can run extremely fast.

(a) (b) (c) (d)

Fig. 3. Colour distance transform images: original discrete colour image (a), black CDT
(b), white CDT (c), red CDT (d); darker regions denote shorter distance

3.3 Region Selection Algorithm

Assuming pre-determined category of signs C = {Ti : i = 1, . . . , N} and a
candidate image xj , our goal is to determine the class of xj by maximising
posterior:

p(Ti|xj , θi) =
p(xj |Ti, θi)p(Ti)∑N

i=1 p(xj |Ti, θi)
. (5)

Our objection to using a uniform feature space for classification makes us envis-
age different model parameters θi = (Ii,Wi) for each template Ti. Ii denotes an
indexing variable determining the set Si of regions to be used and Wi is a vector
of relevance corresponding to the regions rk ∈ Si selected by Ii. In order to learn
the best model parameters θ∗i , the following objective function is maximised:

O(θi) =
∑

j �=i

d̂Si(Tj , Ti) . (6)

In other words, the regions best characterising a given sign are obtained through
maximisation of the sum of local dissimilarities between this sign’s template and
all the remaining signs’ templates. In presence of model images only, each term
d̂Si(Tj , Ti) as a function of the number of discriminative regions is necessarily
monotonically decreasing. As a result, there would always be just a single best
region or a few equally good regions maximising (6). In practice, such sign de-
scriptors are unlikely to work well for video frames, typically affected by a severe
noise, where more support in terms of the number of image patches to match
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is required to make a reliable discrimination. Our objective function, as de-
scribed below, is hence only optimised up to the specified breakpoint, yielding a
representation which is richer and thus more trustworthy in a real-data scenario.

1. input: sign category C = {Tj : j = 1, . . . , N}, target template index i,
region pool R = {rk : k = 1, . . . , M}, dissimilarity threshold td

2. output: target set Fi of regions with associated weights
3. initialise an array of region weights W = {wk : wk = 0, k = 1, . . . , M}
4. for each template Tj ∈ C, j �= i do

(a) find region r
(1)
j such that d

r
(1)
j

(Tj , Ti) = maxk drk
(Tj , Ti)

(b) initialise ordered region list Fj = [r(1)
j ] storing the selected regions to

discriminate between templates Ti and Tj

(c) initialise remaining feature pool Pj = R \ {r
(1)
j }

(d) initialise region counter l = 1
(e) while not STOP do

i. increment region counter l = l + 1
ii. for each region rk ∈ Pj construct a region list Sk = Fj + rk and pick

region r
(l)
j maximising d̂Sk

(Tj , Ti)

iii. insert region r
(l)
j at the beginning of the selected region list Fj =

r
(l)
j + Fj

iv. update the remaining region pool Pj = Pj \ {r
(l)
j }

v. STOP if d̂Fj
(Tj , Ti) < tddr

(1)
j

(Tj , Ti)

(f) update found region weights wk = wk + pk for all regions rk ∈ Fj , where
pk denotes rank (position in the list) of the k-th region

5. build target region set Fi = {(rk, wk) : wk > 0}

Similarly to Pacĺık et al. [10], in the model training stage we have adopted ele-
ments of a sequential forward search strategy, a greedy technique from the family
of floating search methods [16]. However, both approaches differ significantly in
the two main aspects. First, we think that learning the signs from the real-life
images is counter-intuitive as the publicly available templates characterise the
respective classes fully. Second, we believe that the possible within-class appear-
ance variability may well be accounted for by a robust distance metric, as the
one introduced in (2-4), instead of being learned. Our implementation then picks
a given template sign and compares it to each of the remaining templates. In
each of such comparisons the algorithm loops until the appropriate number of
local regions are found. It should be noted that at a given step of the loop the
most dissimilar region is fixed and removed from the pool of available regions.
Moreover, at the k-th step the distance between the considered image and the
image being compared to is measured with respect to the joint set comprised
of the new k-th region and all previously found regions. At the end of the loop
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an ordered list of regions is produced, sorted by their decreasing discriminative
power. Each pairwise region set build-up is controlled by a global threshold, td,
specifying the minimum allowed dissimilarity between any pair of templates be-
ing compared as a percentage of the maximum possible dissimilarity, i.e. the one
for just a single most discriminative region. Such a definition of STOP criterion
ensures that the same amount of dissimilarity between any pair of templates is
incorporated in the model. This in turn allows us to treat different sign classes as
directly comparable, irrespective of their actual representation. The final set for
each class is constructed by merging the pair-specific subsets which is reflected
in the region weights carrying the information on how often and with what rank
each particular region was selected.

For each sign the above algorithm yields a set of its most unique regions.
It should be noted that in the final step, depending on the actual dissimilarity
threshold specified, certain number of regions will be found completely unused,
and hence discarded. An example of our feature selector’s output is depicted
in Fig. 4. Obtained discriminative region maps clearly show that different signs
are best distinguishable in different fragments of the contained pictogram. It
can also be seen that although the same value of global parameter td was used,
different numbers of meaningful regions remained.

Fig. 4. Sample triangular template images (above), and discriminative regions obtained
for parameter td = 0.7 (below); brighter regions correspond to higher dissimilarity

4 Temporal Classifier Design

A road sign classifier distinguishes between the sign classes contained in a cate-
gory pre-determined in the detection stage, based on the discriminative feature
representation unique for each particular sign. For simplicity two assumptions
are made: 1) the dissimilarity between each sign and all other same-category
signs is Gaussian-distributed in each local region and independent of the dissim-
ilarities in all other regions characterising this sign, and 2) class priors P (Ti) are
equal. In such a case Maximum Likelihood theory allows us to relate the max-
imisation of likelihood p(xj |Ti, θi) to the minimisation of distance ̂dSi,Wi(xj , Ti)
over i. Therefore, for a known category C = {Ti : i = 1, . . . , N}, and observed
candidate xt at time t, the winning class L(xt) is determined from (5):

L(xt) = argmax
i

p(xt|Ti, θi) = argmin
i

̂dSi,Wi(xt, Ti) , (7)



Traffic Sign Recognition Using Discriminative Local Features 363

where the elements of the region set Si and the corresponding weights in Wi

denote the ones learned in the training stage for template Ti.
When a series of observations from a video sequence is available, it is reason-

able to integrate the classification results through the whole sequence over time,
instead of performing individual classifications. Hence, at a given time point t our
temporal integration scheme attempts to incorporate all the observations made
since the sign was for the first time detected until t. Denoting observation rele-
vance by q(t) and assuming independence of the observations from consecutive
frames, the classifier’s decision is determined by:

L(Xt) = arg min
i

t∑

k=1

q(t) ̂dSi,Wi(xk, Ti) . (8)

We have observed that the signs detected in the early frames are inaccurate
and contain blended pictograms due to the low resolution. Also as colours tend to
be paler when seen from the distance, previously discussed colour discretisation
exposes severe limitations, unless performed for later frames depicting candidate
sign already grown in size. To address this problem, we adopt the exponential
observation weighting scheme from [9] in which relevance q(t) of observation xt

depends on the candidate’s age (and thus size):

q(t) = bt0−t , (9)

where b ∈ (0, 1] and t0 is the time point when the sign is for the last time seen.

5 Experiments

To evaluate our traffic sign recognition system, experiments were performed on
the real data collected on Polish roads. Sample video sequences were acquired
from a moving car with a DV camcorder mounted firmly in front of the wind-
screen, and subsequently divided into short clips for off-line testing. Video con-
tent depicts the total of 144 signs and includes urban, countryside, and motorway
scenes in natural lightning during daytime, with numerous signs appearing in
shade and in cluttered background. Table 1 illustrates obtained results.

As seen in Tab. 1, obtained real-time classification error rate does not exceed
7%, making our method comparable to the recently published ones [9,10]. How-
ever, it should be noted that our template database contains significantly more
signs than in any of the previous studies. Direct comparison with the respective
algorithms is not possible as neither the test data nor the details of its acqui-
sition are made available. Repetitions of the experiment for different values of
dissimilarity threshold confirmed our expectations. For each category of signs
different thresholding provides the best results, which depends not only on the
category size, but primarily on the diversity of ideograms in the contained signs.
The following observation is vital at this point. The optimal threshold for each
category must strike a balance between the two: maximising template signs’ sep-
arability and the reliability of the obtained dissimilarity information in the real
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Table 1. Recognition performance for different values of dissimilarity threshold td and
temporal weight base b = 0.8; number of classes in each category: red circles (RC),
blue circles (BC), yellow triangles (YT), and blue squares (BS) is given in parentheses
and the best classification rate is highlighted

td RC (55) BC (25) YT (42) BS (13) overall (135)
detected – 86.4% 100.0% 96.3% 94.4% 95.8%

0.9 100.0% 90.6% 73.6% 91.2% 85.5%
recognised 0.7 100.0% 100.0% 88.7% 70.6% 87.7%

0.5 89.5% 96.9% 79.2% 58.3% 80.4%
best 100.0% 100.0% 88.7% 91.2% 93.5%

data context. Very high threshold values lead to separation of a very few good
regions for a particular model sign, however such sparse information may not be
sufficiently stable to classify correctly a possibly distorted, blurred, or occluded
object in a video frame. Very low threshold values on the other hand introduce
information redundancy by allowing image regions that contribute little to the
uniqueness of a given sign. In a resulting feature space signs are simply more
similar to one another and hence more difficult to tell apart.

In terms of the detection, most of failures were caused by the insufficient con-
trast between a sign’s boundary and the background, especially for pale-coloured
and shady signs. In a few cases this low contrast was caused by the poor quality
of the physical target objects rather than their temporarily confusing appearance.
Single detection errors emerged when two signs were mounted closely on one pole.
In this particular situation candidate objects may be confused with each other, as
the local search region of one candidate always contains at least part of its neigh-
bour. Detection proved to be the computationally most expensive part of the sys-
tem, however processing speed of the entire algorithm including classification is
10-20 fps on a standard PC, depending on the actual difficulty of the scene.

After closer investigation we observed that approximately one in three classi-
fication errors resulted from confusion between the nearly identical classes, e.g.
pedestrian crossing and bicycle crossing. Differences between such signs were
found difficult to capture, resulting sometimes in the correct template receiving
the second best score. Colour segmentation appeared to be resilient to variations
of illumination, leading directly to failure in only a few cases when the signs were
located in a very shady area or were themselves of poor quality. This can be a
proof of usefulness of Gaussian Mixture colour modelling. Remaining failures
can be attributed to the limitations of the detector. Although distance trans-
form, utilised in dissimilarity computation, and observation weighting neutralise
inaccurate detection effects to a large extent, they are of little help in presence of
certain phenomena consistent in their nature. Two examples of such situations
are remarkable:

1. Some signs’ ideograms consist of edges that may actually be easier to detect
than the boundary. This may cause detected shape to appear clipped.
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2. Signs very close to the camera being distorted in perspective projection
usually receive sufficient score in the detector’s accumulator space. These
signs are yet still detected as regular shapes, resulting in the inaccurate
shape estimation.

As indicated in the previous section, in the early video frames, due to the
low resolution, delimitation of sign’s contour and subsequent colour discretisa-
tion are usually less accurate. Frequently the correct decision can be developed
by the classifier from just the last several frames where the sign’s shape is the
most stably detected and its content the most clearly visible. This fact has se-
vere implications on the candidate classification, which is a good justification
for our exponential observation weighting used to promote the most recent mea-
surements. Apparently, the classification accuracy with weighting enabled is by
10-20% higher, depending on the weight base b used.

6 Conclusions

In this paper we have introduced a novel image representation and discrimina-
tive feature selection method for road sign recognition where a large number
of classes are involved. The proposed algorithms have been tested on the real
video sequences, yielding a low classification error rate. It was shown that on
top of a Colour Distance Transform (CDT) representation highly discriminative
sign descriptors can be extracted based on the principle of dissimilarity max-
imisation. With these descriptors available, a conventional classifier is able to
compete with the state-of-the-art sign recognition systems, operating in close to
real time. In comparison to the previous studies, our method seems attractive
in three aspects. First, feature selection is performed directly on the publicly
available template sign images. Second, each template is treated on an individ-
ual basis which is reflected in the number, position, and importance of the local
image regions extracted in order to achieve a desired level of dissimilarity from
the remaining templates. Finally, by using a Colour Distance Transform (CDT)
we have shown that the proposed dissimilarity-based description of signs can
well be extended from model images to the real video frames as the resulting
distance measure is made smoother and thus more resistant to various types of
noise typically affecting the video content.
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3. Pacĺık, P., Novovicova, J., Pudil, P., Somol, P.: Road Sign Classification using the
Laplace Kernel Classifer. Pattern Recognition Letters 21(13-14), 1165–1173 (2000)



366 A. Ruta, Y. Li, and X. Liu

4. Loy, G., Barnes, N., Shaw, D., Robles-Kelly, A.: Regular Polygon Detection. In
Proc. of the 10th IEEE Int. Conf. on Computer Vision 1, 778–785 (2005)

5. Gavrila, D.: Multi-feature Hierarchical Template Matching Using Distance Trans-
forms. In: Proc. of the IEEE Int. Conf. on Pattern Recognition, Brisbane, Australia,
pp. 439–444. IEEE, Los Alamitos (1998)

6. Fang, C.-Y., Chen, S.-W., Fuh, C.-S.: Road-Sign Detection and Tracking. IEEE
Trans. on Vehicular Technology 52(5), 1329–1341 (2003)

7. Miura, J., Kanda, T., Shirai, Y.: An active vision system for real-time traffic sign
recognition. In: Proc. of the IEEE Conf. on Intelligent Transportation Systems,
Darborn, MI, USA, pp. 52–57. IEEE, Los Alamitos (2000)

8. Viola, P., Jones, M.: Robust Real-time Object Detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

9. Bahlmann, C., Zhu, Y., Ramesh, V., Pellkofer, M., Koehler, T.: A System for
Traffic Sign Detection, Tracking and Recognition Using Color, Shape, and Motion
Information. In: Proc. of the IEEE Intelligent Vehicles Symposium, pp. 255–260
(2005)
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