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Abstract—This paper presents a novel approach to automatic 

shadow identification and removal from video input. Based on 

the observation that the length and position of a shadow 

changes linearly over a relatively long period in outdoor 

environments, due to the relative movement of the sun, we can 

distinguish a shadow from other dark regions in an input video. 

Subsequently, we can identify the Reference Shadow as that 

with the highest confidence of the aforementioned linear 

changes. This Reference Shadow is used to fit the shadow-free 

invariant model, with which the shadow-free invariant images 

can be computed for all frames in the input video. Our method 

does not require camera calibration and shadows from 

stationary objects, as moving objects are detected 

automatically. 

 
Index Terms—Invariant image, reference shadow, video 

surveillance, shadow-less image, shadow detection. 

 

I. INTRODUCTION 

Identifying shadows in images and videos is a significant 

issue in Image Processing, with potentials in numerous 

application; for example, object recognition, tracking, and 

video surveillance. To detect and track an object correctly, 

such as a car or a pedestrian, one frequently needs to 

identify the shadows in images and videos. When an object 

enters a shadow region, tracking may fail or its performance 

may be adversely affected. Moreover, shadows of moving 

objects can be identified mistakenly as separate items or a 

component of the same object. This paper introduces a new 

method that can be used to detect and remove shadows in 

videos. This method is developed to address a specific 

problem: shadow detection from stationary cameras in the 

outdoor environment. 

Our method is inspired simply by the observation that the 

position and size of the shadow cast by a stationary object 

changes approximately linearly, consequent to the relative 

movement between the sun and the object. A dark region in 

an image can be either a shadow or a dark object. However, 

if we record the positions of several dark regions from 

consecutive frames of a video input over a long period, 

some shadows, though not all, can be identified relatively 

easily. This is because the positions of these shadows 

change linearly, while those of the dark object do not.  It 

should be noted that our method requires the detection of 

only one shadow with the highest confidence. Once this is 

achieved, we can use it as a Reference Shadow to estimate 

the parameters necessary to generate a grey-scale invariant 

image [1].  

The other advantage of our method is camera calibration 
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is not required; moreover, shadows from moving and 

stationary objects will be detected upon identification of the 

Reference Shadow. 

The remainder of the paper is organised as follows. 

Section II provides the background to this topic while 

Section III explains the Reference Shadow and how it can 

be identified. Section IV presents a new method of detecting 

the remaining shadows in the scenes once the Reference 

Shadow is identified. Section V outlines our experiments 

and Section VI provides a summary of this paper. 

 

II. BACKGROUND 

Significant development has been made in the area of 

shadow detection and removal. In one of Barrow and 

Tenenbaum’s early works [2], the concept of intrinsic 

images was introduced. Intrinsic images are a mid-level 

transform of the observed images. They are 

viewpoint-dependent and the physical causes of changes in 

illumination at different points are not made explicit. 

Barrow and Tenenbaum explained that this mid-level 

transform can be very useful for supporting a range of visual 

inferences. Multiple frames have been used to compute the 

intrinsic images [3]. They approached the subject of shadow 

detection is by formulating this problem as a 

maximum-likelihood (ML) estimation problem based on the 

assumption that derivative-like filter outputs applied to 

illumination have a tendency to be sparse. They derived the 

ML estimator under this assumption and demonstrated its 

suitability for recovering reflectance. Furthermore, they 

assumed that filter outputs are independent across space and 

time. In this method, Weiss used 35 images from morning 

until evening, with which our results are compared. Our 

method has the advantage of identifying shadows in a 

similar noisy environment in approximately 10 minutes. [4] 

and [5] used multiple frames, but it is not clear how these 

methods will perform when the scene contains other 

changes, such as multiple object movement. Moreover, this 

method can be useful in a controlled environment, but the 

impact of input noise is unknown. There are other methods 

that detect  shadows based on the previous  positions and 

the use of the sun [6], or concerning calibration methods 

using the sun, and the sky [7] or the shadows position [8]. 

These methods require significant training data and need 

additional information pertaining to the scene such as GPS 

location of the camera, date and time of the day. However, 

none of this information is required in our method. 

In recent years, other methods have been developed to 

remove the effect of illumination from a single image 

[9]-[12]. These methods are based primarily on 

distinguishing between the texture of the objects and 

shadows. Bell and Freeman [9] took a learning base 

approach and generated a training set of images containing 
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shading and reflectance variations. In [10], initially, a part 

labelling that densely covers the object is defined. Next, the 

Layout Consistent Random Field (LayoutCRF) model 

imposes asymmetric local spatial constraints on labels to 

ensure the consistent layout of parts. Tappen, Freeman and 

Adelson [11] have used multiple cues to recover shading 

and reluctance intrinsic images from a single image. They 

used both colour information and a classifier which is 

trained to recognise greyscale patterns in images; each 

image is then classified as being caused by shading or a 

change in the reluctance. 

 

 

 
Fig. 1. (a) The shadow of a stick moves from A to B and then C during the 
day, when the sun goes from A to B and then C. (b) Length of reference 

shadow from sunrise until sunset. The pattern is linear during most of the 

day; apart from sunrise and sunset. 
 

Additionally, semi-supervised learning based methods 

have been developed to detect shadows. These methods 

require at least one shadow to be labelled by a user before 

identifying the remaining shadows [13]-[15]. The Neural 

Network is another popular method for detecting shadows, 

typically requiring a large number of labelled training 

images [16]-[18]. Faghih and Moghaddam [19] used image 

statistics to model the accuracy of Grey-Edge assumption in 

order to compensate for the Grey-Edge algorithm error. 

They used Weibull distribution to describe image statistics 

based on image derivatives. Cavallaro, Salvador and 

Ebrahimi [20] have tried to detect shadows from a sequence 

of images by processing three sources of information; 

namely, colour, spatial, and temporal information for the 

scene. Foreground objects were first segmented from the 

background, before successfully detecting shadows from the 

foreground objects. The performance of the aforementioned 

methods varies when dealing with changing lighting 

conditions. Typically, these methods require additional 

manual parameter adjustments in order to adapt it to 

different environments. To solve this issue, various studies 

use Gaussian to model shadows dynamically; However, 

good results are achieved only when the scene meets a series 

of assumptions [21]-[23]. Another important study on this 

topic is published by Finlayson et al. [1], who introduced 

the concept of greyscale invariant image and presented a 

computational model to estimate the invariant image. Same 

authors published another study and created invariant image 

by Entropy Minimization [24]. Our research is inspired by 

the work of Finlayson et al., but we used Reference 

Shadows instead of camera calibration to automatically 

create invariant images. 

 

III. REFERENCE SHADOWS 

This paper proposes a new method of detecting daytime 

outdoor shadows. Due to the relative movement between the 

sun and an object, the position and length of the shadow cast 

by the object changes throughout the day. Here, we 

investigate how this information can be used in real-life 

scenarios to assist in detecting shadows. 

As illustrated in Fig. 1, the length of a shadow L can be 

computed as 

L = h/tan(α)                 (1) 

where h is height of the object casting the shadow and α is 

the angle between sun and the horizon. The value of L for α 

between 0 to 180 degrees is presented in Fig. 2. This 

demonstrates that when the sun rises and moves from east to 

west, the length of the shadow moves in a pattern that is 

very close to a line apart. The exception occurs in early 

morning and just after sunrise and before the sunset when a 

non-linear pattern is observed. We analyse and process the 

position of the centre of the shadow instead of its length. In 

a short period, the changes to the position of the centre of 

the shadow will have a similar pattern to the length.  

Our experiments confirmed monitoring the centre of the 

shadow will be sufficient to distinguish Reference Shadow 

from other dark objects. Additionally, the impact of other 

factors, such as object shape and camera view, will be 

minimal in short sampling periods, and will not alter the 

trajectory of the centre (or corner) of the shadow. Based on 

our experiments, using the corner of shadows will improve 

the performance of shadow detection system when the 

shadows are located at image boundaries. The Reference 

Shadow is the key element in detecting the shadows in the 

image and it is determined as: a dark part of the image 

which can be categorised as shadow with the highest 

confidence. Once we have identified at least one Reference 

Shadow, the remaining shadows (from stationary and 

moving objects) can be detected, as described in the next 

section. 

 

 
(a)Frame number 1.            (b) Frame number 3000. 

Fig. 2. The centre of the shadow (marked in yellow) has changed in 3000 

frames. 

 

A. Pre-processing 

As explained above, the height of the sun varies during 

the day; hence, the length and position of the shadows 
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change. This can be used as an excellent cue for detecting 

some of the shadows. To do this, we must monitor some 

aspects (such as centre or corner) of dark objects over a 

period of time. In most real-time scenarios, the result will be 

very noisy because objects move over the shadows and there 

might be some minor camera movement etc. Nevertheless, 

the patterns of shadows and dark regions will differ entirely 

over time. To explain this in more detail, we will use the 

example given in Fig. 3 which is based on 3000 frames 

taken from a 20-minutes surveillance camera video. The 

camera is directed at a busy road junction in Morocco. 

In the above example, the following steps have been 

taken to detect a Reference Shadow: 

1) The RGB image is converted to binary image. 

2) The binary image is filtered using an averaging filter. 

3) The position of the centre of the black regions is 

recorded across all frames following the registration 
process. 

 

 
Fig. 3. Pre-processing of RGB image. 

 

This process is illustrated in Fig. 3. 

B. Registration Process 

Now that Fig. 4 (c) is produced, we introduced a 

registration process to track and analyse the position of the 

centre of dark regions across all available frames. This also 

ensures the categorisation of dark regions have been 

completed with minimum error. To achieve this, we register 

dark regions in each frame only if both of the following two 

conditions are met: 

1) The position of the centre of the dark region in the new 

frame should be very close to that in the previous 
registered frame. 

2) The size (number of pixels) of the dark region in the 

new frame should be very close to that in the previous 
registered frame. 

If any of the above conditions is not met, we discard the 

dark region and do not register the coordination of the centre. 

Instead, we select 0 for the value of x and y of the frame’s 

dark region. 

In addition, we have used a counter to determine the 

confidence in our readings. When there is a new reading, the 

counter will be increased by one; hence, at each point in 

time, we know the confidence in each dark region by 

comparing the value of the counter of each dark region. 

C. Selection Process 

 

 
Fig. 4. Four consequence frames. All the dark regions (dark objects and 

shadows) are highlighted in white. The registered dark regions are 
displayed in green and the unregistered dark region is displayed in red. The 

reason the dark region in frame (c) is not registered is because another 

object (possibly a car) has gone over the dark region and hence the size of 
this dark region has changed significantly from previously registered frame. 

When all the frames have completed the pre-processing 

and registration process, we recorded the positions of the 

centre all of the registered dark regions and stored this data 

in a matrix. The results are displayed in Fig. 4. 

In Fig. 5(a) and Fig. 5(b), the x values of the centre of two 

dark regions are displayed. Region A is one shadow (or part 

of the shadow) of a stationary object; possibly a road sign, 

and region B is the dark car which is parked and not moving 

during the 20-minute recording. These two regions are 

marked in Fig. 5(a). The gaps in the readings are due to the 

frames dropped during registrations process, as explained 

previously. 

As illustrated in Fig. 5, the centre of the shadow region 

changes gradually while the centre of the dark object 

remains the same. 

So, the key question to answer when detecting shadows is 

how we can distinguish between dark objects and shadows; 

the answer is given in Fig. 5 (a) and Fig. 5 (b). If we record 

the dark regions for a relatively long period and then check 

the trajectory of the centre (or corners) of dark objects, the 

shadow and non-shadow regions will reveal different 

patterns. 

This is precisely what we observed in the experiment 

from the surveillance video in Morocco. As illustrated in Fig. 

5(a), the centre of the shadow region changes linearly during 

the 20-minute observation at midday; thereby matching the 

pattern presented in Fig. 2. To implement this, we fit a line 

using the registered centres before checking its angle. If the 

angle of the line is horizontal, the centre has not changed 

over the time and the dark region is not a shadow. If the 

angle of the line is not 0, we have successfully identified a 

Reference Shadow. 
 

 
(a) 

 
(b) 

Fig. 5. (a) x value of the centre of shadow over the 3000 frames and (b) x 

value of the centre of dark over the 3000 frames. 
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IV. DETECTING THE REMAINING SHADOWS 

Now that we have identified one Reference Shadow with 

high confidence, it is possible to detect the remaining 

shadows in the image. Our solution is based on identifying a 

grey-scale invariant image [1], which is defined as: 

 gs = c1R
’
(R) − c2R

’
(B)              (2) 

where in RGB space, R
’
(R) = log(R/G) and R

’
(B) = 

Log(B/G). c1 and c2 are constants such that the vector [c1 c2] 

is in the direction is orthogonal to the lighting direction. 

Experiments have confirmed images with different levels 

of illumination will map to the same grey-scale invariant 

image. The most important benefit of this image is shadows 

(which occur when there is a change in luminance) will 

disappear. Now, if we divide (2) by c1, we get the following: 

 gs= R
’
(R) – CR

’
B)                (3) 

where C = c2/c1 Others, such as Finlayson [1], have used 

manual camera calibration to identify c1 and c2 but we use 

the Reference Shadow to automatically create a grey-scale 

invariant image by estimating the value of C. To create the 

invariant image without camera calibration, we generate a 

large number of gs
0 

with different values of C in [0, 1]. At 

some point, [c1, c2] becomes orthogonal to lighting direction 

and shadow edges will disappear. The following steps are 

taken to automatically detect the shadow edges: 

 

Algorithm 1 Generating grey-scale invariant image 

 

1: Select C ∈ [0 , 1] to generate gs0 samples. 

2: For all gs0 do 

3: Create Edge Map. (we used Sobel method). 
4: Take multiple block samples from inside and outside of Reference 

Shadows boundary. 

5: Find the gs sample with the least difference between inside and 
outside the edge. 

6: End For 

7: The gs sample identified in step 5 is grey-scale invariant image and 
the corresponding parameter C is set. 

 

 

The following example which is illustrated in Fig. 6 is 

from a video taken from a stationary camera. We have used 

one frame per 2.5 seconds and a total of 3000 frames were 

used to detect the Reference Shadow. In this case, we 

correctly detected the shadow located at the centre of the 

image as the Reference Shadow and used it to generate the 

grey-scale invariant image. 

 

 
Fig. 6. After processing 3000 frames, the shadow at the centre of the image 

is identified as a Reference Shadow. (a) Comparing the values of a pixel 
block across the edge of Reference Shadow. (b) One of the gs samples 

where the Reference Shadow is not removed. In this image C=0.71 (c) One 

of the gs samples with the least difference between inside and outside 
Reference Shadow. In this sample, C=0.42. 

 

V. EXPERIMENT 

The experiments outlined in Fig. 7 are based on videos 

taken from a stationary camera. They reveal how the 

position of the centre of the Reference Shadow changes as 

time passes. The goal of these experiments is to demonstrate 

the possibility of detecting at least one Reference Shadow in 

most real-life scenarios. Once the Reference Shadow is 

detected, the grey-scale invariant image can be computed for 

the whole video. We have compared our method with the 

work of Weiss [2], Matsushita [4] and other state-of-art 

methods on the removal of shadows from videos. The 

reason we selected Wiess and Matsushita’s methods for 

comparison is both methods were designed for outdoor 

shadow removal from video and require multiple samples 

for model learning. Overall, our method is very robust in 

many complicated cases such as noisy environment with 

moving objects. 

 

 

 
Fig. 7. Detecting Reference Shadows in various environments. The first 
two columns are frames that display the position of Reference Shadow, 

while the last is the grey-scale Invariant Image. 

 

VI. COMPARISON WITH OTHER METHODS 

We have compared our method with the work of Weiss 

[3], Matsushita [5] and other state-of-the-art methods of 

shadow removal from videos. The reason we selected Wiess 

and Matsushita’s methods for comparison is both methods 

were designed for outdoor shadow removal from video, and 

require multiple samples for model learning.  

 

 
 

Fig. 8. (a) is an original imput image. (b) is shadow-less image based on 

Weiss and (c) is based on Reference Shadow. The frame samples used in [3] 

are from morning until sunset. However, video footage for around 15 

minutes will be sufficient to detect Reference Shadow using our method. 
The final grey-scale results are very similar; however, the advantage of our 

method is it will detect shadows a lot faster.  
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Overall, in outdoor scenarios, our method is very robust 

in many complicated cases such as noisy environment with 

moving objects as well as presence of moving clouds. 

However, what makes our method stand out is its simplicity 

and the time required to successfully detect a Reference 

Shadow. The majority of other video-based methods require 

hours of training data or manual intervention (such as 

camera calibration). Nonetheless, we managed to detect 

shadows in as little as 10 minutes in extremely complex 

noisy environments containing numerous moving objects. 

Table I highlights the advantages of our method over 

some of the existing methods in the outdoor domain. To 

demonstrate how our system performs, we applied our 

method to the image set established by Weiss [3] and 

Matsushita [5]. In terms of quality of the shadow-less 

images, there is no noticeable difference. Moreover, both 

methods yield very similar results, as presented in Fig. 8 and 

Fig. 9. 

 
TABLE I: OUTDOOR SHADOW DETECTION METHODS 

Method Indoor/Outdoor Background/Foreground Initialisation Requires GPS 

 Shadows Shadows Period Location 

Reference Shadow Outdoor Both Minutes No 

Weiss Both Both 35 frames in one day No 

Matsushita Outdoor Both Hours No 

Finlayson Outdoor Both Requires camera calibration No 

Cavallaro Both Only Foreground Requires background subtraction No 

Huerta Both Only Foreground Single Image No 

Antone Outdoor Both Hours Yes 

El-Zahhar Outdoor Both Semi-supervised No 

Boroujeni Both Both Hours No 

 

However, a significant difference exists between the two 

methods in terms of the time required to produce the 

invariant image. For example, Weiss used 35 frames from 

sunrise to sunset, but in our experience, footage of 

approximately 10 minutes will be sufficient to detect 

shadows. The same results were observed when comparing 

our method with Matsushita’s method [5]. Hence, our 

method is a very strong solution for real-time application, 

as it can detect shadows in a few minutes. 

 

 
Fig. 9. (a) is an original image Matsushita [5]. (b) is shadow-less image 

based on Matsushita and (c) is based on Reference Shadow. They used 
multiple in [5] are from different time of the day. However, a short video 

footage from similar scenario was used to detect Reference Shadow using 

our method. the advantage of our method is it detect shadows significantly 
quicker and can be used when there are moving objects. Matsushita’s 

method produces colour shadow-less image, but assumes there are no 

moving objects in the scene. 
 

VI. CONCLUSION AND FURTHER WORK 

This paper has introduced a new method to automatically 

remove shadows in videos taken from stationary cameras in 

an outdoor environment. Based on the observation that, the 

length and position of a shadow changes linearly over a 

relatively long period of time in a outdoor environment, 

due to the relative movement of the sun, we can distinguish 

a shadow from other dark regions in an input video. 

Subsequently, we can identify the Reference Shadow as 

having the highest confidence of the aforementioned linear 

changes. This Reference Shadow is used to fit the 

Finlayson shadow-free invariant model [1], with which the 

shadow-free invariant images can be computed for all 

frames in the input video. 

The main contributions of the work can be summarised 

as follows: 

1) We have developed a novel method of identifying the 

Reference Shadow. Without any prior knowledge, a 

shadow would appear the same as other dark regions in 

an image; for example, an object with dark colours. 

However, if we observe the changing patterns of the 

position and length of a dark region, those for a shadow 

changes linearly while those for a dark object remain 

the same. Thus, the shadows can be distinguished from 

the dark objects. With simple confidence measured 

against this linearity and consistency of changes, we 

can select one or a few Reference Shadows with the 

highest confidence. Experimental results have 

demonstrated this process of Reference Shadow 

identification is fairly accurate and reliable. 

2) With the Reference Shadows, we can effectively fit the 

Finlayson shadow-free invariant model [1], by simply 

computing the accumulated profiles across the shadow 

boundaries. Previously, this model fitting normally 

involved troublesome camera calibration, but with our 

new method, the process becomes straightforward and 

automatic. 
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