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ABSTRACT

In this paper we address the problem of traffic sign recognition. Novel image representation and discrimi-
native feature selection algorithms are utilised in a traditional three-stage framework involving detection,
tracking and recognition. The detector captures instances of equiangular polygons in the scene which is
first appropriately filtered to extract the relevant colour information and establish the regions of interest.
The tracker predicts the position and the scale of the detected sign candidate over time to reduce compu-
tation. The classifier compares a discrete-colour image of the observed sign with the model images with
respect to the class-specific sets of discriminative local regions. They are learned off-line from the idealised
template sign images, in accordance with the principle of one-vs-all dissimilarity maximisation. This dis-
similarity is defined based on the so-called Colour Distance Transform which enables robust discrete-colour
image comparisons. It is shown that compared to the well-established feature selection techniques, such
as Principal Component Analysis or AdaBoost, our approach offers a more adequate description of signs
and involves effortless training. Upon this description we have managed to build an efficient road sign
recognition system which, based on a conventional nearest neighbour classifier and a simple temporal in-
tegration scheme, demonstrates a competitive performance in the experiments involving real traffic video.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recognition of traffic signs has been a challenging problem for
many years and is an important task for the intelligent vehicles. Al-
though the first work in this area can be traced back to the late
1960s, significant advances were made later, in the 1980s and 1990s,
when the idea of computer vision-based driver assistance attracted
worldwide attention and the video processing became more attain-
able. Originating from the large-scale projects developed in the USA,
Europe and Japan, intensive research on traffic sign recognition is
nowadays conducted by both academic and industrial groups all over
the world, the latter often being in strong relation to the car industry.
Despite all this effort being made and the driver’s comfort and safety
being at stake, surprisingly few working recognition systems of this
kind are at present in operation. It indicates that the human driver
still remains the best guarantor of safety in the traffic environment.

Road signs have unique properties distinguishing them from the
multitude of other outdoor objects. These properties were exploited
in numerous approaches to the detection and recognition of signs. In
a majority of published work a two-stage sequential approach was
adopted, aiming at locating the regions of interest and verifying the
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hypotheses on the sign’s presence (detection), and subsequently de-
termining the type of the detected sign (recognition) [7,9,13,25]. To
detect possible sign candidates, traditionally colour information was
primarily used [7,9,25], followed by the geometrical edge analysis
[7,23,25,26] or corner analysis [9]. Based on the idealised templates
of road signs, Fang et al. [17] built two separate neural networks to
extract relevant colour and shape features of signs which were fur-
ther integrated in a fuzzy way. This approach was reported to be
accurate but computationally very intensive.

Some authors preferred a strictly colourless approach as they
did not consider the colour segmentation absolutely reliable due to
its sensitivity to various factors, such as distance from the target,
weather conditions, time of day, or reflectance of the signs’ sur-
faces. These approaches for example utilised genetic algorithms [8]
or distance transforms (DTs) [10]. In [14], where the colour infor-
mation was also not considered, the images were transformed using
wavelets and classified by a Perceptron neural network. Not exploit-
ing the colour information does not preclude successful discrimina-
tion between certain types of signs. However, in presence of similar
pictograms from different semantic categories, and when there are a
large number of classes in the database, colour carries priceless dis-
criminative information that in our opinion should be used when-
ever possible. Ultimately, in certain countries, e.g. Japan, there are
pairs of different signs in the highway code that, when converted to
grey scale, look exactly the same. To tell them apart, colour infor-
mation is absolutely necessary.
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Among the studies in which the colour information was used to
detect the traffic signs, majority based on the non-RGB colour spaces.
Hue-Saturation-Value (HSV) colour model was the most popular one
as being based on human colour perception. Additionally, it is con-
sidered largely invariant to illumination changes. Piccioli et al. [7]
determined the regions of interest by clustering small blocks of the
image where the number of pixels having value of hue in an appro-
priate range exceeded a predefined threshold. HSV model was also
used in [13] to classify the test sign images into several distinctive
categories and in [17] to extract colour features by a neural network.
Other colour appearance models were less popular. For instance,
Escalera et al. [9] preferred to operate on the ratios between the
intensity of a given channel and the sum of all RGB channel in-
tensities. They pointed out that the RGB-HSV conversion formulas
are non-linear and hence the computational cost involved is too
high. However, this problem can be easily avoided by pre-computing
the colour space conversion and storing it in a look-up table.

The CIECAM97 colour model was chosen by Gao et al. [25]
for image segmentation. The authors found it suitable to estimate
the appearance of sign-characteristic colours independently from
real-life images taken under different viewing conditions. An inter-
esting and robust approach to colour-based detection and segmen-
tation of road signs using IHLS colour space was also proposed in
[20]. In both above studies the device-independent colour appear-
ance models were adopted, which is a reasonable choice compared
to the standard device-dependent RGB model. Bahlmann et al. [24]
used a completely different strategy. They trained the scale-specific
road sign detectors using Haar wavelet features [21] parametrised
by colour. The best features were selected within a cascaded Ad-
aBoost framework from a large space of features defined over mul-
tiple colour representations: plain R, G, and B channels, normalised
R, G, and B channels, and a grey-scale channel. Therefore, the most
suitable colour representation was inferred automatically from the
data rather than arbitrarily chosen by a human. The main disad-
vantage of this method is its demand for large amounts of training
images and generally strenuous training. Besides, for a 384 x 288
video resolution only 10 fps processing speed was achieved. Finally,
we think that the exceptional discriminative power of the detector
presented by Bahlmann and his colleagues was only possible to
achieve because a very narrow category of signs exhibiting similar
appearance characteristics was considered in their work.

In several studies the problem of tracking of the existing sign
candidates was given consideration [7,15,17,26]. However, reliable
prediction of the geometrical properties of signs from a moving ve-
hicle is complex in general as the vehicle’s manoeuvres are enforced
by the actual traffic situation and therefore cannot be a priori known.
To overcome this problem, the above approaches imposed simplified
motion model, e.g. assuming constant velocity. The work of Miura
et al. [15] deserves a particular attention as the authors proposed a
two-camera active vision system for capturing and tracking the road
sign candidates. It was composed of a wide-angle camera that de-
tected the candidates within the entire scene, and a telephoto cam-
era which was directed to the predicted position of each candidate
to capture it in a larger size in order to extract the necessary pic-
togram details. The apparent limitation of the system introduced by
Miura et al. is its dependency on the hardware. In particular, the
telephoto camera requires substantial amount of time to change the
viewing direction. Besides, the system seems to be able to recognise
only one sign at a time.

The work of Escalera et al. [22] is in the minority of studies
where modelling of the full structure of the apparent affine motion
of a sign in the image plane was attempted. In this approach a de-
formable model of sign was developed which enabled detection of
geometrically distorted, poorly illuminated, noised and occluded tar-
gets. The state of a detected sign’s geometry was updated based on

the previous-frame state according to an affine motion matrix with
found deformation parameters. Two search strategies for obtaining
the optimal values of these parameters were proposed: genetic algo-
rithm and simulated annealing. This indeterministic search triggered
in every frame of the input video was driven by minimisation of a
sum of relatively complex energy functions relating the deformation
parameters to the information about the colour and the shape of
the observed traffic sign. Promising results were reported using this
method, but it is far too slow for real-time execution in the realistic
driver support systems.

At the classification stage a pixel-based approach was most of-
ten adopted and the class of the detected sign was determined by
the cross-correlation template matching [7,22] or neural network
[9]. Feature-based approach was also frequently used. For instance
in [13] authors utilised various statistical characteristics, e.g. mo-
ments, calculated from the binary images of the inner parts of the
detected road sign candidates. Gao et al. [25] classified the signs by
comparing the 49-dimensional feature vectors encoding their local
edge orientations and density at the arbitrary fixation points to the
corresponding vectors computed for the template sign images. Up
to 95% success recognition rate was achieved in the experiments in-
volving still camera images. Manual feature selection is, however,
unconvincing.

In the abovementioned work of Bahlmann et al. [24] a Bayes clas-
sifier was used to fuse the individual observations over time, assum-
ing Gaussian distribution of the feature vector and the independence
of consecutive frame observations. Only 6% error rate and 10 fps av-
erage processing speed was reported using this method on the 30-
min test video. However, only a narrow subset of signs were targeted
in this work—speed limit signs an “no passing” signs. Paclik et al.
[27] introduced a different strategy built upon the idea that a can-
didate sign can be represented as a set of similarities to the stored
prototype images. For each class similarity assessment was made
with respect to a different set of local regions refined in the training
process. For relatively simple problems involving significantly dis-
similar signs this approach offers competitive performance.

A final remark concerning the state-of-the-art classification of
road signs should be made to emphasise that in the majority of
previous studies only the narrow subsets of signs or traffic situa-
tions were considered. Typically, authors only focused on a single
semantic category, e.g. the speed limit signs, or the relatively dissim-
ilar signs from multiple categories, which facilitated the recognition
enormously. In many studies the problem was even more simplified
by restricting it to the recognition of signs on the static, sometimes
already pre-segmented images. The experiments on the relatively
large sign databases were conducted in: [13] (50 signs from multi-
ple categories, but static images only), [22] (83 signs from multiple
categories, but essentially no video sequences), [25] (87 signs from
three categories, but artificially generated and noised).

In this work we have developed a two-stage symbolic road sign
detection and classification system. Fig. 1 shows a screenshot illus-
trating how this system detects and recognises a sign in a sample
frame of the input video. More specifically, our detector is a form of
a well-constrained circle/regular polygon detector, similar to the one
used by Loy et al. [23] and augmented with the appropriate colour
pre-filtering. The Kalman filter (KF)-based tracker is additionally em-
ployed in each frame of the input video to predict the position and
the scale of a previously detected candidate and hence to reduce
computation. In the classification stage, motivated by [27], we intro-
duce a novel feature selection algorithm that extracts for each sign a
small number of critical local image regions encompassing the most
dissimilarity between this sign and all other signs. Within these re-
gions, robust image comparisons are made using a distance metric
based on what we call Colour Distance Transform (CDT), which en-
ables efficient pictogram classification.
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Fig. 1. Screenshot from our traffic sign recognition system in action. The best-scored
and the second best-scored template are shown.

This paper is an extension to our previous work [28,29] in that
it contains a much more detailed description of the ideas and algo-
rithms as well as an experimental justification of the design choices
made in the aforementioned studies. In particular, a more thorough
analysis of the discriminative representation of traffic signs is pro-
vided and the strengths of the discrete-colour image representation
and the Colour Distance Transform are shown experimentally. More-
over, the impact of the class-specific feature space’s dimensional-
ity on the overall recognition accuracy is shown and the proposed
classifier’s error rate is compared to the error rates of the classifiers
learned via PCA and AdaBoost using a large traffic sign image dataset.

The rest of this paper is organised as follows: In Section 2 traf-
fic sign detection and tracking are outlined. Sections 3 and 4 discuss
the main contributions of this work, discrete-colour/CDT image rep-
resentation and a discriminative local feature selection algorithm.
In Section 5 a temporal sign classification framework is described.
Section 6 contains the experimental evaluation of our approach,
involving both: static sign images and real traffic video. Finally,
conclusions are drawn in Section 7.

2. Sign detection and tracking

Our road sign detector is triggered every several frames for a
range of scales to capture new candidates emerging in the scene.
Because these initial detections take place relatively early, when
the signs undergo nearly no motion and do not grow in the im-
age plane, the risk of missing a sign is minimal. However, the com-
putational effort is significantly reduced. The detector encompasses
a priori knowledge about the model signs, uniquely identified by
their general shape, characteristic colours, and pictogram. Based on
the first two properties, four sign categories coinciding with the
well-known semantic families are identified: instruction signs (blue
circular), prohibitive signs (red circular), cautionary sign (yellow
triangular), and informative signs (blue square).!

As we believe the shape and the rim colour are sufficient vi-
sual cues to locate the signs reliably, the proposed detector oper-
ates on the colour gradient and edge maps of the original video
frames. Furthermore, it uses the approach of Loy et al. [23], in which
a recipe is given for how to locate the most likely instances of

TIn many countries the cautionary signs have white rather than yellow back-
ground.

equiangular polygons in the image, which is considered to be drawn
from a mixture of regular polygons. Note that the non-circular road
signs considered in this study are all instances of such polygons.
The realisation of the algorithm of Loy and his colleagues very much
resembles a circular Hough Transform (HT), where shape localisation
is based on voting in the parameter space. Because circles can be
thought of as regular polygons with the infinite number of sides, this
method can be treated as a generalisation of HT.

Original regular polygon transform is augmented with the appro-
priate image preprocessing intended to locate the regions of interest
(Rols) and further enhance the edges of specific colour within each.
For the first task a traditional approach known from many previous
works on road sign recognition is adopted. First, the whole scene im-
age is colour-discretised using a reasonable set of fixed thresholds
in a Hue-Saturation-Value colour space, similar to this used in [12].
In the resulting image every pixel is assigned one of the six colours:
black, white, red, yellow, green, or blue. The image is then divided
into small 20 x 20-pixels blocks. Now, for each of the four distin-
guished sign categories blocks are independently marked as either
“feature” or “non-feature”, depending on the percentage of the con-
tained pixels having the colour characteristic to the respective cat-
egory, i.e. red for the prohibitive signs, blue for the instruction and
informative signs, and yellow for the cautionary signs. As a result,
for each of the three relevant colours a separate binary map of fea-
ture blocks is obtained. Subsequently, a region growing algorithm
is fed by each of the feature block maps to form blobs containing
connected blocks of respective colours. The final rectangular interest
regions are constructed by picking the bounding rectangle of each
blob. An additional margin of width equal to half of the radius of the
largest considered signs is added on each side of each Rol to avoid
capturing incomplete signs that appear partially occluded or indis-
tinct. From now on, further processing is localised in the found Rols,
instead of the whole scene.

In the extracted Rols edges and gradients of the respective colours
need to be extracted for the shape detector to work. Therefore, in
each interest region the pixels are first transformed so that the colour
associated with this Rol is enhanced. For each RGB pixel Xx=[xg, X, 5]
and s = Xg + Xg + xg a simple colour enhancement is provided by a
set of transformations:

fr(x) = max(0, min(xg — Xg, Xg — Xg)/S),
fp(X) = max(0, min(xg — xg,Xg — XG)/s),
fy(X) = max(0, min(xg — Xg, Xg — Xg)/S). (1)

Transforms defined in (1) effectively extract the red, blue, and yellow
image fragments. First two extract these parts of the image where
the red or blue component, respectively, dominates the most over
both remaining components. The third formula has similar meaning,
but as the pure yellow colour has equal value in the red and green
channels and zero in the blue channel, it attempts to enhance pixels
where both former components dominate the most over the latter.
Examples illustrating the effect of filters (1) applied to the original
RGB traffic images are given in Fig. 2. In the resulting images colour-
specific edge maps are extracted by a simple filter which for a given
pixel picks the highest difference among the pairs of neighbouring
pixels that could be used to form a straight line through the middle
pixel being tested. Obtained values are further thresholded and only
in the resulting edge pixels values of directional and magnitude gra-
dient are calculated. This technique is adequate to our problem as it
enables a quick extraction of edges and avoids expensive computa-
tion of the whole gradient magnitude map which, with the exception
of the sparse edge pixels, is of no use to the shape detector.

For a given pair of gradient and edge images associated with
colour c, the appropriate instances of the regular polygon detector
[23] are run to yield a set of possible sign shapes in the predefined
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Fig. 2. The effect of filtering of the original RGB images (left) using the transforms defined in (1). Red, blue and yellow colour enhancement, respectively, are shown from
top to bottom. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

range of scales. For instance, for a “blue pair” a circular shape de-
tector is triggered to search for the blue instruction signs, e.g. “turn
left” or “turn right”, and a square detector is run to detect poten-
tial square information signs, e.g. “pedestrian crossing” or “parking
place”. It should be noted that the signs considered in the experi-
mental section of this paper are specific to Poland, where the test
video sequences were captured. In most countries, for instance in the
United Kingdom or in Germany, the cautionary signs are white tri-
angles with distinctive red rim, rather than yellow triangles that are
usually reserved for temporary roadwork signs. Adapting the pre-
sented detection algorithm to handle such signs is straightforward.
The equilateral triangle detector simply has to be run with the gra-
dient and edge images associated with the red colour (and the first
transform in Eq. (1)). As in this case the yellow colour is no longer of
interest, the preprocessing step is simplified and hence the overall
speed of the detector should be increased.

Minimum response thresholds of the aforementioned colour- and
shape-specific detectors are tuned using an independent set of rea-
sonably clean static sign images. Optimal setting of each threshold is
done by picking the highest value for which an appropriate shape is
detected in all examples. As each found candidate has known shape
and rim colour, detector serves as a pre-classifier reducing the num-
ber of possible templates to analyse at the later stage of the pro-
cessing to the ones contained in either category. When signs are in

the cluttered background, some number of false positives may be
produced. To address this issue, an additional step is taken to verify
that the image fragment enclosed in each candidate contour contains
pixels of the colour specific to the interior of the signs representing
the just determined category.

Once a candidate sign is detected, it is unnecessary to search for
it in the consecutive frames in every possible image location. We
have employed a Kalman filter [1] to track a sign detected in a previ-
ous frame of an input video. An assumption of constant velocity and
straight-line motion of a vehicle is made. The state of the tracker is
defined by (x,y, sx, Sy), where x, y are coordinates of the sign’s centre
in the image, and sy, sy describe its apparent size. Enforcing a con-
stant direction and magnitude of the vehicle’s velocity vector im-
poses certain limitations in the kinematics of the model. In practice,
these limitations are not severe because the Kalman filter is only
used as a tool for local search region reduction and hence does not
directly affect the results of shape detector. Moreover, when the de-
tected candidate sign departs from its hypothetical trajectory due
to the inaccurate velocity assumption (e.g. when the vehicle sud-
denly accelerates, swerves, or brakes), the process error covariance
of the filter is increased accordingly. This property of the KF helps
maintain good accuracy of the localisation even when the motion
of the vehicle is not perfectly smooth in terms of the direction and
velocity.



420 A. Ruta et al. / Pattern Recognition 43 (2010) 416 -430

When the traffic sign is for the first time detected, it is suffi-
ciently far from the camera to consider it geometrically undistorted.
Although this distortion should theoretically increase when the cam-
era approaches the target, the true scale of the affine signs’ defor-
mation in the subsequent video frames is still very small. However,
to make our tracker even more accurate, we have augmented it with
an additional anisotropic scale corrector. Specifically, when the prior
estimate of the state at time t is made by the KF, a particle filter
implementing the sampling importance resampling (SIR) algorithm
[5] is run to refine the previous scale estimates, sx, Sy, around the
centre of the radial-symmetric shape found by the regular polygon
detector.2 Each particle is re-weighted based on how much the hy-
pothesised corrected shape’s contour encoded by it fits the currently
observed gradient orientations and magnitudes. Because only two
parameters are optimised, a relatively small number of particles suf-
fice to achieve a satisfactory correction without noticeable compu-
tational slowdown. The scale estimates refined by the particle filter,
together with the centroid’s location captured by the regular poly-
gon detector, are used to update the KF state at time t.

It should be emphasised that the current mean and variance es-
timates from the Kalman filter are used to locate the centre and the
size of the local search region in the next video frame. Within this
fragment of the image the same regular shape detection process is
repeated as at the time of the initial candidate discovery, but now
within a much smaller area and using a single detector instance, ap-
propriate to the already known general sign’s category. Therefore,
computation has been significantly reduced compared to the exhaus-
tive search over the whole image, which makes it possible for the
tracker to run at frame rate.

3. Image representation

Selecting an optimally discriminative feature set for a large num-
ber of traffic sign images is a non-trivial task. The simplest choice is
probably to extract the local image characteristics at the pre-defined,
regularly distributed locations uniform for all signs, as Gao et al. [25]
did. Naturally, the drawback of this approach is that the feature loca-
tions are chosen manually, irrespective of how much discriminative
information the corresponding image fragments carry. Another pos-
sibility is to describe each sign by some global numerical character-
istics, e.g. moments. However, this technique proves useful when the
number of classes to recognise is small and these classes are them-
selves significantly different from one another. With the increase
in the number and similarity of classes, moments and other global
shape descriptors become less discriminative, which was confirmed
in the preliminary experiments we made using the still camera im-
ages of road signs.

We have experimented with several automatic feature selection
techniques such as Principal Component Analysis (PCA) and Ad-
aBoost. Details of this experiment are given in Section 6.2. Aiming at
retrieving the global variance of a whole dataset, PCA is not capable
of capturing features critical to the individual classes. On the other
hand, AdaBoost framework is known to provide a way for extracting
a compact representation and generating efficient classifiers. How-
ever, it is originally designed to solve binary problems and a gen-
eralisation to multi-class problems is not straightforward. Besides,
a large amount of data is required for AdaBoost training. Collection
and preprocessing of such data is a very time-consuming process,
with an additional difficulty being caused by the fact that certain
road signs occur extremely rarely. Finally, traffic signs are very well
defined objects with only small intra-class variability and therefore
can be unambiguously represented with clean prototypes. Therefore,

2 Regular polygon detector normally captures even slightly distorted road signs.
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Fig. 3. Sample traffic signs with the high-entropy salient regions marked. Salient
regions were extracted using a simplified version of Kadir and Brady’s algorithm
[16] that allows only square regions. Obtained regions were clustered in the spatial
domain. Note that in the case of the two last signs no salient regions were found.
This figure is best viewed in colour. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

a question arises whether there is sufficient justification for learning
them from the real-life data.

A separate issue is the choice of the underlying image represen-
tation from which salient features could be generated, and the actual
meaning of “saliency”. We found most of the high-level visual shape
descriptors such as moments inadequate to represent the detected
candidate road sign images due to the low resolution of these im-
ages. On the other hand, low-level, pixel-based methods tend to suf-
fer from high sensitivity to all kinds of geometrical distortions, e.g.
shifts and rotations. Histogram-based methods partly overcome this
limitation, but in return they lose the valuable information about
the spatial arrangement of the individual pixels. In the preliminary
experiments our sign detector demonstrated good performance in
detecting the relevant sign shapes. However, the match between the
hypothetical contour and the true shape in the image is not always
perfectly accurate in the noisy, low-resolution video frames, espe-
cially those depicting the signs at a considerable distance. These in-
evitable misalignments caused by the detector prevent the classical
pixel-wise and histogram-based representations from being useful
and call for more adequate sign representations.

We finally trialled a patch-based approach to describe an observ-
able sign pattern with a collection of salient local features. One of
the well-justified meanings of visual saliency, proposed by Kadir and
Brady [16], was considered at this point, but the observations below
apply to the other methods of this kind, e.g. SIFT [19]. Three kinds
of problems were encountered. First, different traffic signs cannot
be represented by even roughly equal numbers of salient regions,
as some in fact contain nearly nothing visually salient in a sense of
large entropy, e.g. “no vehicles” sign or “give way” sign (without the
inscription inside) shown in Fig. 3. Second, due to generally small
apparent scales of road signs and a very small number of colours
characterising them, the meaning of entropy defined over the pixel
intensity becomes vague. Different definitions are also problematic
unless a large amount of training data is available. Finally, “salient”
defined by the entropy within a single sign image does not mean
“discriminative” among a group of signs, especially when these signs
are similar to one another.

Motivated by [27], we propose in Section 4 an algorithm that
extracts for each template sign a limited number of local image re-
gions in which it looks possibly the most different from all other
templates in the same category. This way we define an alternative
meaning of visual saliency to the one suggested by Kadir and Brady
[16]. The extracted discriminative regions are further used for com-
paring the noisy video frame observations with the idealised road
sign templates to make a reliable on-line sign classification. In the
rest of this section we first outline the process of converting a raw
bitmap image into a more suitable discrete-colour representation
and define a Colour Distance Transform on which a robust region dis-
tance metric is built. Definition of discriminative local regions and
the aforementioned dissimilarity metric, as well as a description of
a region selection algorithm are postponed to Section 4.

3.1. Colour discretisation and colour distance transform

The tracked road signs are passed on input of the recognition
module as rectangular image regions containing the target object
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Fig. 4. Sample images obtained by the sign detector before (above) and after (below) background masking and colour discretisation; 2 bits suffice to encode colours in each
image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and, depending on its shape, also background fragments, as depicted
in Fig. 4. If there is any in-plane rotation or anisotropic scaling in-
dicated by the detector/tracker (refer to Section 2 for details), it is
first compensated. In order to prepare the candidate for classifica-
tion, the image is scaled to a common size, typically 60 x 60 pixels
for circular and square signs, and 68 x 60 pixels for triangular signs.
Undesirable background regions are then masked out using the in-
formation about the object’s shape provided by the detector. It is
important to note that the full colour spectrum is far more than nec-
essary to identify the pictogram, as the signs contain only up to four
distinctive colours per category. Therefore, the candidate images are
subject to on-line colour discretisation according to the category-
specific colour models learned off-line from a set of training images
as follows.

For each category of signs a number of frames are picked ran-
domly from a set of realistic traffic video sequences depicting the
respective signs. From the region occupied by a sign in each image
we manually pick several pixels representing known named colours
and record their RGB values, which are further transformed to CIE
XYZ values.? This is how the training data are constructed. Then, the
Expectation Maximisation algorithm [2] is employed to estimate an
optimal Gaussian Mixture Model (GMM) [4] for each colour specific
to this category. The procedure is restarted several times for the in-
creasing number of randomly initialised Gaussian components and
the best model in terms of the mean data likelihood is saved.

In system runtime the appropriate off-line learned GMMs are
used to classify each RGB pixel into one of the admissible colours by
picking the model that has most likely generated this pixel. On the
implementation side, it should be noted that a large speedup of this
colour discretisation can be achieved at the cost of higher memory
consumption. Namely, the colour models can be used in advance to
assign the appropriate colour label to each possible RGB triple, yield-
ing a look-up table with 2553 entries for each sign category. This
way, intensive computation can be avoided by picking the colour la-
bels directly from the memory-stored look-up tables. Sample results
of the on-line colour discretisation described above are illustrated in
Fig. 4.

Our ultimate goal is to enable robust comparisons between the
realistic and the model images in a discrete-colour representation.
To this end we know how to rapidly obtain such a representation
from the incoming RGB image regions enclosing the detected sign
candidates. We also possess the template images where the colour
palette is already sparse. To facilitate the aforementioned compar-
isons, a separate distance transform DT [3] is computed for each
discrete colour, giving output similar to this shown in Fig. 5. In DT
computation pixels of a given colour are simply treated as feature
pixels and all the remaining pixels are treated as non-feature pixels.
A (3,4) Chamfer metric [11] is used to approximate the Euclidean

3 CIE XYZ colour appearance model is used in preference to the raw RGB space
because it is device-independent.

@0

Fig. 5. Normalised Colour Distance Transform (CDT) images. From left to right:
original discrete-colour image, black CDT, white CDT, red CDT. Darker regions denote
shorter distance. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

distance between the feature pixels. To emphasise a strong relation
to colour, we call this variant of DT a Colour Distance Transform.

One practical problem emerges when a given colour is absent in
one input image. Namely, within each category of signs there are
some that do not contain the colours present in the other. However,
for the sake of comparisons, all colour distances must be sensibly
represented in each template sign. To reflect the absence of a given
colour in CDT, positive infinity is not appropriate as it causes nu-
merical problems. Instead, we introduced a fixed maximum relevant
colour distance value dpmgx = 10 pixels and normalised the colour-
specific DT images by assigning each pixel p in the image I a value
defined as:

depr(Lp) .

q ——22 if depr(I,p) = dmax,

depr(Lp)=1{ dmax cor(I,p) = dinax o
1.0 if depr(I,p) > dmax-

3.2. Justification of CDT

The main idea behind the Colour Distance Transform is to define
a smooth distance metric to be used in the comparisons between the
image of a likely sign observed in the input video and the template
images. We want this distance metric, discussed in Section 4.1, to
capture the variability of the road signs’ appearance. This variability
could normally be modelled statistically from a large number of
training images. However, collection of a sufficiently large number
of such images is difficult as certain signs are in practice extremely
rare. In the same time, we would not like to restrict ourselves to a
narrow subset of the most popular signs, as many practitioners do.

To justify our distance metric choice, let us consider the poten-
tial causes of why the same pictograms may look different from
scene to scene. First, there might be physical differences between
the same pictograms in different countries. For instance, the dig-
its in the speed limit signs might be painted using different fonts.
A good insight into how the traffic signs differ across countries
can be found in [30]. From the point of view of possible applica-
tions, it would probably be the most practical to consider a recogni-
tion system trained on the country-specific sign database and able
to re-train itself instantly for operation in other countries, or sim-
ply switch a pre-loaded country-specific classifier, when needed.
However, even within the same country, minor physical differences
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Fig. 6. Experimental evaluation of Colour Distance Transform. (a) Colour distance maps: black, white, and red, respectively, obtained for a sample speed limit sign in the
experiment involving generation of 1000 random affine deformations. Each parameter of the transformation: translation, x, y, rotation around the centroid, 0, scale, s, s,,
and shear, h,, hy, was perturbed according to a the clipped normal distribution. Standard deviations of these distributions were: oy = g, = 1px, a9 = 1°, g5, = 75, = 0.02,
Oy =0hy, =0.02 (top row), oy =0, =3px, 09=3°, 05, = a5, =0.02, oy, =0, =0.02 (central row), 6, =0, =5px, 09=5°, 0, = a5, =0.05, o1, =, =0.05 (bottom row). (b) Correct
classification rate for a 42-class Polish cautionary signs problem as a function of image distortion, obtained using two discrete image comparison methods. A simple nearest
neighbour template matching classifier was used. In the first comparison method (dashed line), each distorted image was compared to the undistorted template signs by
counting the numbers of spatially corresponding pixels having unmatching colours. In the second method (solid line), distance between each compared pair of images was
measured pixel-wise using the CDT-based metric. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

between the same road sign classes exist. Fortunately, in the practi-
cal realisations of the traffic sign recognition systems the signs are
usually captured and analysed when still being at a significant dis-
tance from the camera. In the resulting low resolution imagery the
high-frequency details and the vendor-related pictogram differences
become insignificant.

Other sources of intra-class variability are related to the target
perception process and the nature of its imperfections. For exam-
ple, the appearance of the same type of sign varies due to chang-
ing illumination or different colour/reflectance properties of the
surface of signs’ boards. This is to certain extent accounted for by
the GMM-based colour binning, which was explained in Section
3.1. This method can model multimodal colour distributions and
is hence robust to substantial illumination changes, as long as the
colour information is not completely destroyed by the factors such
as strong incident light, reflections, or deep shade. Finally, the same
signs may look slightly different due to small viewpoint changes.
We show that this problem is addressed by the Colour Distance
Transform as it enables modelling the distribution of a discrete-
colour appearance of traffic signs under small affine transformations
without recourse to the massive volumes of natural data.

To make the last point more convincing, we have done two sim-
ple experiments. First, from each discrete-colour image of a chosen
template sign n = 1000 random affine transformations were gener-
ated. All parameters of the transformation matrices: translation, x, y,
rotation around the centroid, 0, scale, sy, Sy, and shear, hy, hy, were
drawn from the clipped normal distributions with appropriately low
standard deviations to ensure the generated distortions were realis-
tically small. In this experiment an alternative method of construct-
ing the colour distance maps was evaluated. Namely, for each pixel
we counted how many times this pixel was not of a given colour
in each distorted image and divided it by n. Fig. 6a illustrates the
resulting frequencies obtained for different values of standard devi-
ation of the affine transform parameters. Clearly, these images very
much resemble our CDT images (see Fig. 5 for comparison) when
the distortion parameters are appropriately chosen.

In the second experiment we directly compared accuracy of tem-
plate matching under small transformations using: (1) a distance
metric based on the co-occurrence of discrete colours in both im-

ages, and (2) a distance metric based on CDT. To clarify, in the first
method simply a fraction of the spatially corresponding pixels hav-
ing different colours in both discretised images was calculated. In
this experiment each of 42 model cautionary signs was artificially
distorted 100 times. Each such distorted image was compared to
each undistorted model, i.e. to one template representing the same
sign and 41 templates representing the remaining signs. The stan-
dard deviations of the affine transformation parameter distributions,
the same as those used in the first experiment, were gradually in-
creased, starting from: ox = oy = 0.5px, oy =0.5°, 75, = 75, = 0.005,
o, = op, = 0.005, and with step: Aoy = Agy = 0.5px, Agy = 0.5°,
Ao, = Ags, =0.005, Aoy, = Aahy =0.005. Correct classification rates
obtained are shown in Fig. 6b.

Results of the above experiments suggest that the Colour Dis-
tance Transform is suitable for comparing pairs of discretised images
of traffic signs affected by minor affine transformations. Smooth dis-
tance metric defined over CDT clearly outperforms simple pixel-wise
discrete-colour matching. Together with the proposed colour dis-
cretisation technique, CDT becomes a good alternative to the pose-
and illumination-invariant traffic sign appearance modelling. It is
superior to the data-driven methods in that, with the exception of
the images needed for GMM colour classifier training, it does not
require the realistic traffic sign images.

4. Feature selection

As a CDT-based smooth distance metric is available, discrete-
colour images of traffic signs can be compared pixel by pixel, without
risking serious recognition rate degradation caused by small image
misalignments. However, our intuition is to reduce the dimension-
ality of the feature space not only by suppressing redundant colour
information, but also by selecting only those fragments of each pic-
togram that are really unique for the sign it is representing.

4.1. Discriminative local regions

A complete space of local regions is obtained by subdividing the
image into small, regularly spaced, non-overlapping square blocks
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Fig. 7. Region selection algorithm: (a) construction of the local region partial ranking characterising differences between templates T; and T, (b) merging three sample
partial rankings; the partial weights of each relevant region are given as whole numbers only for illustration purposes.

of size m x m pixels. Typically, we use m =4 pixels which yields the
total of 225 regions for non-triangular sign images of size 60 x 60
pixels (60/4 x 60/4=225) and 255 regions for triangular sign images
of size 68 x 60 (68/4 x 60/4=255). Within each region r; dissimilarity
between the images I and J can be calculated using the discrete-
colour image of I and the normalised CDT images of | by averaging
the pixel-wise distances:

dr (L)) = ) Zl//CDT L], pe), (3)

where for each pixel p; contained in the region, distance ¥ qpr(1,], pt)
is picked from the appropriate normalised CDT image of J, depend-
ing on the colour of this pixel in I. Let us also denote by ds(I,])
and dsw(I,]) a normal and weighted average local dissimilarities be-
tween the images I and J, computed over regions r;, € S (weighted by
wy, € W):

S|

MZ%W) 4)

zﬂm%W)

IS| )
Zk 1

As CDT images for the model signs are pre-computed, any on-line

local-region comparison between the observed and the template im-
ages can be made extremely fast.

dsw(l.)) = (5)

4.2. Region selection algorithm

Assuming pre-determined category of signs C=(T; :i=1,...,N}
and a candidate image x;, our goal is to determine the class* of X;

4 Throughout the following sections of this paper by using the term “class” we
always mean an unambiguous semantic identity of a sign which always maps to a
single template. No generic, higher-level classes are considered, e.g. general “speed
limit”. The only exception are the four main categories: instruction signs, prohibitive
signs, cautionary signs, and informative signs, but these are always referred to as
“categories”.

by maximising posterior:

p(xIT;, 0;)p(T;) _
SN P(XiI Ty 0)P(Ty)

We think that uniform feature sets are inadequate for traffic sign
recognition. Some signs can be told apart by just a single distinctive
pictogram element, while other need to be analysed in more detail
to be distinguished from other similar signs. Our objection to using a
uniform feature space for classification makes us envisage different
model parameters 0; = (I;, W;) for each template T;. I; denotes an
indexing variable determining the set S; of regions to be used and W;
is a vector of relevance corresponding to the regions r, € S; selected
by L. In order to learn the best model parameters 07, the following
objective function is maximised:

0= "ds(T;, Ty). )

j#i

p(Tilx;, 0;) = (6)

In other words, the regions best characterising a given sign are ob-
tained through maximisation of the sum of local dissimilarities be-
tween this sign’s template and all the remaining signs’ templates.
In Presence of model images only, each average set dissimilarity
term ds,(T;, T;) as a function of the number of discriminative regions
in'§; is necessarlly monotonically decreasing. This is because the
subsequent regions added are increasingly less dissimilar and hence
give smaller contribution to this average. As a result, typically there
would be just a few good regions or even a single best region max-
imising equation (7). In practice, such sign descriptors are unlikely
to work well for the noisy video where more support in terms of
the number of image patches to match in each frame is required to
make a reliable discrimination. Therefore, to balance the discrimi-
native power and the reliability, our objective function is iteratively
degraded up to the specified breakpoint, yielding a representation
which is more dense and thus more useful in a real data context.
Similarly to Paclik et al. [27], in the model training stage we
have adopted elements of a sequential forward search strategy, a
greedy technique from the family of floating search methods [6].
However, both approaches differ significantly in two main aspects.
First, we think that learning the signs from the real-life images might
not be worth the effort required as the publicly available templates
seem to sufficiently characterise the appearance of the respective
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Fig. 8. Sample triangular template images (1st row), and 4 x 4-pixels discriminative regions obtained for the parameter tp, = 2.0 (2nd row), tp = 5.0 (3rd row), and tp = 50.0

(4th row). Brighter regions correspond to higher dissimilarity.

classes. Second, we believe that the possible within-class appearance
variability may well be accounted for by a robust distance metric,
as the one introduced in Egs. (3)-(5), instead of being learned. Our
implementation is outlined in Algorithm 1.

Algorithm 1. Discriminative region selection.

Input: sign category C={T; : j=1,...,N}, target template index i,

region pool R= {r; : k=1,..., M}, dissimilarity threshold tp

Output: ordered set S; of regions to discriminate between template

T; and all other templates, ordered set W; of weights corresponding

to the regions from S;

1: initialise an array of region weights W={w;:w;=0, k=1, ..., M}

2: for each template T; € C, j#i do

3: sort R by decreasing dissimilarity dr,(T;, T;)

4: initialise ordered region set S;;, and the corresponding weight
set Wj;, characterising the dissimilarity between templates T;
and T;, with the first region from R and its weight, respectively:

S,‘J‘ = [(T:’(-U], W,‘J' = [WJ(-U], where W;l) = drj(l)(Tj,T}')z

5: initialise region counter [ =1

6: initialise the total dissimilarity, D;;, between templates
T; and T] Dij = dr](_l)(Ti,Tj)

7: while D;; <tp and | <M do

8: increment region counter [ =1+ 1

9: set weight of the new region to: WJ’. = dr](')(Ti‘ Tj)Z

10: add region r]“) to S;; and weight wj(.l) to W;;

11: update D;j: D,‘J:D,‘J‘-i-dr(_z)(Tl‘,’I}‘)
J
12:  end while
13:  for each region ry such that ry € S;; do

14: update region weight: wy, = wy, + w](.t),
where wj(f) is the weight of region r;, in
Wi

15: end for

16: end for

17: build the target region set S; and the target weight set
Wi: SiZ{Tk . Wk>0}- WiZ{Wk . Wk>0}

A given template sign is compared to each of the remaining tem-
plates. In each such comparison the algorithm loops until the ap-
propriate number of local regions are selected. At a given step of
the loop the most dissimilar region is fixed and removed from the
pool of available regions. Moreover, at the k-th step the distance be-
tween the considered image and the image being compared to is

measured with respect to the joint set comprised of the new k-th
region and all previously selected regions. At the end of the loop a
list of regions is produced, together with the list of corresponding
weights reflecting the discriminative power of these regions. Each
pairwise region set build-up is controlled by a global threshold, tp,
specifying the maximum allowed cumulative dissimilarity between
any pair of templates being compared. Such a definition of STOP cri-
terion ensures that the same amount of dissimilarity between any
pair of templates is incorporated in the model. This in turn allows
us to treat different sign classes as directly comparable, irrespective
of the actual number of local regions used to characterise them. A
single comparison between the interest template T; and template T;,
Jj#1i, is schematically depicted in Fig. 7a. The final region set for each
class is constructed by merging the pair-specific subsets, as shown
in Fig. 7b. It is reflected in the region weights carrying the informa-
tion on how often and with what importance each particular region
was selected.

For each sign the above procedure yields a set of its most unique
regions. It should be noted that in the final step, depending on the
actual dissimilarity threshold specified, certain number of regions
will be found completely unused, and hence discarded. An exam-
ple output of the proposed region selection algorithm is depicted in
Fig. 8. Obtained discriminative region maps clearly show that differ-
ent signs are best distinguishable in different fragments of the con-
tained pictogram. It can also be seen that although the same value of
global parameter tp was used, different numbers of relevant regions
were found.

In absence of realistic images of traffic signs, it is generally hard
to choose the optimal value of tp. We have conducted an experiment
that only gives a clue on how the value of this threshold influences
discriminative capability of the road sign classifier. In this experi-
ment a clean template image representing a given cautionary sign
was geometrically distorted 100 times in a random way, as previ-
ously introduced in the experimental evaluation of CDT (Section 3.2).
Each distorted image was then matched against all undistorted tem-
plates and the percentages of correct matches were recorded. They
were further averaged over all 42 types of cautionary signs tested.
Deviations of the Gaussian-distributed affine transform parameters
were chosen as follows: gx = oy = 3px, 09 = 3°, 05, = g5, = 0.02,
op, = 0, = 0.02, which simulates similar affine deformations than
those the real signs captured by our regular polygon detectors are
typically subject to. For the above fixed geometrical transformation
parameters, we varied the value of tp to observe how it influenced
the correct classification rate of the template matching classifier. The
result is presented in Fig. 9.
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Fig. 9. Recognition rate of a nearest neighbour classifier employed to classify geo-
metrically distorted template road sign images. Parameters of the normal distribu-
tion controlling affine perturbation of the images were fixed and the parameter t,
was a variable. Apart from the correct classification rate also the average number
of regions in the target discriminative representation of sign is shown as a func-
tion of tp. Recognition rate obtained when using all available unweighted regions
is marked with dashed line.

The recognition rates of the aforementioned classifier seem to in-
dicate that it is best not to reduce the number of discriminative local
regions at all, i.e. simply compare the entire images using CDT-based
metric. However, as for only one-third of all available regions the
recognition performance is only minimally worse than when using
all regions, dimensionality reduction is still worthwhile. Despite the
above observation, it is risky to assume that more dense represen-
tations always imply better discriminative power of the classifier. In
the above experiment only the possible geometrical transformations
were simulated, but the influence of other factors (e.g. changing il-
lumination, motion blur, contamination of the image with the inci-
dental background fragments) on the classifier's performance as a
function of the number of discriminative regions used may be differ-
ent. Tuning of the dissimilarity threshold based on a small number
of real traffic sequences captured from a moving vehicle, which we
adopt, is more adequate in this case. More details on this parameter
tuning are given in Section 6.1.

5. Temporal classifier design

The proposed road sign classifier distinguishes between the sign
classes contained in a category pre-determined in the detection
stage, based on the discriminative feature representation unique for
each particular sign. For simplicity, two assumptions are made: (1)
the dissimilarity between each sign and all other same-category signs
is Gaussian-distributed in each local region and independent of the
dissimilarities in all other regions characterising this sign, and (2)
class priors p(T;) are equal. In such a case Maximum Likelihood the-
ory allows us to relate the maximisation of likelihood p(x;|T;, ;) to
the minimisation of weighted distance Esi‘wi(xj,T,v). Therefore, for a
known category C={T; : i =1,...,N} and observed candidate x; at
time t, the winning class L(x;) is determined from (8):

L(x¢) = arg max;p(x;|T;, 0;) = arg miﬂiasi,w,»(xr, T), (8)

where the elements of the region set S; and the corresponding
weights in W; denote the ones learned in the training stage for the
template T;.

When a series of observations from a video sequence is avail-
able, it is reasonable to integrate the classification results through
the whole sequence over time, instead of performing individual clas-
sifications. Hence, at a given time point ¢t our temporal integration

scheme attempts to incorporate all the observations made since
the sign was for the first time detected until t. Denoting obser-
vation relevance at time t by q(t) and assuming independence of
the observations from consecutive frames, the classifier’s decision is
determined by:

t
L(X;) = arg min; Y _ q(k)ds,w, (Xk, T;)- (9)
k=1

Usually, the number of frames where the sign is being tracked
and recognised is in between 20 and 60, depending on the size of
the sign, its location in the scene, and the velocity of the vehicle. We
have observed that the signs detected in the early frames are often
inaccurately delimited and contain blurred pictograms due to the low
image resolution. Also, as colours tend to look paler when seen from
a considerable distance, previously discussed colour discretisation
exposes severe limitations, unless performed when the candidate
sign has already grown in size in the image plane. To address this
problem, we adopt the exponential observation weighting scheme
from [24] in which relevance q(t) of the observation at time t depends
on the candidate’s age (and thus size):

q(t) = b, (10)

where b € (0,1] and ¢, is the time point when the sign is for the last
time seen. The optimal value of parameter b is typically in between
0.7-0.9 which effectively makes the ultimate decision of the classifier
mostly dependent upon the last 5-10 observations. This strategy may
appear to be losing a large amount of information gathered early
in the observation process, but has been experimentally shown to
provide the best recognition accuracy.

6. Experiments

To evaluate our traffic sign recognition system, experiments were
performed on the real data collected on Polish and Japanese roads. In
Section 6.1 we first test our traffic sign recognition system on realis-
tic video captured from a moving vehicle. In Section 6.2 a compara-
tive evaluation of the classifier based on the proposed discriminative
local region representation of traffic signs is presented. This classi-
fier is tested on static, low-resolution sign images and compared to
the alternative techniques based on PCA and a modified AdaBoost
algorithm.

6.1. Overall system performance evaluation

To test the proposed traffic sign recognition system as a whole, a
number of real traffic video sequences were captured from a mov-
ing vehicle on Polish roads at different times of the year: February,
April, June, November, and December. A JVC GR-X5EK DV camcorder
mounted in front of the windscreen was used for this task. Its lens
was adjusted at the lowest available focal length of f = 3.2 mm. The
vehicle’s velocity varied depending on the traffic situation. It was
usually in between 40 and 70 km/h, and never exceed 100 km/h. Test
video resolution was 640 x 480 pixels and its content depicted the
total of 210 signs in urban, countryside, and motorway scenes. All se-
quences we captured in natural daytime lightning, with some signs
appearing in shade and in the cluttered background. Due to extreme
rarity of certain road signs, the ones in the test data represent only
a part of the whole gamut recognised by our system. The detailed
breakdown has been provided in Table 1.

For optimal setting of the unknown model parameters, we con-
sidered two auxiliary datasets. The first set consisted of 200 images
of road signs (50 per category), cropped from various traffic scenes.
We used this dataset to (1) adjust the minimum response thresholds
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The signs not listed were not present in the dataset.

Table 2

Detection rates and recognition rates obtained for different values of dissimilarity threshold tp.

tp RC (55) (%) BC (25) (%) YT (42) (%) BS (13) (%) Overall (135) (%)
Detected - 85.3 100.0 95.6 89.6 92.9

1.0 82.8 92.1 84.9 90.7 87.8

2.0 93.1 94.7 88.7 90.7 90.3
Recognised 5.0 93.1 97.3 78.8 814 85.6

20.0 89.7 97.3 77.6 79.1 84.6

All regions 82.6 91.2 66.1 74.3 76.2

Best 93.1 97.3 88.7 90.7 91.2
Detected and recognised Best 79.4 97.3 84.8 81.3 85.3

All recognition rates were determined from only these signs that were correctly detected. The third row from the bottom shows the recognition rates obtained when all
possible, uniformly weighted local regions were used for image comparison, as though no feature selection was performed. The next to last row contains the recognition
rates recorded for the best (trained) setting of tp-s. In the last row the overall detection and recognition rates are given (for the best classifier setting), i.e. those obtained
by multiplying the percentages od the detected and correctly classified signs. The numbers of classes in each category: red circles (RC), blue circles (BC), yellow triangles

(YT), and blue squares (BS) are given in parentheses in the column headers.

of the regular shape detectors (see Section 2), and (2) adjust the dis-
similarity thresholds tp, independently for each category of signs.®
The second dataset consisted of additional 20 video sequences used
for determining the best setting of the temporal weight base b in
(10). Optimal value of this weight was found after fixing all category
specific tp-s. It was done by maximising the mean ratio of the cu-
mulative distance between the tracked sign candidate and the best-
matching (and correct) template to the cumulative distance between
this candidate and the second best-matching template, calculated in
the last frame where the tracked sign was seen in the scene.

Table 2 illustrates detection and classification rates obtained for
all available test sequences with the model parameters tuned as
above described.5 To illustrate the influence of the dissimilarity
thresholds on the classification rates, the experiments were repeated
for varying values of these thresholds. Results were compared with
the performance of the classifier generated based on: (1) the ex-
haustive image comparison (as though no region selection was
performed), and (2) image comparison with respect to the sign
representations obtained for the optimal setting of tp-s, determined
from an independent dataset, as mentioned above. To visualise the
error distribution across the classes, the individual-sign classifica-
tion results are shown in Table 3.

5 Although using this dataset contradicts the idea of learning from model
images only, which is one of the major claims of this paper, the road sign images in
this dataset do not need to strictly represent all classes. This way the fundamental
problem of acquiring the images of very rare signs is avoided.

6 It is assumed throughout this paper that the correct classification takes place
when the correct template is assigned the smallest cumulative distance in the video
frame where the candidate sign is entirely seen for the last time.

As seen in Table 2, obtained classification error rate does not ex-
ceed 9%, making our method comparable to the best state-of-the-art
approaches. However, it should be noted that our template database
contains significantly more signs than in any of the previous stud-
ies. Therefore, direct comparison with the alternative methods is not
possible. Repetitions of the experiment for different values of dissim-
ilarity threshold revealed that for each category of signs the optimal
classifier’s performance is achieved for a close to minimum value of
this threshold. This stays in contrast with the results of the experi-
ment described in Section 4.2 and suggests that artificial distortion
of the idealised sign images is insufficient to tune the tp parameters.
The following observation is vital at this point. The optimal threshold
for each category must strike a balance between the two: maximis-
ing template signs’ separability and the reliability of the obtained
dissimilarity information in the real-data context. Very low thresh-
old values lead to the separation of very few good regions for a par-
ticular model sign. However, such sparse information may not be
sufficiently stable to correctly classify a possibly distorted, blurred,
or occluded object in a video frame. Very high threshold values on
the other hand introduce information redundancy by allowing im-
age regions that contribute little to the uniqueness of a given sign.
In a resulting feature space signs simply look more similar to one
another and are hence more difficult to tell apart, at an additional
cost of the more intense computation.

The regular shape detector was set to capture cirles/regular poly-
gons of radius in between 15 and 25 pixels inclusive.” Most failures
were caused by the insufficient contrast between a sign’s boundary

7 By radius we mean the radius of the minimum bounding circle enclosing the
shape.
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viewed in colour.

A & IR A M

Fig. 10. Sample pairs of very similar signs that are sometimes confused by the
classifier.

and the background, especially for pale-coloured and shady signs.
In a few cases this low contrast was caused by the poor quality of
the physical target objects rather than their temporarily confusing
appearance. Single detection errors emerged when two signs were
mounted closely on one pole. In this particular situation candidate
objects may be confused with each other, as the local search region of
one candidate always contains at least part of its neighbour. Besides,
in many cases the shape detector does not yield a perfect contour
fit in every video frame. This inaccuracy, internally caused by the
presence of confusing edge pixels around the true sign’s boundary,
becomes significant in the cluttered scenes or when the sign is vis-
ible in the low-contrasting background. Difficulty of the scene also
affects the system’s running speed. With all the category-specific de-
tectors enabled, our implementation can typically run at 25-30 fps.
In “favourable” scenes with a dull, greyish background and a sin-
gle sign present, the system can work at frame rate. Such process-
ing speed is also achieved when the video resolution is decreased
to 400 x 300 pixels. However, in certain situations performance of
the system can be significantly degraded, particularly when multiple
signs are being tracked at once in high visual clutter.

After closer investigation we observed that approximately one
in three classification errors resulted from the confusion between
the nearly identical classes, e.g. these shown in Fig. 10. Differences
between such signs were found difficult to capture, resulting some-
times in the correct template receiving the second best score. Certain
number of misclassifications were caused by the motion blur or in-
accurate sign detection, which were in turn a result of car vibration
affecting stability of the camera mount. It is common when a vehi-
cle moves on an uneven road surface. Colour binning appeared to be
relatively resilient to variations of illumination, leading directly to
failure in only several cases when the signs were located in a very

shady area or were themselves of poor quality. This can be a proof of
usefulness of Gaussian Mixture colour modelling. In a few cases the
vehicle was moving directly towards the bright sun which made it
difficult for the driver to recognise the sign’s pictogram with his eyes
due to destroyed colour appearance information. The corresponding
sequences were treated as too challenging and were therefore not
used for testing. Remaining failures can be attributed to the imper-
fections of the detector. For instance, some signs’ pictograms consist
of edges that may actually be easier to detect than the boundary.
This may cause the detected shape to appear clipped.

As indicated in Section 5, fitting regular contour to the observed
sign pattern and subsequent colour discretisation are usually less ac-
curate in the early video frames. Extensive experiments have shown
that frequently the correct decision is developed by the classifier
from just a few last frames where the sign’s shape and colours are
the most unambiguously determined. This fact provides a good justi-
fication for our exponential observation weighting used to promote
the most recent measurements. Apparently, the classification accu-
racy with weighting enabled is by 10-20% higher, depending on the
weight base b used. Fig. 11 gives an example of how the temporal
weights influence the final score. In the sample charts a ratio of the
cumulative distance from the best-matching template to the cumu-
lative distance from the second best-matching template is shown. It
is clear that the weighting shifts this ratio towards the desired lower
bound of the interval (0, 1).

One limitation of the presented recognition system is that it does
not feature any ambiguity rejection mechanism. Apparently, when
certain signs appear in the input video, the confidence of the decision
is very low due to the existence in the template database a template
which is very similar to the correct template. Pairs of such very
similar templates have been shown in Fig. 10. A straightforward way
of eliminating this ambiguity is thresholding the aforementioned
ratio of the cumulative distance from the best-scored template to the
cumulative distance from the second best-scored template. However,
in presence of signs from Fig. 10 (and other signs of this kind) in the
scene, this ratio will always be very close to unity, regardless of how
clear the sign is and how accurately it is tracked. In the same time,
in presence of other, globally more unique signs, it will smoothly
decrease towards zero, as desired. This implies that using a single,
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Fig. 11. Classification of signs over time. Ratio of the cumulative distance from the best-matching template (upper sign next to each chart) to the cumulative distance from
the second best-matching template (lower sign next to each chart) is marked with a solid red line. The same but temporally weighted cumulative distance ratio is marked
with a green dashed line for the weight base b= 0.8, and a blue dotted line for the weight base b = 0.6. This figure is best-viewed in colour. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

globally optimal value of "ambiguity threshold” is not supposed to
work in all possible situations. If any of the abovementioned signs
appeared in the input video, cumulative distance ratio thresholding
would classify most detected instances as “not sure”.

Solving the above problem in a more robust way is beyond the
scope of the current implementation of our system. One possible di-
rection could be to learn the class-specific sign representations based
on the one-vs-one dissimilarity maximisation, together with the cur-
rently used representations learned via maximising the one-vs-all
dissimilarity. Such extra representations could be used dynamically
(when needed) for comparisons between the actual observation and
each of the two most confusing templates. This could resolve at least
those confusions involving two very similar pictograms.

6.2. Comparison to PCA and AdaBoost

For comparative analysis of our feature selection algorithm we
have performed a separate experiment in which different methods
of inferring a discriminative representation of road signs were used.
The aim of this experiment was to support our intuition that with
the proposed image representation and feature selection methods, a
robust, discriminative classifier can be learned easily from the clean
template images. In the same time the resulting classifier is no worse
than those generated using well-known data-driven techniques such
as PCA or AdaBoost. On input we considered a dataset of 13 287 static
images (4251 training and 9036 test) extracted from several pre-
labelled traffic video sequences. These images represented 17 classes
of Japanese traffic signs and were of lower quality than those used in
the dynamic recognition experiment. These classes were not equally

s %

Fig. 12. Haar wavelet features used within the AdaBoost framework in the compar-
ative evaluation of our discriminative feature selection method.

represented in the data, which reflects the fact that certain signs
are less likely to be seen in reality than the other. All input images
were scaled to 60 x 60 pixels prior to the processing. The following
classifier training strategies were compared with our approach:

(1) PCA with histograms of oriented gradients (HOG): Each input im-
age was divided into 6 x 6 adjacent regions. For each subregion a 6-bin
histogram of gradient orientations was calculated and scaled to the
range [0, 1]. Six-dimensional vectors yielded a 600-dimensional vec-
tor for each image after concatenation. PCA was employed to select a
16D linear combination of the original dimensions where 98% of the
global data variance resided. Sign classification was done via nearest
neighbour selection of the closest class mean in a sense of L2 metric.

(2) AdaBoost with Haar wavelet features: We used the approach of
Jones and Viola [18] to learn a sign similarity measure from example
image pairs. Resampling from the space of all possible negative ex-
ample pairs was adopted to enable tractable training. Haar wavelet
filters shown in Fig. 12 were used to construct weak classifiers within
the AdaBoost framework. Size of each rectangular component of each
filter satisfied w, h = {4, 8}px and the filters were shifted by half of
that size along each dimension, yielding a large over-complete space
of input features. Such filters were computed independently in grey
scale as well as in the images with red and blue colours enhanced,
according to the first two transforms in Eq. (1). Classification of each
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Table 4

Confusion matrices illustrating the classification accuracy obtained using different image representations and feature selection methods: (a) HOG/PCA, (b) Haar/AdaBoost,
(c) HOG/AdaBoost, (d) CDT and class-specific discriminative local regions/forward search (our method).
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Under each confusion matrix the total correct classification rate is shown.

test image was done by picking the label of the class prototype image
for which the 100-feature boosted classifier yielded the maximum
response when evaluating a pair comprised of this prototype and the
image being tested. Prototype images were chosen randomly from
the natural images available for each class.

(3) AdaBoost with HOG features: The same technique was used
as in (2), but using HOGs as an underlying image representation.
Histograms were computed in rectangular regions of size satisfying
w, h = {6,8,10}px, and shifted by half of the region size along each
dimension.

Table 4 shows confusion matrices obtained for the test set using
the abovementioned methods as well as our method involving CDT
image representation and discriminative local region extraction. The
results lead us to several conclusions. First, PCA does not seem to
be an adequate technique for classifying similar object classes as it

merely captures the global variance of the data, but does not take
class membership into account. On the other hand, a variant of Ad-
aBoost introduced in [18] offers an elegant method of learning object
dissimilarities and hence, unlike the standard AdaBoost, provides so-
lution to any multi-class problem. However, the resulting classifier,
despite being more complex, did not outperform the one obtained
using our method.®

In general, the accuracy of the classifiers induced from the mas-
sive volumes of natural data does not seem to compensate the huge
effort required to collect such data. This is particularly the case in

8 It should be noted that, in comparison to the dynamic recognition experiment,
the significantly worse classification rates can be attributed to the lack of temporal
integration.
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our problem where the difficulty in obtaining a sufficient number of
very rare signs’ images necessitates reduction of the problem to the
most popular classes. In this light, the proposed approach does not
only offer a simpler training and a competitive recognition accuracy,
but is also insensitive to the differences in the occurrence of the
targeted signs in the real world. In addition, it seems to be more
intuitive than the data-driven methods as the idealised templates
provide sufficient knowledge about the unique appearance of traffic
signs.

7. Conclusions

In this paper we have introduced a novel method for image rep-
resentation and discriminative local feature selection, proving its
usefulness in the task of traffic sign recognition. It was shown that
on top of a discrete-colour image representation, a distance met-
ric based on the Colour Distance Transform, and a forward feature
selection technique, highly discriminative sign descriptors can be
built from idealised templates based on the principle of one-vs-all
dissimilarity maximisation. With these descriptors available, a con-
ventional classifier can compete with the state-of-the-art methods,
processing the input video sequences in close to real time. In com-
parison to the previous studies, our method seems attractive in the
three aspects. First, feature extraction is performed directly from the
publicly available template sign images, which makes the training
effortless compared to the data-driven methods, such as AdaBoost.
Second, each template is treated on an individual basis which is re-
flected in the number, position, and importance of the local image
regions extracted in order to achieve a desired, globally set level of
dissimilarity from the remaining templates. Finally, by using CDT
we have shown that the proposed description of signs, although de-
rived from the ideally clean template images, is suitable for mod-
elling the intra-class appearance variability of traffic signs detected
in the noisy traffic video.
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