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CMS  = Compact Muon Solenoid detector 
• missing element in current theoretical framework   -  mass 

Total weight 12,500 tons 
Diameter    15m 
Length 21.6m 
Magnetic field 4T 

Tracking system  
10 million microstrips 
Diameter    2.6m 
Length  7m 
Power  ~50kW  

14000 t 
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LHC parameters (CMS) 

• Consequences 
   
High speed signal processing 
Signal pile-up  
         
High (low) radiation exposure  
High (low) B field operation  
  
Very large data volumes
      
New technologies 
 

pp Pb-Pb
Luminosity 1034 cm-2.s-1 1027 cm-2.s-1

Annual integrated L 5x1040 cm-2 ?

CM energy 14 TeV 5.5 TeV/ N
σ  inelastic ~70mb ~6.5 b

interactions/bunch ~20 0.001
tracks/unit rapidity ~140 3000-8000
beam diameter 20µm 20µm
bunch length 75mm 75mm
beam crossing rate 40MHz 8MHz
Level 1 trigger delay  3.2µsec  3.2µsec
L1 (average) trigger rate Š100kHz < 8kHz
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Design philosophy 
• Large solenoidal (4T) magnet  

iron yoke - returns B field, absorbs particles 
technically challenging but  

smaller detector, p resolution, trigger, cost 
• Muon detection 

high pT lepton signatures for new physics 
• Electromagnetic calorimeter 

high (∆E) resolution, for H => γγ  (low mass mode) 
• Tracking system 

momentum measurements of charged particles 
pattern recognition & efficiency 

complex, multi-particle events 
complement muon & ECAL measurements 

improved p measurement (high p)  
E/p for e/γ identification 
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Parameters for hadronic collider physics 
• E, p, cosθ, φ    prefer variables which easily Lorentz  
 transform e.g E, pT, pL, φ 
• pT divergences from simple behaviour could imply  
  new physics 

 eg heavy particle decay => high pT lepton (or hadron) 
 

• rapidity 
       
Lorentz boost 

  
 

•  pseudorapidity 
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Physics requirements (I) 
• Mass peak -  one means of discovery 

 
 
=> small σ(pT) 
 
eg H => ZZ or ZZ* => 4l± 
 

typical pT(µ) ~ 5-50GeV/c 
 

 
 

• Background suppression 
measure lepton charges 
good geometrical acceptance  - 4 leptons 
background channel  t => b => l 

require m(l+l-) = mZ      ΓZ ~ 2.5GeV 
precise vertex measurement identify b decays, or reduce fraction in data 

 

m 2 = Ei
2

i∑ − p
i
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Physics requirements (II) 

∆pT

pT

≈ 0.15pT (TeV) ⊕ 0.5%

• p resolution 
 
 
large B and L 

 
• high precision space points 

detector with small intrinsic σmeas 
• well separated particles 

good time resolution 
low occupancy  =>  many channels 
good pattern recognition  

• minimise multiple scattering 
• minimal bremsstrahlung, photon conversions 

material in tracker   
most precise points close to beam 

σ( pT )
pT

~ pT
σ meas

B.L2 Npts
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Silicon diodes as position detectors 

+V bias

~25µm

~3
00

µm

~1pF/cm

~0.1pF/cm

• Spatial measurement 
precision defined by 
strip dimensions 

ultimately limited by 
charge diffusion 

σ ~ 5-10µm  
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Vertex detector ~1990 
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Interactions in CMS 

7 TeV p 

7 TeV p 
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2.4m 

~ 6m 

Microstrip tracker system 

~10M 
detector 
channels 
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Event in the tracker 
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• Constraints on tracker 
minimal material  
high spatial precision 
sensitive detectors requiring  
      low noise readout 
power dissipation ~50kW  
      in 4T magnetic field 
radiation hard 
Budget 

•  Requirements 
 large number of channels 
 limited energy resolution 
 limited dynamic range 

Silicon detector modules 
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Radiation environment 
• Particle fluxes 

Charged and neutral particles from interactions    ~ 1/r2 
Neutrons from calorimeter 

nuclear backsplash + thermalisation   ≈  more uniform gas 
only E > 100keV damaging 
 

• Dose  energy deposit per unit volume   
Gray = 1Joule/kg = 100rad 
 
mostly due to charged particles 
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Imperial College contributions to Tracker 

FED 

APV25 
APVMUX/PLL 

•  Hardware development 
•  Hardware construction 
•  Beam tests & studies 
•  Preparation for physics 
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programmable 

gain 

APV25 0.25µm CMOS 

Low noise 
charge 

preamplifier 

50 ns CR-
RC shaper 

192-cell 
analogue 
pipeline 

1 of the 128 channels 

SF SF 

Analogue 
unity gain 
inverter 

S/H 

APSP 

128:1 
MUX 

Differential 
current  
O/P 

APV25-S0    (Oct 1999) 

APV25-S1    (Aug 2000) 

Chip Size 7.1 x 8.1 mm 

Final 

amplifiers 
pipeline 
memory 

signal  
processing 

&  
MUX 

control logic 
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Irradiations of 0.25µm technology 
• Extensive studies     

CMS tracker data from IC, Padova, CERN  
ALL POSITIVE and well beyond LHC range 

 
• CMOS hard against bulk damage 

Qualify chips from wafers  
with ionising sources 

 
 

• Typical irradiation conditions 
50kV X-ray source 
 Dose rate ~ 0.5Mrad/Hour 

to 10, 20, 30 & 50Mrad 

PMOS 

PMOS 
2000/0. 36 

400µA 
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APV25 irradiations    (IC & Padova) 
• IC x-ray source     

Normal operational bias during irradiation  clocked & triggered 
 
 
 
 
 
 
 
 
 
 
 
also  1 0 MeV linac electrons(80Mrad)   and   2. 1 x1 01 4 reactor n. cm- 2 

Post irradiation noise change insignificant 

10 Mrad pre-rad APV25-S1 
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CMS Silicon Strip Tracker Front End Driver 

VME-FPGA 

TTCrx 

BE-FPGA 
Event Builder 

Buffers 

FPGA 
Configuration 

Power 
DC-DC 

DAQ 
Interface 

12 

12 

12 

12 

12 

12 

12 

12 

Front-End Modules x 8 
Double-sided board 

CERN 
Opto- 

Rx Analogue/Digital 

96 Tracker 
Opto Fibres 

VME 
Interface 

Xilinx 
Virtex-II 
FPGA 

Data Rates 
9U VME64x Form Factor 

Modularity matched Opto Links 

Analogue: 96 ADC channels (10-bit 
@ 40 MHz )  

@ L1 Trigger : processes 25K 
MUXed silicon strips / FED  

 

Raw Input: 3 Gbytes/sec* 
after Zero Suppression... 

DAQ Output: ~ 200 MBytes/sec 

 

~440 FEDs required for entire SST 
Readout System 

 
*(@ L1 max rate = 100 kHz) 

FE-FPGA 
Cluster 
Finder 

TTC 

TCS 

Temp 
Monitor 

JTAG 

TCS : Trigger Control System 

9U VME64x 
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CMS Silicon Strip Tracker FED    Front-End FPGA Logic 
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2 x 256 cycles 256 cycles nx256x16 

trig1 
Synch error 

4x
 

Temp Sensor 

Delay Line 

Opto Rx 

Clock 40 
MHz D

LL
 1x 

2x 
4x 

per adc channel phase 
compensation required to bring 

data  into step 

+ Raw Data mode, Scope mode, Test modes... 

160 MHz 
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The CMS Tracking Strategy 

Radius ~ 110cm, Length/2 ~ 270cm 

3 disks TID 

6 layers 
TOB 

4 layers 
TIB 

9 disks TEC  

Number of hits by tracks: 
Total number of hits 
Double-side hits 
Double-side hits in thin detectors 
Double-side hits in thick 
detectors 

• Rely on “few” measurement layers, 
each able to provide robust (clean) and 
precise coordinate determination 

2-3 Silicon Pixel  
10 - 14 Silicon Strip Layers 
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Vertex Reconstruction 

At high luminosity, the 
trigger primary vertex 
is found in >95% of 
the events 

Primary vertices: use pixels! 
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High Level Trigger & Tracker 

In High Level trigger reconstruction only 0.1% 

of the events  should survive.  
“How can I kill these events using the least  
CPU time?” 
This can be interpreted as: 
o The fastest (most approx.) reconstruction 
o The minimal amount of precise reconstruction 
o A mixture of the two  

DAQ 

40 MHZ 

100 KHz 

100 Hz 

Same SW would be use in HLT and off-line :  

  algorithms should be high quality  

  algorithms should be fast enough  

 

Events rejected at HLT are  
irrecoverably lost! 

HLT Track  
finding 
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How does it perform at the LHC? 
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How does it perform at the LHC? 
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How does it perform at the LHC? 

Kaons, 
Protons, 

Deuterons 



Published results 
• VERTEX 2012 

December 2015 P Hobson 31 



Efficiency 

November 2015 P Hobson 32 



dE/dx 
• Using dE/dx data to fit the KK invariant mass distribution to detect the φ(1020). 

October 2002 P Hobson 33 

13 TeV data  



Photon conversions in the pixel layers 
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• Reconstructed photon conversions (photon “radiography”) 



Finding the cooling pipes! 
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IP within jets 
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Secondary vertex b-tagging 
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Leakage Currents in Strips 

December 2015 P Hobson 38 

Leakage current (top) and simulated 
1 MeV neutron equivalent dose 
(bottom) 

Leakage current vs radius 



Even more from CMS … 
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From JINST 9 (2014) P1009 
https://cms-results.web.cern.ch/cms-results/public-
results/publications/TRK-11-001/index.html 
 
Tracker performance plots (public) 
https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK 

https://cms-results.web.cern.ch/cms-results/public-results/publications/TRK-11-001/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/TRK-11-001/index.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/DPGResultsTRK
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