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Exercises on Sequences and Series of Real Numbers
1. This was question 1 of the January 2003 MA2034A paper. Cauchy sequences will be covered

later in the module this year and thus you will not be able to answer (a)(ii) and (b) yet.

Let (xn) denote a sequence of real numbers.

(a) (i) Define what it means for the sequence (xn) to converge using the usual ε and N
notation.

[1 MARK]

(ii) Define what it means for the sequence (xn) to be a Cauchy sequence.

[2 MARKS]

(iii) Define what it means for the sequence (xn) to be strictly increasing.

[1 MARK]

(b) Prove that if a sequence (xn) converges then it is a Cauchy sequence.

[4 MARKS]

(c) Determine the limits of the following sequences (xn) whose nth term xn is given
below.

(i)

xn :=
5n3 + 3n + 1

15n3 + n2 + 2
. [2 MARKS]

(ii)

xn :=
sin(n2 + 1)

n2 + 1
. [2 MARKS]

(iii)

xn :=

√
n + 2−

√
n + 1√

n + 1−
√

n
. [2 MARKS]

(d) Let

ak =
1

k2k
, bk =

k

2k
, sn =

n∑
k=1

ak and tn =
n∑

k=1

bk .

(i) Find the limits of the sequences (ak+1/ak) and (bk+1/bk).

[2 MARKS]

(ii) Given that

ak ≤
1

2k
≤ bk and bk ≤

(
3

4

)k−2

, k ≥ 3,

explain why (sn) and (tn) both converge with

lim
n→∞

sn ≤ 1 ≤ lim
n→∞

tn ≤ 4.

[4 MARKS]
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ANSWER

(a) (i) (xn) converges to x ∈ R if for every ε > 0 there exists a N such that

|xn − x| < ε for all n ≥ N .

1 MARK

(ii) (xn) is a Cauchy sequence if for every ε > 0 there exists a N such that

|xn − xm| < ε for all n, m satisfying n ≥ N and m ≥ N .

2 MARKS

(iii) (xn) is strictly increasing if xn+1 > xn for n = 1, 2, · · · .

1 MARK

(b) From the definition of convergence of (xn) to x there exists a N = N(ε/2) such that

|xn − x| < ε/2 for all n ≥ N .

If both n ≥ N and m ≥ N then

|xn − xm| = |(xn − x)− (xm − x)| ≤ |(xn − x)|+ |(xm − x)| < ε/2 + ε/2 = ε

by the triangle inequality and the above bound. Thus (xn) is a Cauchy sequence.

4 MARKS

(c) (i)

xn :=
5n3 + 3n + 1

15n3 + n2 + 2
=

5 + 3/n2 + 1/n3

15 + 1/n + 2/n3 →
5

15
=

1

3
as n →∞.

In the above we have used the result that 1/n → 0 as n →∞ and a result about
combining convergent sequences and noting that the denominator converges to
a non-zero value.

2 MARKS

(ii) | sin(n2 + 1)| ≤ 1 and hence

|xn| ≤
1

n2 + 1
=

1/n2

1 + 1/n2 → 0 as n →∞.

Thus xn → 0 as n →∞.
2 MARKS

(iii) Applying the identity a − b = (a2 − b2)/(a + b) to the numerator and the de-
nominator gives

xn :=

√
n + 2−

√
n + 1√

n + 1−
√

n
=

√
n + 1 +

√
n√

n + 2 +
√

n + 1

=

√
1 + 1/n + 1√

1 + 2/n +
√

1 + 1/n
→ 1 + 1

1 + 1
= 1 as n →∞.

2 MARKS
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(d) (i)

ak+1

ak

=
k2k

(k + 1)2(k+1)
=

k

2(k + 1)

=
1

2(1 + 1/k)
→ 1

2
as k →∞.

bk+1

bk

=
(k + 1)2k

k2(k+1)
=

k + 1

2k

=
1 + 1/k

2
→ 1

2
as k →∞.

2 MARKS

(ii) sn − sn−1 = an > 0 and tn − tn−1 = bn > 0 and thus both (sn) and (tn) are
strictly increasing. They both converge if they are bounded.

sn =
n∑
1

ak ≤
n∑
1

1

2k
=

1

2

(
n−1∑

0

1

2k

)
=

1

2

(
1− (1/2)n

1− (1/2)

)
= 1− 1

2n < 1.

Thus lim sn ≤ 1.

tn =
n∑
1

bk ≤ b1 + b2 +
n∑
3

(
3

4

)k−2

=
1

2
+

1

2
+

(
3

4

) n−3∑
k=0

(
3

4

)k

< 1 +

(
3

4

)
1

1− (3/4)
= 4.

Thus lim tn ≤ 4.
Finally as

tn ≥ 1− 1

2n

for all n it follows that tn ≥ 1.
4 MARKS

2. These are parts of the question 1 of the January 1999–2002 examination papers. The
marks shown in bold and in square brackets next to the question are the part marks that
were shown on the January 2001 and 2002 examination papers. The mark breakdown was
not indicated on MA2034A examination papers before January 2001.

Let (xn) denote a sequence of real numbers.

(i) Define what it means for the sequence (xn) to be bounded.

[1 MARK]

ANSWER

(xn) is bounded if there exists a M such that |xn| ≤ M for all n.

1 MARK
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Let (xn) denote a sequence which is bounded above. Define the least upper bound
(i.e. the supremum) of (xn).

[1 MARK]

ANSWER

u ∈ R is a least upper bound or supremum of (xn) if it is an upper bound of (xn) and
no number smaller than u is an upper bound.

1 MARK

(ii) Prove that if a sequence (xn) is strictly increasing and bounded above then it con-
verges to u where u is the least upper bound of (xn).

[4 MARKS]

ANSWER

As u is the least upper bound then no smaller number u− ε is an upper bound for
any ε > 0. Thus there must be an xN with

u− ε < xN ≤ u .

The increasing property of the sequence then implies that

u− ε < xN ≤ xN+1 ≤ · · · ≤ u

and we satisfy the convergence definition for all n ≥ N .

(iii) Determine the limits of the following sequences (xn) whose nth term xn is given
below.

(a)

xn :=
7n4 + n2 − 2

14n4 + 5n− 4
. [2 MARKS]

ANSWER

xn =
7n4 + n2 − 2

14n4 + 5n− 4
=

7 + (1/n2)− (2/n4)

14 + (5/n3)− (4/n4)
→ 7

14
=

1

2
as n →∞.

In the above we have used the result that 1/n → 0 as n →∞ and a result about
combining convergent sequences and noting that the denominator converges to
a non-zero value.

(b)

xn :=
n3 + 2n2 + 1

6n3 + n + 4
. [2 MARKS]
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ANSWER

xn =
n3 + 2n2 + 1

6n3 + n + 4
=

1 + (2/n) + (1/n3)

6 + (1/n2) + (4/n3)
→ 1

6
as n →∞.

In the above we have used the result that 1/n → 0 as n →∞ and a result about
combining convergent sequences and noting that the denominator converges to
a non-zero value.

(c)

xn :=
n2 + n + 1

3n2 + 4
.

ANSWER

xn =
n2 + n + 1

3n2 + 4
=

1 + (1/n) + (1/n2)

3 + (4/n2)
→ 1

3
as n →∞.

In the above we have used the result that 1/n → 0 as n →∞ and a result about
combining convergent sequences. The denominator converges and it is at least
3 for all n.

(d)
xn :=

√
n4 + n2 − n2 . [2 MARKS]

ANSWER

xn =
√

n4 + n2 − n2 =
n2

√
n4 + n2 + n2

=
1√

1 + 1/n2 + 1
→ 1

1 + 1
=

1

2
as n →∞.

It is acceptable here to use the general binomial expansion to give

xn = n2
(
(1 + 1/n2)1/2 − 1

)
= n2((1/2)(1/n2) +O(1/n4))

= 1/2 +O(1/n2) → 1/2 as n →∞.

(e)
xn := −n +

√
n2 + n . [2 MARKS]

ANSWER

xn =
√

n2 + n− n =
n√

n2 + n + n

=
1√

1 + 1/n + 1
→ 1

1 + 1
=

1

2
as n →∞.
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(f)

xn :=
sin n

n
+ (

√
n + 1−

√
n) .

ANSWER

Since | sin n| ≤ 1 we have∣∣∣∣sin n

n

∣∣∣∣ ≤ 1

n
→ 0 as n →∞ .

Also,
√

n + 1−
√

n =
1√

n + 1 +
√

n
→ 0 as n →∞.

Thus xn → 0 as n →∞.

(iv) (a) Show that the sequence (xn) whose nth term is

xn :=
n3 + 3n2

n + 1
− n2

is unbounded.
[2 MARKS]

ANSWER

xn =
n3 + 3n2

n + 1
− n2 =

n3 + 3n2 − (n3 + n2)

n + 1

=
2n2

n + 1
≥ 2n2

2n
= n

(xn) is unbounded by comparison with n.

(b) Show that the sequence (xn) whose nth term is

xn := (n + 1/n)3 − n3

is unbounded.

ANSWER

xn = (n3 + 3n + 3/n + 1/n3)− n3 = 3n + 3/n + 1/n3 > 3n.

(xn) is unbounded by comparison with 3n.

(c) Show that the sequence (xn) whose nth term is

xn :=
(
n + 1/n2

)4 − n4 [3 MARKS]

is unbounded.
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ANSWER

xn =
(
n + 1/n2

)4 − n4

= (n4 + 4n + 6/n2 + 4/n5 + 1/n8)− n4

= 4n + 6/n2 + 4/n5 + 1/n8 > 4n .

The sequence (n) is unbounded and hence by comparison (xn) is also unbounded.

(v) (a) Given that k! ≥ 2k−1 for all k ≥ 1, show that the sequence (xn) whose nth term
is

xn :=
n∑

k=0

1

k!

is bounded above by 3. Explain why you can deduce that it converges.

ANSWER

We are given that k! ≥ 2k−1 for k ≥ 1 and thus

1

k!
≤ 1

2k−1
for k ≥ 1.

Thus

xn = 1 +
n∑

k=1

1

k!

≤ 1 +
n∑

k=1

1

2k−1

= 1 +
1− 1

2n

1− 1

2

(by summing the geometric series)

= 1 + 2

(
1− 1

2n

)
< 3 .

Since xn+1 − xn = 1/(n + 1)! > 0 the sequence is strictly increasing and as it is
also bounded above it converges by the monotone convergence theorem.

(b) Given that kk ≥ 2k for all k ≥ 2, show that the sequence (xn) whose nth term
is

xn :=
n∑

k=1

1

kk

is bounded above by 3/2. Explain why you can deduce that it converges.
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ANSWER

For k ≥ 2,

kk ≥ 2k implies
1

kk
≤ 1

2k
.

Thus

xn − 1 =
n∑

k=2

1

kk

≤
n∑

k=2

1

2k
=

1

4

n−2∑
j=0

1

2j

=
1

4

(
1− (1/2)n−1

1− (1/2)

)
<

1

4

(
1

1− (1/2)

)
=

1

2

by summing the geometric series. Hence xn ≤ 3/2 for all n.
Since xn − xn−1 = 1/nn > 0 the sequence is strictly increasing and as it is also
bounded above it converges by the monotone convergence theorem.

(c) Let

ak =
1

k2k
, bk =

k

2k
, sn =

n∑
k=1

ak and tn =
n∑

k=1

bk .

Given that

ak ≤
1

2k
≤ bk and bk ≤

(
3

4

)k−2

, k ≥ 3,

explain why (sn) and (tn) both converge with

lim
n→∞

sn ≤ 1 ≤ lim
n→∞

tn ≤ 4.

[4 MARKS]

ANSWER

This repeats the last part of question 1. See the answer to the last part of
question 1.

3. If the sequence (xn) converges then show that its limit is unique.

ANSWER

This is a proof by contradiction. Hence you start by assuming that the converse is true
which in this case means that you assume that the sequence converges to 2 distinct limits
x 6= y. We need now to show that this always leads to a contradiction.

All we know about the sequence is that it converges and thus we start by using this. We
have from the definition of convergence that for every ε > 0 there exists Nx and Ny such
that

|xn − x| < ε for all n ≥ Nx and |xn − y| < ε for all n ≥ Ny.
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As we are aiming to show that it is impossible for x and y to be different the next step is
to consider the difference x − y. If n > max{Nx, Ny} then by the triangle inequality we
have

0 6= x− y = (x− xn) + (xn − y)

0 < |x− y| = |(x− xn) + (xn − y)| ≤ |xn − x|+ |xn − y| < ε + ε = 2ε .

This is true for all ε and by taking ε sufficiently small we get our contradiction, specifically
we get a contradiction if we take

ε =
|x− y|

4
> 0 .

4. Show that if (xn) is a sequence of real numbers which converges to x then the sequence
(sn) where

sn :=
x1 + x2 + · · ·+ xn

n

also converges to x.

ANSWER

(xn) converges to x implies that for every ε > 0 there exists an Ñ such that

|xn − x| < ε for all n ≥ Ñ .

We now divide the sum into those terms before Ñ and those after Ñ . We have

|sn − x| = 1

n

∣∣∣∣∣
n∑
1

(xi − x)

∣∣∣∣∣ ≤ 1

n

Ñ−1∑
1

|xi − x|

+
1

n

 n∑
Ñ

|xi − x|


≤ C

n
+ ε, where C =

Ñ−1∑
1

|xi − x| .

Now
C

n
+ ε < 2ε provided

C

n
< ε, which requires that n > C/ε.

Thus if we let N = max{Ñ , C/ε} then for all n ≥ N we have |sn − x| < 2ε which proves
that the sequence (sn) converges to x.

5. Given that (1 + 1/n)n → e = 2.718 · · · as n → ∞ and for c > 0, c1/n → 1 as n → ∞,
show the following.

(i) (
1 +

1

n2

)n

→ 1 as n →∞.
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(ii) The sequence (xn) defined by

xn :=

(
1 +

1√
n

)n

is unbounded.

(iii) If r = p/q ∈ Q is a rational number (i.e. p, q ∈ N with q 6= 0) and assuming that the
sequence (tn) defined by

tn :=
(
1 +

r

n

)n

converges then show that the subsequence (tnp) = (tp, t2p, · · · ) converges to er.

ANSWER

The key here is to introduce the convergent sequence (yn) where

yn :=

(
1 +

1

n

)n

→ e = 2.718 · · · as n →∞

and to express the given sequences in terms of (yn).

(i) Let

xn :=

(
1 +

1

n2

)n

= (yn2)1/n .

Now yn → e implies that yn is near e for sufficiently large n. In particular, yn < 3
for all sufficiently large n. (A closer inspection would reveal that this is true for all
n but this amount of detail is not required to establish that the given sequence is
convergent.) Thus

1 ≤ xn = (yn2)1/n < 31/n .

The right hand side converges to 1 as n →∞ and thus the squeeze theorem implies
that xn → 1 as n →∞.

(ii) Now let

xn :=

(
1 +

1√
n

)n

.

Observe that

xn2 =

(
1 +

1

n

)n2

= yn
n .

yn → e implies that yn is near e for sufficiently large n. In particular, yn ≥ 2 for
sufficiently large n. (A closer inspection would reveal that this is true for all n but,
as in part (i), this amount of detail is not required to establish that the sequence is
unbounded.) Thus

xn2 ≥ 2n

and hence the subsequence (xn2) is unbounded. This in turn implies that (xn) is
unbounded.
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(iii) We are told that the sequences (tn) converges and we know that the any subsequence
of a convergent sequence also converges with the same limit. Now

tnp :=

(
1 +

p/q

np

)np

=

(
1 +

1

nq

)np

.

Observe that

ynq :=

(
1 +

1

nq

)nq

.

Thus
tnp = yr

nq .

As yn → e as n → ∞ we have for the subsequence that ynq → e as n → ∞. From
this it follows that yr

nq → er as n → ∞ by a result about this type of function of a
convergent sequence. Hence we have shown that

lim
n→∞

tn = lim
n→∞

tnp = lim
n→∞

yr
nq = er .

6. Let (sn) be the sequence given by

sn :=
1

n + 1
+

1

n + 2
+ · · ·+ 1

2n
.

Show that the sequence is increasing. Does it converge?

By noting that

0 <

∫ k+1

k

1

x
dx− 1

k + 1
<

1

k
− 1

k + 1

show that

0 < ln 2− sn <
1

2n
.

ANSWER

sn+1 − sn =

(
1

n + 2
+ · · ·+ 1

2n + 2

)
−
(

1

n + 1
+ · · ·+ 1

2n

)
=

1

2n + 1
+

1

2n + 2
− 1

n + 1

=
(4n + 3)

(2n + 1)(2n + 2)
− 2

2n + 2

=
(4n + 3)− 2(2n + 1)

(2n + 1)(2n + 2)
=

1

(2n + 1)(2n + 2)
> 0 .

Thus (sn) is increasing. (sn) is the sum of n terms the largest of which is 1
n + 1. Thus

sn ≤
n

n + 1
< 1 .
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(sn) is hence increasing and bounded and it converges to a limit s ≤ 1.

1

k + 1
≤ 1

x
≤ 1

k
for x ∈ (k, k + 1).

Now
1

k + 1
=

∫ k+1

k

dx

k + 1
, and hence

∫ k+1

k

(
1

x
− 1

k + 1

)
dx > 0

from which it follows that

0 <
2n−1∑
k=n

(∫ k+1

k

1

x
dx− 1

k + 1

)
=

∫ 2n

n

1

x
dx− sn = [ln x]2n

n − sn = ln 2− sn .

Thus ln 2 bounds the sequence. Also note that

0 < ln 2− sn =
2n−1∑
k=n

(∫ k+1

k

1

x
dx− 1

k + 1

)
≤

2n−1∑
k=n

(
1

k
− 1

k + 1

)
=

(
1

n
− 1

n + 1

)
+

(
1

n + 1
− 1

n + 2

)
+ · · ·+

(
1

2n− 1
− 1

2n

)
=

(
1

n
− 1

2n

)
=

1

2n
→ 0 as n →∞.

Thus we have shown that sn → ln 2 as n →∞.

7. In each of the following cases determine whether or not the series converges.

(a)
∞∑

n=1

1

2n + 1
.

ANSWER

We could show convergence here by using the ratio or root test or more simply by
using the comparison test by noting that

0 ≤ 1

2n + 1
≤ 1

2n
.

The upper bound is a term from a convergent geometric series.

(b)
∞∑

n=1

4n2 − n + 3

n3 + 2n
.

ANSWER

This is divergent.

an =
4n2 − n + 3

n3 + 2n
=

1

n
cn, cn =

4− 1/n + 3/n2

1 + 2/n2
→ 4 as n →∞.

cn → 4 implies that there exists N such that cn > 3 for n ≥ N . Hence for n ≥ N we
have an ≥ 3/n and since

∑
1/n diverges we have by comparison that

∑
an diverges.
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(c)
∞∑

n=1

n +
√

n

2n3 − 1
.

ANSWER

This converges.

an =
n +

√
n

2n3 − 1
=

1

n2
cn, cn =

1 + 1/
√

n

2− 1/n3
→ 1

2
as n →∞.

cn → 1/2 implies that there exists N such that cn < 1 for n ≥ N . Hence for n ≥ N
we have an ≤ 1/n2 and since

∑
1/n2 converges we have by comparison that

∑
an

diverges.

(d)
∞∑

n=1

n4e−n2

.

ANSWER

By the root test

an = n4e−n2

, a1/n
n = (n1/n)4

(
e−n2

)1/n

= (n1/n)4e−n → 0 as n →∞.

Here the results is as a consequence of n1/n → 1 and e−n → 0. By the root test the
series converges.

8. You will see questions like this in the section on series of functions.

For each of the following series determine the values of x ∈ R such that the given series
converges.

(a)
∞∑

k=0

xk

k!

ANSWER

Let ak = xk/k! and use the ratio test. We have

ak+1

ak

=
xk+1/(k + 1)!

xk/k!
=

x

k + 1
→ 0 as k →∞.

By the ratio test the series converges (absolutely) for all x ∈ R.

(b) In the following α ∈ R is not an integer.

∞∑
k=0

(
α(α− 1) · · · (α− k + 1)

k!

)
xk = 1 + αx +

α(α− 1)

2
x2 + · · ·
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ANSWER

Let ak = α(α− 1) · · · (α− k + 1)xk/k!. Using the ratio test

ak+1

ak

=
α− k

k + 1
x =

α/k − 1

1 + 1/k
x → x as k →∞.

Thus the series
∑

ak converges absolutely if |x| < 1 which in turn implies that the
series converges for |x| < 1.

If |x| > 1 then the terms of the series are unbounded and thus the series diverges.

What happens when x = −1 or x = 1 needs more refined tests to determine if
the series converges or diverges and the outcome depends on α. This will not be
considered further here.

(c)
∞∑

k=0

k3xk

3k
.

ANSWER

The root test is the easiest test to use here. With ak = k3xk/3k we have

|ak|1/k =
(k1/k)3|x|

3
→ |x|

3
as k →∞.

By the root test the series converges (absolutely) if |x| < 3, it diverges if |x| > 3. If
|x| = 3 then |ak| = k3 and since these terms become unbounded it follows that the
series diverges when |x| = 3.

(d)
∞∑

k=0

kkxk.

ANSWER

The root test is the easiest test to use here. With ak = kkxk we have

|a1/k
k | = |kx|.

This only converges if x = 0 and is unbounded for x 6= 0. Hence the series only
converges when x = 0.

(e)
∞∑

k=0

akx
k = 1 + 2x + x2 + 2x3 + x4 + · · · ,

i.e. with a2k = 1 and a2k+1 = 2 for k = 0, 1, 2, · · · .
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ANSWER

Let bk = akx
k. The ratio test does not give any information here as ak+1/ak does

not have a limit as k →∞. However we can still use the root test. Since

1 ≤ ak ≤ 2, 1 ≤ a
1/k
k ≤ 21/k → 1 as k →∞.

Thus
|bk|1/k = a

1/k
k |x| → |x| as k →∞.

The series converges (absolutely) if |x| < 1 and diverges if |x| > 1. By inspection
the series diverges if x = 1 as the terms of the series do not tend to 0 as k →∞. It
can be shown that the series also diverges when x = −1.

(f)
∞∑

k=1

√
x2 + k − |x|

k2 .

ANSWER

Let

ak =

√
x2 + k − |x|

k2 =
(x2 + k)− x2

(
√

x2 + k + |x|)k2
=

1

(
√

x2 + k + |x|)k
≤ 1

k3/2
for all x

since x2 ≥ 0. Since 0 ≤ ak ≤ 1/k3/2 the series
∑

ak converges by comparison with
the convergent series

∑
1/k3/2.

(g)
∞∑

k=1

(
cos kx

k3 + 3
sin kx

k2

)
.

ANSWER

We can test for absolute convergence. If ak denotes the kth term then by the triangle
inequality and that | sin kx| ≤ 1 and | cos kx| ≤ 1 we have

|ak| ≤
1

k3 + 3
1

k2

for all x ∈ R. Since
∑

1/k3 and
∑

1/k2 are standard convergent series it follows
that

∑
|ak| converges by the comparison test. Hence the original series converges

for all x.
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Exercises on continuity and the contraction mapping

theorem

1. This was question 2 of the Jan 2003 MA2034A exam paper.

(a) Let I ⊂ R be an interval and let f : I → R be a function.

(i) Give the definition of the continuity of the function f at the point c ∈ I using
the usual ε, δ notation.

[2 MARKS]

(ii) Define what it means for f to be Lipschitz on I and show that such a function
is continuous on I.

[3 MARKS]

(b) Let f : [0, 1] → R, f(x) :=
√

x. Show that f is continuous at x = 0 but that f is
not Lipschitz on [0, 1].

[4 MARKS]

(c) If f : [a, b] → R is continuously differentiable on [a, b] then it can be shown that f is
Lipschitz on [a, b] with the smallest Lipschitz constant L given by

L = max
x∈[a,b]

|f ′(x)| .

Use this to obtain the smallest Lipschitz constant for the following functions on their
domains of definition.

(i) f : [5, 13] → R, f(x) := 2x2 − 17.

[3 MARKS]

(ii) f : [−1, 1] → R, f(x) := (1− x2)2.

[4 MARKS]

(iii) f : [0, 4] → R, f(x) := (x + 1)e−x.

[4 MARKS]

ANSWER

(a) (i) f is continuous at c ∈ I if for every ε > 0 there exists a δ such that

|f(x)− f(c)| < ε whenever |x− c| < δ .

2 MARKS
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(ii) f is Lipschitz on I if there exists a constant L ≥ 0 such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ I.

|f(x)− f(y)| ≤ L|x− y| < ε provided |x− y| < ε/L .

Hence we satisfy the continuity requirement by taking δ = ε/L.

3 MARKS

(b) For x ≥ 0
|f(x)− f(0)| = |f(x)| =

√
x < ε provided x < ε2.

Thus we satisfy the ε–δ definition with δ = ε2.

2 MARKS

For x > 0, y > 0 and x 6= y we have

f(x)− f(y)

x− y
=

√
x−√

y

x− y
=

1√
x +

√
y
.

As x → 0 and y → 0 this becomes unbounded and hence no constant L ≥ 0 can
exist as the Lipschitz constant of f on [0, 1].

2 MARKS

(c) (i)
f ′(x) = 4x and f ′′(x) = 4.

There are no turning points of f ′ and

L = max{|f ′(5)|, |f ′(13)|} = f ′(13) = 52.

3 MARKS

(ii)

f ′(x) = 2(1− x2)(−2x) = 4x(x2 − 1) = 4(x3 − x) and f ′′(x) = 4(3x2 − 1) .

There are turning points of f ′ at ±1/
√

3.

f ′(−1) = f ′(1) = 0 and |f ′(±1/
√

3)| = (4/
√

3)(1− 1/3) =
8

3
√

3
.

Thus

L =
8

3
√

3
.

4 MARKS
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(iii)

f ′(x) = e−x − (x + 1)e−x = −xe−x

f ′′(x) = xe−x − e−x = (x− 1)e−x.

f ′ has a local turning point at x = 1 ∈ [0, 4]. Thus

L = max{|f ′(0)|, |f ′(1)|, |f ′(4)|} = max{0, e−1, 4e−4} = e−1.

4 MARKS

2. This was question 2 of the Jan 2002 MA2034A exam paper.

(i) Let I ⊂ R be an interval and let f : I → R be a function.

(a) Give the definition of the continuity of the function f at the point c ∈ I using
the usual ε, δ notation.

[2 MARKS]

(b) Give the definition of the continuity of the function f at the point c ∈ I which
involves convergent sequences.

[1 MARK]

(c) Define what it means for f to be Lipschitz on I.

[1 MARK]

(ii) Show from the definition that the function f : [−1, 1] → R defined by

f(x) :=

{
x if 0 ≤ x ≤ 1

−2x if −1 ≤ x < 0

is Lipschitz on [−1, 1].
[3 MARKS]

(iii) If f : [a, b] → R is continuously differentiable on [a, b] then it can be shown that f is
Lipschitz on [a, b] with the smallest Lipschitz constant L given by

L = max
x∈[a,b]

|f ′(x)| .

Use this to obtain the smallest Lipschitz constant for the following functions on their
domains of definition.

(a) f : [−5, 5] → R, f(x) := x3.
[3 MARKS]

(b) f : [−2, 0] → R, f(x) := x4 + 6x3 + 12x2 − x.

[4 MARKS]
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(c) f : [10−6, 1] → R, f(x) :=
√

x.
[3 MARKS]

(iv) Let Z := {0,±1,±2, · · · } denote the set of integers and let f denote the function

f : R → R, f(x) :=

{
1, if x ∈ Z,

0 otherwise.

Use the sequential form of the definition of continuity to show that f is not continuous
any point c ∈ Z. Suppose c is a real number lying strictly between two consecutive
integers k and k + 1. If ε < 1, give a value of δ that establishes the continuity of f
at c, using the standard ε–δ definition.

[3 MARKS]

ANSWER

(i) (a) f is continuous at c ∈ I if for every ε > 0 there exists a δ such that

|f(x)− f(c)| < ε whenever |x− c| < δ .

(b) f is continuous at c ∈ I if for every sequence (xn) in I which converges to c then
the corresponding sequence (f(xn)) converges to f(c).

1 MARK

(c) f is Lipschitz on I if there exists a constant L ≥ 0 such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ I.
1 MARK

(ii) Let x, y ∈ [−1, 1]. In the case x, y ∈ [−1, 0] we have

|f(x)− f(y)| = |x− y|.

In the case x, y ∈ [0, 2] we have

|f(x)− f(y)| = 2|x− y|.

If x ∈ [−1, 0] and y ∈ [0, 1] then y − x = y + |x| and we have

|f(x)− f(y)| = |x + 2y| ≤ |x|+ 2y ≤ 2(|x|+ y) = 2|x− y|.

f is Lipschitz on [−1, 1] with a Lipschitz constant of 2.
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(iii) (a)

f : [−5, 5] → R, f(x) := x3, f ′(x) := 3x2, f ′′(x) := 6x .

f ′′(x) = 0 when x = 0. This is the only turning value of f ′. Thus

max
[−5,5]

|f ′(x)| = max{|f ′(−5)|, |f ′(0)|, |f ′(5)|} = 3(5)2 = 75 .

The smallest constant is 75.

(b)

f : [−2, 0] → R, f(x) := x4 + 6x3 + 12x2 − x,

f ′(x) := 4x3 + 18x2 + 24x− 1,

f ′′(x) := 12x2 + 36x + 24 = 12(x2 + 3x + 2)

= 12(x + 1)(x + 2) .

f ′′(x) = 0 when x = −1 and when x = −2.

max
[−2,0]

|f ′(x)| = max{|f ′(−2)|, |f ′(−1)|, |f ′(0)|} .

|f ′(0)| = 1, |f ′(−1)| = |−4+18−24−1| = 11 and |f ′(−2)| = |−32+72−48−1| =
9. The smallest constant is 11.

(c)

f : [10−6, 1] → R, f(x) :=
√

x, f ′(x) :=
1

2
√

x
.

f ′ is decreasing and positive on the interval and hence the smallest constant is
f ′(10−6) = 103/2 = 500.

(iv) If c = k ∈ Z then f(c) = 1. If we define the sequence (xn) by xn := c + 1/(2n) then
each xn satisfies k < xn < k + 1 and f(xn) = 0. By construction xn → c and the
constant sequence (f(xn)) converges but it does not converge to the function value
f(c) = 1. This shows that f is not continuous at c.

If now k < c < k+1 then the distance of c from an integer is δ := min{c−k, k+1−c}.
If |x− c| < δ then k < x < k + 1 and |f(x)− f(c)| = 0 < 1.

3. This was question 3 of the Jan 2003 MA2034A exam paper.

Let φ : [0, 1] → [0, 1] be a function.

(a) (i) Explain what it means for φ to be a contraction on [0, 1].

[2 MARKS]

(ii) Explain the term onto in the statement φ maps [0, 1] onto [m,M ] where 0 ≤
m ≤ M ≤ 1.

[1 MARK]
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(iii) Given that a contraction mapping φ : [0, 1] → [0, 1] has a fixed point, use a proof
by contradiction to show that the fixed point is unique.

[3 MARKS]

(iv) If L ≥ 0 is the smallest Lipschitz constant of φ : [0, 1] → [m, M ] given in (ii)
then explain why M −m ≤ L.

[2 MARKS]

(b) (i) Let φ1 : [0, 1] → R, φ1(x) = (x3 + 3)/5. Determine m and M such that
φ1 : [0, 1] → [m,M ] is onto and show that φ1 satisfies the conditions of the
contraction mapping theorem.

[3 MARKS]

(ii) Let φ2 : [0, 1] → R, φ2(x) = 4x(1 − x). Determine m and M such that φ2 :
[0, 1] → [m, M ] is onto and show that φ2 is not a contraction on [0, 1]. Determine
the fixed points of φ2 and classify them as stable or unstable.

[5 MARKS]

(iii) Let a > 1 and let φ3 : [
√

a, a] → [
√

a, (1 + a)/2], φ3(x) = 1
2
(x + a/x). Explain

why φ3 maps [
√

a, a] onto [
√

a, (1 + a)/2].
For what values of a > 1 is φ3 a contraction on [

√
a, a]?

Determine the fixed point or points of φ3 and classify any fixed point found as
stable or unstable.

[4 MARKS]

ANSWER

(a) (i) φ is a contraction on [0, 1] if there exists a constant L, 0 ≤ L < 1 such that

|φ(x)− φ(y)| ≤ L|x− y|

for all x, y ∈ [0, 1].

2 MARKS

(ii) The statement φ maps [0, 1] onto [m, M ] means that for all y ∈ [m, M ] there
exists an x ∈ [0, 1] such that y = φ(x).

1 MARK

(iii) Suppose x∗1 and x∗2 are two different fixed points, i.e.

x∗1 6= x∗2 with φ(x∗1) = x∗1 and φ(x∗2) = x∗2 .

Thus
0 < |x∗1 − x∗2| = |φ(x∗1)− φ(x∗2)| ≤ L|x∗1 − x∗2| < |x∗1 − x∗2|

by the contraction property with 0 ≤ L < 1. This is a contradiction and hence
there is only one fixed point.

3 MARKS
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(iv) If α, β ∈ [0, 1] are such that φ(α) = m and φ(β) = M then the Lipschitz
condition is

L ≥
∣∣∣∣φ(β)− φ(α)

β − α

∣∣∣∣ =
M −m

|β − α|
≥ M −m

because |β − α| ≤ 1.

2 MARKS

(b) (i)

φ′1(x) =
3x2

5
≥ 0 and φ′′1(x) =

6x

5
.

φ′1(x) ≥ 0 implies that φ1(x) is increasing and thus m = φ1(0) = 3/5 and
M = φ1(1) = 4/5.
φ′′1(x) = 0 when x = 0, an edge point, φ′1(0) = 0 and thus the smallest Lipschitz
constant of φ1 on [0, 1] is

L = φ′1(1) =
3

5
< 1.

As [m, M ] ⊂ [0, 1] and L < 1 the function φ1 satsifies the condition of the
contraction mapping theorem.

3 MARKS

(ii)
φ2(x) = 4x(1− x) = 4x− 4x2 and φ′2(x) = 4(1− 2x) .

φ′2(x) > 0 for 0 ≤ x < 1/2 and φ′2(x) < 0 for 1/2 < x ≤ 1. Thus φ2 is increasing
in [0, 1/2) and decreasing in (1/2, 1]. φ2(0) = φ2(1) = 0 and φ2(1/2) = 1. Thus

φ2 : [0, 1] → [0, 1]

is onto.
φ′2 has no turning points on [0, 1] and hence the maximum of |φ′2(x)| is attained
at the end points. The smallest Lipschitz constant for the region is hence

L = max
x∈[0,1]

{|φ′2(x)|} = max{|φ′2(0)|, |φ′2(1)|} = 4 .

The function is hence not contractive on [0, 1].
A fixed point of φ2 satisfies

x = 4x(1− x) thus x = 0 or 1 = 4(1− x), i.e. x = 3/4.

φ′2(0) = 4 and φ′2(3/4) = −2. In both cases |φ′2(x∗)| > 1 and thus x∗ = 0 and
x∗ = 3/4 are both unstable fixed points.

5 MARKS

(iii)

φ′3(x) =
1

2

(
1− a

x2

)
≥ 0 for x2 ≥ a.

φ3 increases in [
√

a, a] and φ3 hence maps the interval onto [
√

a, (1 + a)/2].

φ′′3(x) =
1

2

(
2a

x3

)
> 0.
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φ′′3 has no local turning points, φ′3(
√

a) = 0 and thus the smallest Lipschitz
constant is

L = |φ′3(a)| = 1− 1/a

2
≤ 1

2
.

Hence the mapping is a contraction for all a > 1.
The fixed point at x =

√
a is stable as φ′3(

√
a) = 0.

4 MARKS

4. This was question 3 of the Jan 2002 MA2034A exam paper.

Let φ : [0, 1] → [0, 1] be a function.

(i) Explain what it means for φ to be a contraction on [0, 1].

[2 MARKS]

(ii) If φ is a contraction on [0, 1] and x∗ is the unique fixed point of φ then show that if
x∗ ∈ [0, 1] and xn+1 = φ(xn), n = 0, 1, 2, · · · then

|xn − x∗| ≤ Ln|x0 − x∗|, n = 1, 2, · · ·
where L is the smallest Lipschitz constant of φ on [0, 1].

[3 MARKS]

(iii) In the case of the function

φ(x) =
3 + e−x

5
explain why

φ : [0, 1] → [φ(1), φ(0)] ⊂ [0, 1]

and determine the smallest Lipschitz constant of φ on [0, 1].

[5 MARKS]

State any conclusion you can make about fixed points of φ in [0, 1].

[2 MARKS]

(iv) Let φ1 : [0, 1] → R, φ1(x) := x((2− 4a)x + (4a− 1)) where a ∈ R, a 6= 1/2.

(a) Determine the fixed points of φ1 and classify them as stable or unstable depend-
ing on the value of a.

[4 MARKS]

(b) Explain why for 0 ≤ x ≤ 1 we have

min{4a− 1, 3− 4a} ≤ φ′(x) ≤ max{4a− 1, 3− 4a}.
[2 MARKS]

(c) By using part (b), or otherwise, explain why φ1 : [0, 1] → [0, 1] is one-to-one and
onto when 1/4 ≤ a ≤ 3/4.

[2 MARKS]
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ANSWER

(i) φ is a contraction on [0, 1] if there exists a constant L, 0 ≤ L < 1 such that

|φ(x)− φ(y)| ≤ L|x− y|

for all x, y ∈ [0, 1].

(ii)
|xn − φ(x∗)| = |φ(xn−1)− φ(x∗)| ≤ L|xn−1 − x∗| ≤ · · · ≤ Ln|x0 − x∗|

by repeated use of the contraction property.

(iii)

φ′(x) =
−e−x

5
< 0

and hence φ is decreasing. From this it follows that

φ : [0, 1] → [φ(1), φ(0)] .

Now φ(0) = 4/5 < 1 and φ(1) = (3+1/e)/5 > 3/5 > 0 and thus [φ(1), φ(0)] ⊂ [0, 1].

φ′′(x) =
+e−x

5
> 0.

As the second derivative is positive, the maximum of |φ′| on [0, 1] is at an end point.
The smallest Lipschitz constant is hence L = |φ′(0)| = 1/5.

[5 MARKS]

All the conditions of the contraction mapping theorem are satisfied and hence φ has
a unique fixed point in [0, 1].

[2 MARKS]

(iv) (a)
φ1(x) = x((2− 4a)x + (4a− 1)) = x

when
x = 0 and (2− 4a)x + (4a− 1) = 1.

Thus we have fixed points at

x = 0 and at x =
2− 4a

2− 4a
= 1.

To classify the fixed points we need φ′(x).

φ′(x) = 2(2− 4a)x + (4a− 1), φ′(0) = 4a− 1, φ′(1) = 3− 4a.

The fixed point at x = 0 is stable if −1 < 4a−1 < 1, 0 < a < 1/2. It is unstable
if a < 0 or a > 1/2.
The fixed point at x = 1 is stable if −1 < 3 − 4a < 1, −1 < 4a − 3 < 1, i.e.
1/2 < a < 1. It is unstable if a < 1/2 or a > 1.

[4 MARKS]
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(b) As φ′ is linear the minimum and maximum on [0, 1] occur at the end points.
Hence for all x ∈ [0, 1].

min{φ′(0), φ′(1)} ≤ φ′(x) ≤ max{φ′(0), φ′(1)}.

[2 MARKS]

(c) If a ≥ 1/4 then 4a − 1 ≥ 0 and 3 − 4a ≤ 2. If a ≤ 3/4 then 4a − 1 ≤ 2 and
3− 4a ≥ 0. In all cases the result in part (b) shows that φ′(x) ≥ 0. Thus φ′(x)
is increasing and as φ(0) = 0 and φ(1) = 1 it follows that φ : [0, 1] → [0, 1] is
one-to-one and onto.

[2 MARKS]

5. The following were parts of question 2 of the Jan 2001 and Jan 2000 papers.

(i) (a) Use the sequential form of the definition of continuity to show that the function

f : R → R, f(x) :=

{
x2 − 4
x− 2 , if x 6= 2,

5, if x = 2,

is not continuous at x = 2.
[3 MARKS]

ANSWER

Note that f(2) = 5 and that if x 6= 2 we have

f(x) =
x2 − 4

x− 2
= x + 2 .

If we consider the sequence (xn) defined by xn := 2 + 1/n then xn → 2 and
f(xn) = 4 + 1/n → 4 as n → ∞. As the limit is not the same as the function
value f(2) = 5 the function is not continuous at x = 2.

3 MARKS

(b) Use the sequential form of the definition of continuity to show that the function

f : R → R, f(x) :=

{
0, if x < 0,

1, if x ≥ 0,

is not continuous at x = 0.

ANSWER

Note f(0) = 1. If we consider the sequence (xn) defined by xn := −1/n < 0
then f(xn) = 0 for all n. Thus (f(xn)) is the constant sequence with limit 0.
As the limit is not the same as the function value f(0) = 1 the function is not
continuous at x = 0.

2 MARKS
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(ii) Let f : [a, b] → R. Define what it means for f to be Lipschitz on [a, b] and show that
such a function is continuous on [a, b].

[2 MARKS]

ANSWER

f is Lipschitz on [a, b] if there exists a constant L ≥ 0 such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ [a, b].

1 MARK

|f(x)− f(y)| ≤ L|x− y| < ε provided |x− y| < ε/L .

Hence we satisfy the continuity requirement by taking δ = ε/L.

1 MARK

(iii) Explain why f : [0, 1] → [0, 1], f(x) :=
√

x is not Lipschitz on [0, 1] but that f is
Lipschitz on the domain [a, 1] for all 0 < a < 1.

ANSWER

Let x, y ∈ [0, 1] with x 6= y.

f(x)− f(y) =
√

x−√
y =

x− y√
x +

√
y
.

Thus ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ =
1√

x +
√

y
.

2 MARKS

If we let x and y both tend to 0 then the right hand side becomes larger and larger
without bound. That is we cannot bound the right hand side for all x, y ∈ (0, 1].
This is why f is not Lipschitz on [0, 1].

2 MARKS

On the interval [a, 1] we get∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ 1√
a +

√
a

=
1

2
√

a
.

The function is Lipschitz with constant

L =
1

2
√

a
.

2 MARKS
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(iv) If f : [a, b] → R is continuously differentiable on [a, b] then it can be shown that f is
Lipschitz on [a, b] with the smallest Lipschitz constant L given by

L = max
x∈[a,b]

|f ′(x)| .

Use this to obtain the smallest Lipschitz constant for the following functions on their
domains of definition.

(a) f : [−3, 4] → R, f(x) := x3.
[4 MARKS]

ANSWER

f : [−3, 4] → R, f(x) := x3, f ′(x) := 3x2, f ′′(x) := 6x .

f ′′(x) = 0 when x = 0. This is the only turning value of f ′. Thus

max
[−3,4]

|f ′(x)| = max{|f ′(−3)|, |f ′(0)|, |f ′(4)|} = 3(4)2 = 48 .

The smallest constant is 48.
4 MARKS

(b) f : [0, 1] → R, f(x) := x2/2− x3/3.

[4 MARKS]

ANSWER

f : [0, 1] → R, f(x) := x2/2− x3/3,

f ′(x) := x− x2 = x(1− x),

f ′′(x) := 1− 2x .

f ′′(x) = 0 when x = 1/2.

max
[0,1]

|f ′(x)| = max{|f ′(0)|, |f ′(1)|, |f ′(1/2)|} .

f ′(0) = f ′(1) = 0 and f ′(1/2) = 1/4. The smallest constant is 1/4.

4 MARKS

(c) f : [0, 2] → R, f(x) := x4 − 6x3 + 12x2 + 4x.

[4 MARKS]
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ANSWER

f : [0, 2] → R, f(x) := x4 − 6x3 + 12x2 + 4x,

f ′(x) := 4x3 − 18x2 + 24x + 4,

f ′′(x) := 12x2 − 36x + 24,

= 12(x2 − 3x + 2) = 12(x− 1)(x− 2) .

f ′ has two turning values at x = 1 and at x = 2 (which is also an end point).
Now f ′(0) = 4, f ′(1) = 14 and f ′(2) = 32 − 72 + 48 + 4 = 12. The smallest
Lipschitz constant is

L = max{4, 14, 12} = 14 .

4 MARKS

(d) f : [0, 10] → R, f(x) := x2.

ANSWER

f ′(x) = 2x ≥ 0 for x ≥ 0.

Thus f ′ is increasing on [0, 10] and L = f ′(10) = 20.

1 MARK

(e) f : [0, 1/2] → R, f(x) := x3 − x2.

ANSWER

f ′(x) = 3x2 − 2x = x(3x− 2) and f ′′(x) = 6x− 2 .

f ′ has a turning point at x = 1/3. To determine the maximum of |f ′| on [0, 1/2]
we need to consider the end points and any intermediate turning points.

f ′(0) = 0, f ′(1/3) = −1/3 and f ′(1/2) = −1/4.

Thus
L = max{0, 1/3, 1/4} = 1/3.

3 MARKS

(f) f : [−1, 1] → R, f(x) := (1− x2)2.
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ANSWER

f ′(x) = 2(1− x2)(−2x) = 4x(x2 − 1) = 4(x3 − x) and f ′′(x) = 4(3x2 − 1) .

There are turning points of f ′ at ±1/
√

3.

f ′(−1) = f ′(1) = 0 and |f ′(±1/
√

3)| = (4/
√

3)(1− 1/3) =
8

3
√

3
.

Thus

L =
8

3
√

3
.

3 MARKS

6. Let f : R → R, f(x) := ln(x2 +k2) with k > 0. Show that the smallest Lipschitz constant
is 1/k.

ANSWER

f ′(x) =
2x

x2 + k2 and f ′′(x) =
(x2 + k2)2− (2x)(2x)

(x2 + k2)2 =
2(k2 − x2)

(x2 + k2)2 .

f ′ has turning points when f ′′(x) = 0, i.e. when x = ±k. As f ′(0) = 0 and f ′(x) → 0
as |x| → ∞ these local turning points are where f ′ attains its maximum in magnitude.
Thus the smallest Lipschitz constant is

L := f ′(k) = 1/k .

7. The following were parts of question 3 of the Jan 2001 and Jan 2000 papers.

Let φ : [0, 1] → [0, 1] be a function.

(i) Explain the term onto in the statement

φ : [0, 1] → [0, 1] is onto. [2 MARKS]

ANSWER

φ is onto if for every y ∈ [0, 1] there exists a x ∈ [0, 1] such that φ(x) = y.

2 MARKS

(ii) Given that a contraction mapping φ : [0, 1] → [0, 1] has a fixed point, use a proof by
contradiction to show that the fixed point is unique.
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ANSWER

Suppose x∗1 and x∗2 are two different fixed points, i.e.

x∗1 6= x∗2 with φ(x∗1) = x∗1 and φ(x∗2) = x∗2 .

Thus
0 < |x∗1 − x∗2| = |φ(x∗1)− φ(x∗2)| ≤ L|x∗1 − x∗2| < |x∗1 − x∗2|

by the contraction property with 0 ≤ L < 1. This is a contradiction and hence there
is only one fixed point.

4 MARKS

(iii) In the the case of the functions φ1 and φ2 defined below, show that both functions
map [0, 1] onto [0, 1] and show that both functions are not contractive on [0, 1].

φ1 : [0, 1] → [0, 1], φ1(x) := 4x(1− x).

φ2 : [0, 1] → [0, 1], φ2(x) :=
1

2
(1− cos 2πx).

[9 MARKS]

In the case of φ1 determine the fixed points and classify each fixed point as stable
or unstable.

[2 MARKS]

ANSWER

φ1 : [0, 1] → [0, 1], φ1(x) := 4x(1− x) = 4x− 4x2,

φ′1(x) = 4(1− 2x),

φ′′1(x) = −8 .

φ1 increases in [0, 1/2) and decreases in (1/2, 1] Since φ1(0) = φ1(1) = 0 and
φ1(1/2) = 1, φ1 maps [0, 1] onto [0, 1].

3 MARKS

φ1 is continuously differentiable on [0, 1]. As φ′′1 does not change sign, the smallest
Lipschitz constant on [0, 1] is L = max{|φ′1(0)|, |φ′1(1)|} = 4. As this constant is
greater than 1 the function is not contractive on [0, 1].

2 MARKS

Because of properties of the cosine function, cos 2πx takes all values between −1 and
+1 as x varies between 0 and 1. Thus 1− cos 2πx takes all values between 0 and 2
and φ2 takes all values between 0 and 1.

2 MARKS
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φ2 : [0, 1] → [0, 1], φ2(x) :=
1

2
(1− cos 2πx),

φ′2(x) = π sin 2πx .

As φ′2(1/2) = π sin π/2 = π > 1 the smallest Lipschitz constant is greater than 1
and the function is not contractive on [0, 1].

2 MARKS

A fixed point of φ1 satisfies

x = 4x(1− x) thus x = 0 or 1 = 4(1− x), i.e. x = 3/4.

φ′1(0) = 4 and φ′1(3/4) = −2. In both cases |φ′(x∗)| > 1 and thus x∗ = 0 and
x∗ = 3/4 are both unstable fixed points.

2 MARKS

(iv) Let φ denote the function

φ : [0, 2] → R, φ(x) =
x2 − 2x + 5

4
.

Show that the conditions of the contraction mapping theorem are satisfied and give
the fixed point.

[5 MARKS]

ANSWER

φ : [0, 2] → R, φ(x) =
x2 − 2x + 5

4
,

φ′(x) =
2x− 2

4
=

1

2
(x− 1),

φ′′(x) =
1

2
.

As φ′(x) < 0 in (0, 1) and φ′(x) > 0 in (1, 2) the function φ decreases in (0, 1) and
increases in (1, 2). φ(0) = 5/4, φ(1) = 1 and φ(2) = 5/4. Thus φ : [0, 2] → [1, 5/4] ⊂
[0, 2].

As φ′′(x) does not change sign on [0, 2] the smallest Lipschitz constant is

L = max{|φ′(0)|, |φ′(2)|} =
1

2
< 1 .

Thus φ is contractive on [0, 2] and satisfies all the conditions of the contraction
mapping theorem.

5 MARKS
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(v) Determine which of the following is a contraction on their domain of definition.

(a)

φ1 : [−π/8, π/8] → [−π/8, π/8], φ1(x) :=
π

8
sin(2x) .

ANSWER

φ′1(x) =
π

4
cos(2x) and hence |φ′1(x)| ≤ π

4
< 1 .

φ1 is a contraction on [−π/8, π/8] with the constant

L = max
[−π/8,π/8]

|φ′1(x)| = π

4
< 1 .

3 MARKS

(b)

φ2 : [−π/4, π/4] → [−π/4, π/4], φ2(x) :=
π

4
sin(2x) .

Classify, as stable or unstable, the three fixed points x = −π/4, x = 0 and
x = π/4 in this case.

ANSWER

φ′2(x) =
π

2
cos(2x) .

The smallest Lipschitz constant for the domain is

L = max
[−π/4,π/4]

|φ′2(x)| = π

2
> 1 .

Thus φ2 is not contractive on [−π/4, π/4].

3 MARKS

(vi) In the case of the function

φ(x) :=
1 + ex

4

determine the smallest Lipschitz constant L on [0, 1] and explain why

φ : [0, 1] → [φ(0), φ(1)] ⊂ [0, 1] .
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ANSWER

φ′(x) = ex/4 > 0 and φ′′(x) = ex/4 > 0 .

Thus φ′ is increasing on [0, 1] and the maximum of |φ′(x)| is attained at x = 1 and
the smallest Lipschitz constant L is given by

L = φ′(1) = e/4 < 1 . 3 MARKS

Since φ is increasing on [0, 1] we have

φ : [0, 1] → [φ(0), φ(1)] .

φ(0) = 1/2 > 0 and φ(1) = (1 + e)/4 < 1 and hence [φ(0), φ(1)] ⊂ [0, 1].

2 MARKS

8. The following all involve making use of the (Bolzano) Intermediate Value Theorem for
continuous functions.

(i) Show that every polynomial of odd degree with real coefficients has at least one real
root.

ANSWER

Let n ≥ 1 be an odd number and let

p(x) := anx
n +an−1x

n−1 + · · ·+a1x+a0 = xn
(
an + an−1/x + · · ·+ a1/x

n−1 + a0/x
n
)

where an 6= 0. Observe that

an + an−1/x + · · ·+ a1/x
n−1 + a0/x

n → an as |x| → ∞.

Thus for sufficiently large |x|, p(x)/xn has the same sign as an. As n is odd this
implies that if A > 0 then p(−A) and p(A) have opposite sign when A is sufficiently
large. This in turn implies by the intermediate value theorem that p has a root in
[−A, A] as the polynomial p is continuous on R.

(ii) Let p : R → R be the polynomial

p(x) := a0 + a1x + a2x
2 + · · ·+ anx

n, ai ∈ R.

Show that if n ≥ 2, n is even, an = 1 and a0 < 0 then p has at least two real roots.

ANSWER

p(x)/xn → 1 as x → ∞. Thus if M > 0 is sufficiently large then p(−M) > 0 and
p(M) > 0. Also p(0) = a0 < 0. Thus by the intermediate value theorem p has a root
in [−M, 0] and in [0, M ] as the polynomial p is continuous on R.
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(iii) Show that if φ : [a, b] → [a, b] is continuous then there exists at least one point
x∗ ∈ [a, b] with φ(x∗) = x∗.

ANSWER

(iv) This was part of question 2 of the January 1999 paper.

Let [a, b] denote a closed bounded interval and let f : [a, b] → R be a function which
is continuous on [a, b]. Also let c, d ∈ [a, b] be such that

f(c) = min
[a,b]

f(x) and f(d) = max
[a,b]

f(x) .

The intermediate value theorem implies that f maps [a, b] onto [f(c), f(d)]. In the
case c < d and for a function f for which

f(c) < f(a) = f(b) < f(d)

show that for each y ∈ (f(c), f(d)) there is at least 2 distinct values of x in [a, b] for
which f(x) = y.

ANSWER

Consider g : [a, b] → R, g(x) := f(x)− y which is continuous on [a, b].

If y ∈ (f(c), f(a)) then g(a) = f(a) − y > 0 and g(c) = f(c) − y < 0. Hence g
changes sign on (a, c) and has a root in (a, c) by the intermediate value theorem.
Similarly by considering the interval (c, d), g(d) = f(d)− y > 0 and g changes sign
on (c, d) and has a root in (c, d) by the intermediate value theorem. Thus we have
at least 2 points at which f(x) = y.

If y = f(a) = f(b) then x = a and x = b are 2 points at which f(x) = y.

If y ∈ (f(a), f(d)) then g(c) = f(c) − y < 0 and g(d) = f(d) − y > 0. Hence g
changes sign on (c, d) and has a root in (c, d) by the intermediate value theorem.
Similarly by considering the interval (d, b), g(b) = f(b) − y = f(a) − y < 0 and g
changes sign on (d, b) and has a root in (d, b) by the intermediate value theorem.
Thus we have at least 2 points at which f(x) = y.

9. Let φ : R → R, φ(x) := 4x(1 − x). Show that φ : [0, 1] → [0, 1] but that φ is not a
contraction. What are the fixed points?

ANSWER

φ : [0, 1] → [0, 1], φ(x) := 4x(1− x) = 4x− 4x2,

φ′(x) = 4(1− 2x),

φ′′(x) = −8 .
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φ increases in [0, 1/2) and decreases in (1/2, 1] Since φ(0) = φ(1) = 0 and φ(1/2) = 1, φ
maps [0, 1] onto [0, 1].

3 MARKS

φ is continuously differentiable on [0, 1]. As φ′′ does not change sign, the smallest Lipschitz
constant on [0, 1] is L = max{|φ′(0)|, |φ′(1)|} = 4. As this constant is greater than 1 the
function is not contractive on [0, 1].

2 MARKS

A fixed point of φ satisfies

x = 4x(1− x) thus x = 0 or 1 = 4(1− x), i.e. x = 3/4.

φ′(0) = 4 and φ′(3/4) = −2. In both cases |φ′(x∗)| > 1 and thus x∗ = 0 and x∗ = 3/4 are
both unstable fixed points.

2 MARKS
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Exercises 8A: Cauchy sequences and subsequences in R
1. Prove that if a sequence (xn) converges then it is a Cauchy sequence. (This has been

asked in previous MA2034A exam papers.)

ANSWER

From the definition of convergence of (xn) to x there exists a N = N(ε/2) such that

|xn − x| < ε/2 for all n ≥ N .

If both n ≥ N and m ≥ N then

|xn − xm| = |(xn − x)− (xm − x)| ≤ |(xn − x)|+ |(xm − x)| < ε/2 + ε/2 = ε

by the triangle inequality and the above bound. Thus (xn) is a Cauchy sequence.

2. Show that if (xn) satisfies the property

|xn+1 − xn| ≤
1

2n , n = 1, 2, · · ·

then it is a Cauchy sequence.

Given that a Cauchy sequence converges show that if x denotes the limit of the sequence
then

|xn − x| ≤ 1

2n−1 .

With S denoting the set
S := {xn : n = 1, 2, · · · }

also show that

sup S − inf S ≤ 3

2
.

This was the last part of the Jan 1999 question 1. Most people found this difficult.

ANSWER

We are given |xn+1 − xn| < 1
2n . Thus

xn+j − xn = (xn+j − xn+j−1) + (xn+j−1 − xn+j−2) + · · ·+ (xn+1 − xn)

and by the triangle inequality

|xn+j − xn| ≤ |xn+j − xn+j−1|+ |xn+j−1 − xn+j−2|+ · · ·+ |xn+1 − xn|

≤
(

1

2

)n+j−1

+ · · ·+
(

1

2

)n

=

(
1

2

)n
(

1 +
1

2
+ · · ·+

(
1

2

)j−1
)

≤ 2

(
1

2

)n

=

(
1

2

)n−1

.
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Since the right hand side does not involve j and tends to 0 as n → ∞ the sequence is a
Cauchy sequence and hence converges.

With
x = lim

m→∞
xm,

and letting j →∞ in the above we get

|x− xn| ≤
(

1

2

)n−1

.

As a consequence of this inequality the set {x2, x3, · · · } is contained in the interval [x −
1/2, x + 1/2]. Only x1 of the set s = {x1, x2, x3, · · · } may lie outside of this interval. The
complete set is thus contained in [x− 1, x + 1/2] or [x− 1/2, x + 1] from which it follows
that

sup S − inf S ≤ 3

2
.

3. (This is similar to question 2.)

Let (xn) be a sequence of vectors in Rp which are such that x0 = 0 and

‖xn+1 − xn‖2 ≤ rr, n = 0, 1, 2, · · · for some r ∈ [0, 1).

Show that the sequence converges to some x ∈ Rp and that x satisfies

‖x‖2 ≤
1

1− r
.

ANSWER

To show that the sequence converges we show that the sequence is a Cauchy sequence.

xn+q − xn = (xn+q − xn+q−1) + · · ·+ (xn+1 − xn).

‖xn+q − xn‖2 ≤ ‖(xn+q − xn+q−1‖2 + · · ·+ ‖xn+1 − xn‖2

≤ rn+q−1 + · · ·+ rn ≤
∞∑
n

rk =
rn

1− r
.

Since |r| < 1 the right hand side tends to 0 as n →∞ for all q > 0 which is sufficient to
show that the sequence is a Cauchy sequence.

Since (xn) is a Cauchy sequence it converges to some x ∈ Rp.

Since x0 = 0 we have

xn = x0 +
n∑

k=1

(xk − xk−1) =
n∑

k=1

(xk − xk−1).
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By the triangle inequality we have

‖xn‖2 ≤
n∑

k=1

‖xk − xk−1‖2

≤
n∑

k=1

rk−1 ≤
∞∑

k=0

rk =
1

1− r
.

4. The following question relates to the Bolzano-Weierstrass theorem concerning sequences
in R.

Let (xn) denote the bounded sequence given by

xn := sin
√

n.

Observe that since the sine function sin x is increasing in [−π/2, π/2] then for all y ∈
[−1, 1] there is unique x ∈ [−π/2, π/2] with sin x = y and from the periodicity of the sine
function

sin(x + 2kπ) = y, for k = ±1,±2, · · ·
By defining nk ∈ N to be the integer part of (x+2kπ)2 and by considering the subsequence
(xnk

) of (xn), show that xnk
→ y as k →∞.

(In your answer you can assume all the usual properties and identities of the sine function
such as

sin(x± y) = sin x cos y ± cos x sin y etc.

and
| sin x| ≤ |x| for all x ∈ R.)

ANSWER

The key point here is to note that y is given by

y = sin(x) = sin(x + 2kπ) for all k.

Thus

xnk
− y = sin

√
b(x + 2kπ)2c − sin(x + 2kπ), where bzc = integer part of z ∈ R.

To rewrite this in a form where we can establish that this difference is small we note the
trigonometric identities

sin(a + b) = sin a cos b + cos a sin b

sin(a− b) = sin a cos b− cos a sin b

sin(a + b)− sin(a− b) = 2 cos a sin b

which with c = a + b and d = a− b gives

sin c− sin d = 2 cos

(
c + d

2

)
sin

(
c− d

2

)
.
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Using the properties of the cosine and sine functions (which can be established from a
geometric definition of these functions) that

| cos u| ≤ 1 and | sin u| ≤ |u| for all u ∈ R

we have
| sin c− sin d| ≤ |c− d| .

In our case with
c =

√
b(x + 2kπ)2c and d = x + 2kπ

we have

c− d =
c2 − d2

c + d
=

b(x + 2kπ)2c − (x + 2kπ)2√
b(x + 2kπ)2c+ (x + 2kπ)

and by noting that the integer part of a number can differ by at most 1 from the number
we get

|xnk
− y| ≤

∣∣∣∣∣ 1√
b(x + 2kπ)2c+ (x + 2kπ)

∣∣∣∣∣→ 0 as k →∞.
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Exercises 8B: Sequences and series of functions

1. This was question 4 of the Jan 2003 MA2034A exam paper.

(a) Let I ⊂ R and let f be a bounded function on I. Define the uniform norm ‖f‖ of f
on I.

[1 MARK]

(b) Let I ⊂ R and let fn : I → R, n = 1, 2, · · · and f : I → R be functions.

(i) Define what it means for (fn) to converge pointwise on I.

[2 MARKS]

(ii) Define what it means for (fn) to converge to f uniformly on I.

[2 MARKS]

(c) In each of the following cases of sequences of functions, determine the pointwise limit
function and determine whether or not the convergence is uniform.

(i)

fn : [0,∞) → R, fn(x) :=
xn

1 + xn .

[4 MARKS]

(ii)

fn : R → R, fn(x) :=
cos(nx)

n
.

[3 MARKS]

(iii)
fn : [0, 1] → R, fn(x) := xn(1− x).

[4 MARKS]

(iv)
fn : [0,∞) → R, fn(x) := xe−nx.

[4 MARKS]
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ANSWER

(a)
‖f‖ := sup{|f(x)| : x ∈ I} .

1 MARK

(b) (i) (fn) converges pointwise on I if the sequence of numbers (fn(x)) converges for
every x ∈ I.

2 MARKS

(ii) (fn) converges uniformly on I to f , f : I → R, if

‖fn − f‖ → 0 as n →∞.

2 MARKS

(c) (i) If 0 ≤ x < 1 then xn → 0 as n →∞ and we get fn(x) → 0 as n →∞.
If x = 1 then fn(1) = 1/2 → 1/2 as n →∞.
If x > 1 then

fn(x) =
1

(1/xn) + 1
→ 1

0 + 1
= 1 as n →∞.

Hence the pointwise limit function f is the discontinuous function

f : [0,∞) → R, f(x) :=


0, 0 ≤ x < 1,

1/2, x = 1,

1, x > 1.

As each fn is continuous and the pointwise limit is discontinuous the convergence
is not uniform.

4 MARKS

(ii) For all x ∈ R ∣∣∣∣cos(nx)

n

∣∣∣∣ ≤ 1

n
→ 0 as n →∞.

Thus (fn) converges uniformly to the zero function on R which is thus the
pointwise limit.

3 MARKS

(iii) If x = 1 then fn(1) = 0 and (fn(1)) is a constant sequence. If 0 ≤ x < 1 then
xn → 0 as n →∞. Thus (fn) converges pointwise to the zero function on [0, 1].
To test for uniform convergence we determine the uniform norm of each fn.
As fn(x) ≥ 0 with fn(0) = fn(1) = 0 we need to find the maximum of fn(x),
0 < x < 1.

f ′n(x) = nxn−1 − (n + 1)xn = xn−1(n− (n + 1)x).

The maximum occurs at x = n/(n + 1). Since for this x, xn < 1 we have

|fn(n/(n + 1))| ≤ 1− n

n + 1
=

1

n + 1
→ 0 as n →∞.

Hence fn → 0 uniformly on [0, 1].

4 MARKS
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(iv) If x = 0 then fn(0) = 0 and (fn(0)) is a constant sequence. For x > 0 the ratio
test gives

fn+1(x)

fn(x)
=

e−(n+1)x

e−nx = e−x < 1

and hence fn(x) → 0 as n → ∞. Thus (fn) converges pointwise to the zero
function on [0, 1].
To test for uniform convergence we determine the uniform norm of each fn.

f ′n(x) = e−nx(1− nx) = 0 when x =
1

n
.

As f ′n(x) > 0 in [0, 1/n) and f ′n(x) < 0 in (1/n,∞) this is a local maximum. We
have

‖fn‖ = fn(1/n) =
e−1

n
→ 0 as n →∞.

The sequence converges uniformly to the zero function.

4 MARKS

2. This was question 4 of the Jan 2002 MA2034A exam paper.

(i) Let I ⊂ R and let f be a bounded function on I. Define the uniform norm ‖f‖ of f
on I.

[1 MARK]

(ii) Let I ⊂ R and let fn : I → R, n = 1, 2, · · · and f : I → R be functions.

(a) Define what is means by saying that fn → f pointwise on I.

[2 MARKS]

(b) Define what is means by saying that fn → f uniformly on I.

[2 MARKS]

(iii) In the following I ⊂ R and (fn) is a sequence of functions such that fn : I → R.

(a) Explain why when I = (0, 1) and fn(x) := xn, ‖fn‖ = 1 for all n. Hence show
that the sequence (fn) converges pointwise on I but not uniformly on I.

[3 MARKS]

(b) Show that when I = [0, 1] and

fn(x) :=
nx

1 + n2x2 ,

‖fn‖ = 1/2 for all n. Hence show that the sequence (fn) converges pointwise on
I but not uniformly on I.

[5 MARKS]
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(c) Suppose that (fn) is a sequence of continuous functions which converges point-
wise on I to f . What can you conclude about the uniformity of the convergence
in the following cases: (1) when f is continuous on I, (2) when f is discontinuous
on I.

[2 MARKS]

(iv) Let fn : I → R, n = 1, 2, · · · be a sequence of bounded functions. Define what
it means for (fn) to be a Cauchy sequence in the uniform norm and show that if
fn → f uniformly then (fn) is a Cauchy sequence. (In your answer you can assume
that the uniform norm satisfies all the norm axioms, e.g. the triangle inequality.)

[5 MARKS]

ANSWER

(i)
‖f‖ := sup{|f(x)| : x ∈ I} .

1 MARK

(ii) (a) (fn) converges pointwise on I if the sequence of numbers (fn(x)) converges for
every x ∈ I.

(b) (fn) converges uniformly on I to f , f : I → R, if

‖fn − f‖ → 0 as n →∞.

(iii) (a) For all x ∈ I, xn < 1 and hence 1 is an upper bound. Also, limx→1 xn = 1.
Given any ε > 0, the definition of the limit implies that 1 − ε is exceeded by
some x ∈ I and thus no number less than 1 can be an upper bound. Hence the
least upper bound is 1 and ‖fn‖ = 1.
For all x ∈ I we have |x| < 1 and consequently xn → 0 as n →∞. The sequence
converges pointwise to the zero function but as ‖fn‖ 6→ 0 the sequence does not
converge uniformly.

(b) As fn is continuous on [0, 1] it attains its maximum on [0, 1]. fn(0) = 0 and
fn(1) = n/(1 + n2) = 1/((1/n) + n). f1(1) = 1/2 and for n ≥ 2 fn(1) < 1/n ≤
1/2. To find the maximum we consider turning points of fn.

f ′n(x) =
(1 + n2x2)n− (nx)(2n2x)

(1 + n2x2)2 =
n(1− n2x2)

(1 + n2x2)2 = 0

when x = 1/n. fn increases in [0, 1/n) and decreases in (1/n,∞). Thus

‖fn‖ = fn(1/n) =
1

2
.

For the pointwise convergence observe that for x = 0, fn(x) = 0 for all n. For
x > 0,

fn(x) =
1/(nx)

(1/nx)2 + 1
→ 0

0 + 1
= 0 as n →∞.

Thus the sequence converges pointwise to the zero function. As ‖fn‖ 6→ 0 the
sequence does not converge uniformly.
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(c) (1) If the limit function is discontinuous then this is sufficient to prove that the
convergence is not uniform. (2) If the limit function is continuous then nothing
can be concluded about whether or not the convergence is uniform.

(iv) (fn) is a Cauchy sequence if for every ε > 0 there exists an N such that

‖fn − fm‖ < ε, for all n ≥ N and m ≥ N .

(fn) converges uniformly to f means that for every ε > 0 there exists a N such that

‖fn − f‖ < ε/2 for all n ≥ N.

Then for all m,n ≥ N and for all x ∈ I we compare both fm and fn with the limit
f to give

|fm(x)− fn(x)| = |(fm(x)− f(x)) + (f(x)− fn(x))|
≤ |fm(x)− f(x)|+ |f(x)− fn(x)|
≤ ‖fm − f‖+ ‖f − fn‖ < ε/2 + ε/2 = ε .

As this is true for for all x ∈ I we have ‖fm − fn‖ < ε as required.

3. This was question 5 of the Jan 2003 MA2034A exam paper.

(a) State the Weierstrass M -test.
[3 MARKS]

(b) In the following you may assume in your answer that the series

∞∑
k=1

1

kp

converges for all p > 1 and diverges for all p ≤ 1.

Let

fn : R → R, fn(x) :=
n∑

k=1

cos(kx)

k3 .

Use the the Weierstrass M-test to explain why (fn) and (f ′n) converge uniformly on
R.

[4 MARKS]

Does the sequence (f ′′n) converge pointwise on R?

[1 MARK]

(c) Determine the radius of convergence of the following power series and state regions
in which the series converge uniformly.



23-5-2004 20:6 c© M. K. Warby, J. E. Furter MA2930 ANALYSIS, Exercises

(i)
∞∑

k=0

xk

k!

[3 MARKS]

(ii) In the following α ∈ R is not an integer.

∞∑
k=0

(
α(α− 1) · · · (α− k + 1)

k!

)
xk = 1 + αx +

α(α− 1)

2
x2 + · · ·

[4 MARKS]

(iii)
∞∑

k=0

k3xk

3k
.

[3 MARKS]

(iv)
∞∑

k=0

kkxk.

[2 MARKS]

ANSWER

(a) The Weierstrass M -test relates to series of functions (fk). Let fk : I → R and
suppose that

‖fk‖ ≤ Mk,

where ‖fk‖ is the uniform norm of fk on I. If the series of numbers
∑

Mk converges
then the series of functions

∑
fk converges uniformly on I.

3 MARKS

(b) To apply the M-test to the series for fn(x) we note that | cos(kx)| ≤ 1 so that the
kth component function is bounded by

Mk =
1

k3 .

The series
∑

1/k3 converges and thus the series for fn converges uniformly on R. f ′n
is given by

f ′n(x) = −
n∑

k=1

sin(kx)

k2 .

The kth component function is bounded by

Mk =
1

k2 .
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The series
∑

1/k2 converges and thus the series for f ′n converges uniformly on R.

4 MARKS

f ′′n is given by

f ′′n(x) = −
n∑

k=1

cos(kx)

k
.

When x = 0, cos(0) = 1 and −f ′′n(0) is the nth partial sum of the divergent harmonic
series. Hence the series does not converge pointwise on R.

1 MARK

(c) (i) Let fk(x) = xk/k!. On |x| ≤ r

|fk(x)| ≤ rk

k!
=: Mk.

By the ratio test

Mk+1

Mk

=
rk+1/(k + 1)!

rk/k!
=

r

k + 1
→ 0 as k →∞.

The series
∑

Mk converges for all r and hence the radius of convergence is ∞.
The series converges uniformly in any region of the form |x| ≤ r.

3 MARKS

(ii) Let fk(x) = akx
k where

ak :=

(
α(α− 1) · · · (α− k + 1)

k!

)
.

On |x| ≤ r
|fk(x)| ≤ |ak|rk =: Mk.

Using the ratio test

Mk+1

Mk

=

∣∣∣∣ak+1

ak

∣∣∣∣ r =

∣∣∣∣α− k

k + 1

∣∣∣∣ r =

∣∣∣∣α/k − 1

1 + 1/k

∣∣∣∣ r → r as k →∞.

Thus the series converges absolutely if r < 1 and diverges for r > 1. The radius
of convergence is R = 1 and the series converges uniformly in [−r, r] for all r
satisfying 0 ≤ r < 1.

4 MARKS

(iii) Let fk(x) = akx
k where

ak :=
k3

3k
.

On |x| ≤ r
|fk(x)| ≤ |ak|rk =: Mk.



23-5-2004 20:6 c© M. K. Warby, J. E. Furter MA2930 ANALYSIS, Exercises

Using the ratio test

Mk+1

Mk

=
ak+1

ak

r =
(k + 1)3

3k3 r =
(1 + 1/k)3

3
r → r

3
.

The series converges if r < 3 and diverges for r > 3. The radius of convergence
is R = 3. The series converges uniformly in |x| ≤ r for all r < 3.

3 MARKS

(iv) Let fk(x) = kkxk. On |x| ≤ r

|fk(x)| ≤ (kr)k =: Mk.

Using the root test
M

1/k
k = kr.

The sequence (M
1/k
k ) only converges when r = 0 The radius of convergence is

R = 0.

2 MARKS

4. This was question 5 of the Jan 2002 MA2034A exam paper.

(i) State the Weierstrass M -test.
[3 MARKS]

(ii) In the following you may assume in your answer that the series

∞∑
k=1

1

kp

converges for all p > 1.

(a) Let

fk(x) :=
1

x2 + k2 .

Show that

|f ′k(x)| ≤ C

k3 , C =
9

8
√

3
, for all x ∈ R.

[4 MARKS]

Hence use the Weierstrass M -test to show that

∞∑
k=1

fk(x) and
∞∑

k=1

f ′k(x)

both converge uniformly on R.
[2 MARKS]
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(b) Show that the following series converges uniformly on [0,∞):

∞∑
k=1

1

k2

(
1− x

1 + x

)k

.

[Hint: make the substitution y = (1− x)/(1 + x).]

[3 MARKS]

(iii) Determine the radius of convergence of the following power series and state regions
in which the series converge uniformly.

(a)
∞∑

k=0

2kxk

k!
. [3 MARKS]

(b)
∞∑

k=0

k3xk

3k
[3 MARKS]

(c)
∞∑

k=0

k!xk. [2 MARKS]

ANSWER

(i) The Weierstrass M -test relates to series of functions (fk). Let fk : I → R and
suppose that

‖fk‖ ≤ Mk,

where ‖fk‖ is the uniform norm of fk on I. If the series of numbers
∑

Mk converges
then the series of functions

∑
fk converges uniformly on I.

(ii) (a)

f ′k(x) =
−2x

(x2 + k2)2 .

To determine the maximum of |f ′k(x)| we need to consider turning points of f ′k
which correspond to points at which f ′′k (x) = 0.

f ′′k (x) =
(x2 + k2)2(−2)− (−2x)2(x2 + k2)2x

(x2 + k2)4

and hence f ′′k (x) = 0 when

(x2 + k2)2(−2) = −8x2(x2 + k2), i.e. when x2 + k2 = 4x2, 3x2 = k2 .

At x = ±k/
√

3, x2 + k2 = 4k2/3 and

|f ′k(±k/
√

3)| = C

k3 where C =
2/
√

3

(4/3)2 =
9

8
√

3
.
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As we only have 2 turning values we obtain the bound

|f ′k(x)| ≤ C

k3 for all x ∈ R.

As for all x ∈ R,

|fk(x)| ≤ 1

k2 and |f ′k(x)| ≤ C

k3

and
∑

1/k2 and
∑

1/k3 are standard convergent series the series converges
uniformly by the Weierstrass M-test.

(b) Let

y =
1− x

1 + x
and fk(x) =

yk

k2 .

For 0 ≤ x ≤ 1, |1− x| ≤ 1 ≤ 1 + x. For 1 < x, |1− x| = x− 1 ≤ 1 + x. That is
for all x ≥ 0, |1− x| ≤ |1 + x|. Thus |y| ≤ 1 for all x ≥ 0 and

|fk(x)| ≤ 1

k2 .

As
∑

1/k2 is a standard convergent series it follows that the series converges
uniformly when x ≥ 0 by the Weierstrass M-test.

(iii) (a) Let fk(x) = 2kxk/k!. As (k + 1)! = (k + 1)k! etc. we have for x 6= 0,∣∣∣∣fk+1(x)

fk(x)

∣∣∣∣ =

∣∣∣∣ 2x

k + 1

∣∣∣∣→ 0 as k →∞.

By the ratio test the series converges for all x ∈ R and by the M-test the series
converges uniformly in all regions of the form [−R,R], R > 0. The radius of
convergence is ∞.

(b) Let fk(x) = k3xk/3k. We have for x 6= 0,∣∣∣∣fk+1(x)

fk(x)

∣∣∣∣ =

∣∣∣∣(k + 1)3x

3k3

∣∣∣∣ =

∣∣∣∣(1 + 1/k)3x

3

∣∣∣∣→ |x|
3

as k →∞.

By the ratio test the series converges for |x| < 3 and by the M-test the series
converges uniformly in all regions of the form [−r, r], r < 3. The radius of
convergence is 3.

(c) Let fk(x) = k!xk. We have for x 6= 0,∣∣∣∣fk+1(x)

fk(x)

∣∣∣∣ = (k + 1)|x|.

This is unbounded for all x 6= 0 and by the ratio test the series diverges. Hence
the series only converges at x = 0. The radius of convergence is 0.
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5. These were part of question 4 of the Jan 2000 and Jan 2001 MA2034A exam papers.

(a) Let (fn), fn : I → R, denote a sequence of continuous functions defined on I. If (fn)
converges to f uniformly on I then what properties will the limit function f have?

(b) In each of the following cases of sequences of functions, determine whether or not
the sequence converges pointwise on its given domain. If the sequence does converge
pointwise then give the pointwise limit function and determine whether or not the
convergence is uniform.

(i)
fn : (−1, 1] → R, fn(x) := xn, n = 1, 2, · · · . [2 MARKS]

(ii)

fn : R → R, fn(x) :=
sin nx

n
n = 1, 2, · · · . [3 MARKS]

(iii)
fn : R → R, fn(x) := cos nx . [3 MARKS]

(iv)

fn : (−1, 1] → R, fn(x) :=
xn

(1 + xn)2 , n = 1, 2, · · · .

(v)

fn : [0,∞) → R, fn(x) :=
xn

(1 + xn)n , n = 1, 2, · · · .

ANSWER

(a) As each fn is continuous and (fn) converges to f uniformly on I then f is continuous
on I.

1 MARK

(b) (i)
xn → 0 as n →∞ if |x| < 1.

Thus for x ∈ (−1, 1), fn(x) → 0 as n → ∞. Also, fn(1) = 1 for all n. Thus
(fn(x)) converges for all x in (−1, 1] and hence the sequence of functions does
converge pointwise. The pointwise limit function is

f(x) := lim
n→∞

fn(x) =

{
0, if x ∈ (−1, 1),

1, if x = 1.

As each fn is continuous and f is discontinuous this indicates that the conver-
gence is not uniform.

(ii) By the properties of the sine function we have for all x ∈ R that

|fn(x)| ≤ 1

n

and thus

‖fn‖ ≤
1

n
→ 0 as n →∞.
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Thus the sequence converges uniformly to the function f

f : R → R, f(x) := 0 .

Uniform convergence implies pointwise convergence and hence f is also the point-
wise limit.

(iii) If we let x = π then fn(π) = cos nπ = (−1)n. The sequence of numbers (fn(π))
does not converge and thus the sequence does not converge pointwise and as a
consequence it does not converge uniformly.

(iv)
xn → 0 as n →∞ if |x| < 1.

Thus for x ∈ (−1, 1), fn(x) → 0/(1 + 0)2 = 0 as n →∞. Also, fn(1) = 1/4 for
all n. Thus

f(x) := lim
n→∞

fn(x) =

{
0, if x ∈ (−1, 1),

1/4, if x = 1.

As each fn is continuous and f is discontinuous this indicates that the conver-
gence is not uniform.

(v) Let gn : R → R,

gn(x) :=
x

1 + xn =
(1/x)n−1

(1/x)n + 1
.

If 0 ≤ x < 1 then

fn(x) =

(
x

1 + xn

)n

≤ xn → 0 as n →∞.

If x = 1 then
fn(1) = (1/2)n → 0 as n →∞.

If x > 1 then (1/x)n → 0 as n →∞ and

fn(x) =

(
(1/x)n−1

(1/x)n + 1

)n

<

(
1

x

)n(n−1)

→ 0 as n →∞.

The pointwise limit function is f : R → R, f(x) := 0.
To establish that the convergence is uniform we need to bound gn and hence fn.
We note that gn(0) = 0 and gn(x) → 0 as |x| → ∞. For turning values we have

g′n(x) =
(1 + xn)− x(nxn−1)

(1 + xn)2 = 0 when 1 = (n− 1)xn .

As there is only one turning value it is the point where gn has a global maximum.
Thus

max
R

|gn(x)| ≤ (1/(n− 1))1/n

1 + 1/(n− 1)
<

(
1

(n− 1)

)1/n

and

‖fn‖ = max
R

|fn(x)| ≤ 1

n− 1
→ 0 as n →∞.
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6. This was most of question 5 of the January 2001 MA2034A exam paper.

(i) State the Weierstrass M -test.
[3 MARKS]

Use the Weierstrass M -test to show that the following series converge uniformly on
R.

(a)
∞∑

k=1

(
cos kx

k3 + 3
sin kx

k2

)
.

[3 MARKS]

(b)
∞∑

k=1

√
x2 + k − |x|

k2 .

[4 MARKS]

In your answer you may assume that the series

∞∑
k=1

1

kp

converges for all p > 1.

(ii) Determine the radius of convergence of the following power series and state regions
in which the series converge uniformly.

(a)

∞∑
k=0

(
k2

5k

)
xk =

(
1

5

)
x +

(
22

52

)
x2 +

(
32

53

)
x3 +

(
42

54

)
x4 +

(
52

55

)
x5 + · · · .

[4 MARKS]

(b)

∞∑
k=0

(
α(α− 1) · · · (α− k + 1)

k!

)(x

2

)k

= 1 + α
x

2
+

α(α− 1)

2

(x

2

)2

+ · · · .

[4 MARKS]
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ANSWER

(i) The Weierstrass M -test relates to series of functions (fk). Let fk : I → R and
suppose that

‖fk‖ ≤ Mk,

where ‖fk‖ is the uniform norm of fk on I. If the series of numbers
∑

Mk converges
then the series of functions

∑
fk converges uniformly on I.

(a) With

fk(x) :=
cos kx

k3 + 3
sin kx

k2

it follows that for all x ∈ R

|fk(x)| ≤ Mk :=
1

k3 +
3

k2 .∑
1/k2 and

∑
1/k3 are standard convergent series and thus

∑
Mk converges.

Thus
∑

fk converges uniformly on R.

(b) Let

fk(x) :=

√
x2 + k − |x|

k2

=
k

k2(
√

x2 + k + |x|)
=

1

k(
√

x2 + k + |x|)
≤ 1

k3/2
=: Mk

where the bound was obtained by observing that the denominator takes its
smallest value in R when x = 0.∑

Mk is a standard convergent series and thus the series
∑

fk converges uni-
formly on R.

(ii) (a) Let

fk(x) =
k2

5k
xk .

On |x| ≤ r

|fk(x)| ≤ k2

5k
rk =: Mk .

Using the ratio test

Mk+1

Mk

=
(k + 1)2

k2

r

5
=

(
1 +

1

k

)2
r

5
→ r

5
as k →∞.

Thus the series
∑

Mk converges if r < 5 and the series
∑

fk converges uniformly
in [−r, r] for all r satisfying 0 ≤ r < 5. The radius of convergence is R = 5.

(b) Let

fk(x) :=

(
α(α− 1) · · · (α− k + 1)

k!

)(x

2

)k

.

On |x| ≤ r

|fk(x)| ≤
∣∣∣∣α(α− 1) · · · (α− k + 1)

k!

∣∣∣∣ (r

2

)k

=: Mk .
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Using the ratio test

Mk+1

Mk

=

∣∣∣∣α− k

k + 1

∣∣∣∣ (r

2

)
=

∣∣∣∣α/k − 1

1 + 1/k

∣∣∣∣ (r

2

)
→ r

2
as k →∞.

Thus the series
∑

Mk converges if r < 2 and the series
∑

fk converges uniformly
in [−r, r] for all r satisfying 0 ≤ r < 2. The radius of convergence is R = 2.

7. This was part of question 5 of the January 2000 paper.

Use the Weierstrass M -test to show that the following series converge uniformly on R.

(a)
∞∑

k=1

1

x2 + k2 .

(b)
∞∑

k=1

sin kx

k3/2
.

(c) Determine the radius of convergence of the following power series and state the region
in which the series converge uniformly.

(i)
∞∑

k=0

(
k

2k

)
xk =

(
1

2

)
x +

(
2

22

)
x2 +

(
3

23

)
x3 + · · · .

(ii)
∞∑

k=0

(
1

kk

)
xk = 1 + x +

(
1

22

)
x2 +

(
1

33

)
x3 + · · · .

ANSWER

(a) The denominator takes its smallest value when x = 0 and hence

|fk(x)| ≤ 1

k2 .

The series
∑

1/k2 is a standard convergent series and hence the series of functions con-
verges uniformly on R.

(b) ∣∣∣∣sin kx

k3/2

∣∣∣∣ ≤ 1

k3/2

and
∑

1/(k3/2) is a standard convergent series. Hence the series of functions converges
uniformly on R.
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(c) (i) Let

ak :=
k

2k
xk .

Using the ratio test

ak+1

ak

=
(k + 1)

k

x

2
= (1 + 1/k)

x

2
→ x

2
as k →∞.

Thus the series converges absolutely if |x| < 2 and converges uniformly in [−r, r] for
all r satisfying 0 ≤ r < 2.

(ii) Let

ak :=
(x

k

)k

.

Using the root test

|ak|1/k =
|x|
k
→ 0 as k →∞.

Thus the series converges absolutely for all x ∈ R and converges uniformly in [−r, r]
for all r satisfying 0 ≤ r < ∞.

8. Book work question.

Let I ⊂ R and let (fn) be a sequence of continuous functions such that fn : I → R.
Suppose that (fn) converges uniformly to f on I and note that

|f(x)− f(c)| = |(f(x)− fn(x)) + (fn(x)− fn(c)) + (fn(c)− f(c))|
≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|

≤
(

2 sup
x∈I

|f(x)− fn(x)|
)

+ |fn(x)− fn(c)| .

Show that f is also continuous on I.

ANSWER

Let ε > 0. By the uniform convergence there exists N such that

sup
x∈I

|f(x)− fn(x)| < ε

for n ≥ N . The continuity of fN gives the existence of δ such that

|fN(x)− fN(c)| < ε whenever |x− c| < δ .

Thus for |x− c| < δ we have

|f(x)− f(c)| < 3ε whenever |x− c| < δ

which is sufficient to establish the continuity of f at the arbitrary point c.
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9. The following is a miscellaneous collection of questions relating to sequences and series
of functions.

(a) Show that if fn(x) := x + 1/n and f(x) := x for all x ∈ R then fn → f uniformly
on R but that (f 2

n) does not converge uniformly on R.

(b) Let C(1)[a, b] denote the set of continuously differentiable functions on a finite interval
[a, b]. For each f in C(1)[a, b], define

‖f‖C1 := ‖f‖+ ‖f ′‖ .

Show that ‖.‖C1 satisfies the norm requirements of non-negativity, linearity and the
triangle inequality. (Remark: It can be shown that the linear space C(1)[a, b] is
complete in this norm.)

(c) Use the Weierstrass M -test to deduce that if
∑
|an| and

∑
|bn| converge then the

Fourier series
a0

2
+

∞∑
n=1

(an cos nx + bn sin nx)

converges uniformly on R.

(d) Let

sn(x) :=
n∑

k=1

cos(kx)

k5 .

Explain why (sn), (s′n), (s′′n) and (s′′′n ) all converge uniformly on R but that (s′′′′n (0))
does not converge.

ANSWER

(a) fn(x) = x + 1/n and f(x) = x and hence fn(x)− f(x) = 1/n. Thus

‖fn − f‖∞ =
1

n
→ 0 as n →∞.

f 2
n − f 2 = (fn + f)(fn − f)

and thus in this case

fn(x)2 − f(x)2 =
1

n

(
2x +

1

n

)
and

sup
x∈R

∣∣fn(x)2 − f(x)2
∣∣ =

1

n
sup
x∈R

∣∣∣∣2x +
1

n

∣∣∣∣ = ∞ for all n.

(b) Nonnegativity: Clearly ‖f‖C1 ≥ 0 since ‖f‖ ≥ 0 and ‖f ′‖ ≥ 0. If ‖f‖C1 = 0 then
‖f‖ = 0 and hence f(x) = 0 for all x ∈ [a, b].

Linearity: By using the linearity of the uniform norm

‖αf‖C1 = ‖αf‖+ ‖αf ′‖ = |α| ‖f‖+ |α| ‖f ′‖ = |α| ‖f‖C1 .

Triangle inequality: By the triangle inequality for the uniform norm

‖f + g‖C1 = ‖f + g‖+ ‖f ′ + g′‖ ≤ (‖f‖+ ‖g‖) + (‖f ′‖+ ‖g′‖) = ‖f‖C1 + ‖g‖C1 .
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(c) With fn(x) := an cos nx + bn sin nx we have

|fn(x)| ≤ |an|+ |bn|

by the triangle inequality and that | cos nx| ≤ 1 and | sin nx| ≤ 1. As
∑
|an| and∑

|bn| both converge we have that
∑

(|an|+|bn|) also converges. Hence the conditions
of the Weierstrass M -test apply with Mn = |an| + |bn| and the series converges
uniformly on R.

(d)

sn(x) :=
n∑

k=1

cos(kx)

k5 ,

s′n(x) := −
n∑

k=1

sin(kx)

k4 ,

s′′n(x) := −
n∑

k=1

cos(kx)

k3 ,

s′′′n (x) :=
n∑

k=1

sin(kx)

k2 ,

s′′′′n (x) :=
n∑

k=1

cos(kx)

k
.

The kth term in the series of sn, s′n, s′′n and s′′′n are bounded on R by respectively
1/k5, 1/k4, 1/k3 and 1/k2 and as the series of the bounds converge the sequence of
functions converge uniformly on R. However

s′′′′n (0) =
n∑

k=1

1

k
.

are the partial sums of the harmonic series which is divergent.


