GSE statistics without spin

joint work with

Chris Joyner and Martin Sieber

Sebastian Müller
Spectral statistics

Random matrix conjecture

Spectra of chaotic systems have universal statistics in agreement with random matrix theory. Ensemble depends on symmetries. In absence of other symmetries it depends only on the behaviour under time reversal.
Spectral statistics

Random matrix conjecture

Spectra of **chaotic** systems have universal statistics in agreement with **random matrix theory**.
Spectral statistics

Random matrix conjecture

Spectra of chaotic systems have universal statistics in agreement with random matrix theory.

Ensemble depends on symmetries.
Spectral statistics

Random matrix conjecture

Spectra of chaotic systems have universal statistics in agreement with random matrix theory.

Ensemble depends on symmetries.

In absence of other symmetries it depends only on the behaviour under time reversal.
Time reversal invariance

Classical: H symmetric w.r.t. $p \rightarrow -p$.

Quantum: \hat{H} symmetric w.r.t. complex conjugation, e.g.,

$$\hat{H} = \frac{1}{2}m\hat{p}^2 + U(x)$$

in general: \hat{H} must commute with anti-unitary operator T

$$T(a|\psi\rangle + b|\phi\rangle) = a^* T|\psi\rangle + b^* T|\phi\rangle,$$

$$\langle T\psi|T\phi\rangle = \langle \psi|\phi\rangle^*$$

together with $T^2 |\psi\rangle = c |\psi\rangle$

this implies $T^2 = \pm 1$.
Time reversal invariance

Conventional time-reversal invariance:

Classical: H symmetric w.r.t. $p \rightarrow -p$.

Quantum: \hat{H} symmetric w.r.t. complex conjugation e.g. $\hat{H} = \frac{1}{2} m \hat{p}^2 + U(x)$.

In general: \hat{H} must commute with anti-unitary operator T.

$T |\psi \rangle + b |\phi \rangle = a^* T |\psi \rangle + b^* T |\phi \rangle$,

$\langle T |\psi \rangle |T \phi \rangle = \langle \psi | \phi \rangle^*$.

Together with $T^2 |\psi \rangle = c |\psi \rangle$ this implies $T^2 = \pm 1$.
Time reversal invariance

conventional time-reversal invariance:

- **classical**: H symmetric w.r.t. $p \rightarrow -p$.
Time reversal invariance

conventional time-reversal invariance:

- **classical**: H symmetric w.r.t. $p \rightarrow -p$.
- **quantum**: \hat{H} symmetric w.r.t. complex conjugation
Time reversal invariance

conventional time-reversal invariance:

- **classical**: H symmetric w.r.t. $p \rightarrow -p$.
- **quantum**: \hat{H} symmetric w.r.t. complex conjugation
Time reversal invariance

conventional time-reversal invariance:

- **classical**: H symmetric w.r.t. $p \rightarrow -p$.
- **quantum**: \hat{H} symmetric w.r.t. complex conjugation

E.g. $\hat{H} = \frac{1}{2m}\hat{p}^2 + U(x)$
Time reversal invariance

conventional time-reversal invariance:

- **classical**: H symmetric w.r.t. $p \rightarrow -p$.
- **quantum**: \hat{H} symmetric w.r.t. complex conjugation

e.g. $\hat{H} = \frac{1}{2m}\hat{p}^2 + U(x)$

in general:

\hat{H} must commute with anti-unitary operator \mathcal{T}

$$\mathcal{T}(a|\psi\rangle + b|\phi\rangle) = a^*\mathcal{T}|\psi\rangle + b^*\mathcal{T}|\phi\rangle, \quad \langle\mathcal{T}\psi|\mathcal{T}\phi\rangle = \langle\psi|\phi\rangle^*$$
conventional time-reversal invariance:

- **classical:** H symmetric w.r.t. $p \rightarrow -p$.
- **quantum:** \hat{H} symmetric w.r.t. complex conjugation

e.g. $\hat{H} = \frac{1}{2m} \hat{p}^2 + U(x)$

in general:

\hat{H} must commute with anti-unitary operator \mathcal{T}

$$\mathcal{T}(a|\psi\rangle + b|\phi\rangle) = a^* \mathcal{T}|\psi\rangle + b^* \mathcal{T}|\phi\rangle,$$

$$\langle \mathcal{T}\psi|\mathcal{T}\phi\rangle = \langle \psi|\phi\rangle^*$$

together with $\mathcal{T}^2|\psi\rangle = c|\psi\rangle$
Time reversal invariance

conventional time-reversal invariance:
- **classical**: \(H \) symmetric w.r.t. \(p \to -p \).
- **quantum**: \(\hat{H} \) symmetric w.r.t. complex conjugation

E.g. \(\hat{H} = \frac{1}{2m} \hat{p}^2 + U(x) \)

in general:
\(\hat{H} \) must commute with anti-unitary operator \(\mathcal{T} \)

\[\mathcal{T}(a |\psi\rangle + b |\phi\rangle) = a^* \mathcal{T} |\psi\rangle + b^* \mathcal{T} |\phi\rangle, \quad \langle \mathcal{T} \psi |\mathcal{T} \phi\rangle = \langle \psi |\phi\rangle^* \]

Together with \(\mathcal{T}^2 |\psi\rangle = c |\psi\rangle \) this implies \(\mathcal{T}^2 = \pm 1 \)
Random matrix ensembles

-in absence of geometrical symmetries

- no time-reversal invariance: Gaussian Unitary Ensemble

- time-reversal invariance with $T^2 = 1$: Gaussian Orthogonal Ensemble

- time-reversal invariance with $T^2 = -1$: Gaussian Symplectic Ensemble
Random matrix ensembles

(in absence of geometrical symmetries)
Random matrix ensembles

(in absence of geometrical symmetries)

- no time-reversal invariance:
Random matrix ensembles

(in absence of geometrical symmetries)

- no time-reversal invariance:

 Gaussian Unitary Ensemble
Random matrix ensembles

(in absence of geometrical symmetries)

- no time-reversal invariance:
 Gaussian Unitary Ensemble

- time-reversal invariance with $T^2 = 1$:
Random matrix ensembles

(in absence of geometrical symmetries)

- no time-reversal invariance:
 Gaussian Unitary Ensemble

- time-reversal invariance with $\tau^2 = 1$:
 Gaussian Orthogonal Ensemble
Random matrix ensembles

(in absence of geometrical symmetries)

- no time-reversal invariance:
 Gaussian Unitary Ensemble

- time-reversal invariance with $T^2 = 1$:
 Gaussian Orthogonal Ensemble

- time-reversal invariance with $T^2 = -1$:
Random matrix ensembles

(in absence of geometrical symmetries)

- no time-reversal invariance:
 - Gaussian Unitary Ensemble

- time-reversal invariance with $\mathcal{T}^2 = 1$:
 - Gaussian Orthogonal Ensemble

- time-reversal invariance with $\mathcal{T}^2 = -1$:
Random matrix ensembles

(in absence of geometrical symmetries)

- no time-reversal invariance:
 - Gaussian Unitary Ensemble

- time-reversal invariance with $T^2 = 1$:
 - Gaussian Orthogonal Ensemble

- time-reversal invariance with $T^2 = -1$:
 - Gaussian Symplectic Ensemble
Spin systems

e.g.: spin system with spin-orbit coupling

$$H = \hat{p}^2 + U(r) + \hbar^2 \sum_{i=1}^{3} \sigma_i L_i$$

commutes with

$$T = i \sigma_2$$

$$K = \text{compl. conjug.}$$

GSE statistics!

Hamiltonian can be brought to quaternion real form with blocks

$$H_{nm} = \left(\begin{array}{cc} \alpha & \beta \\ -\beta^* & \alpha^* \end{array} \right) = a_0 1 + a_1 i \sigma_1 \quad a_2 i \sigma_2 \quad a_3 i \sigma_3$$
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i$$

$L = r \times p$
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i$$ \hspace{1cm} L = r \times p$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \hspace{1cm} \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \hspace{1cm} \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$
H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i \\
L = r \times p
$$

$$
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

commutes with

$$
\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K
$$

($K = \text{compl. conjug.}$)
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

\[
H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i
\]

\[
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

commutes with

\[
\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K
\]

\[
(K = \text{compl. conjug.})
\]

where

\[
\mathcal{T}^2 = -1
\]
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i$$

$$L = r \times p$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

commutes with

$$\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K$$

$$(K = \text{compl. conjug.})$$

where

$$\mathcal{T}^2 = -1$$

GSE statistics!
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

\[H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i \]

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

commutes with

\[\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K \]

\[\mathcal{T}^2 = -1 \]

GSE statistics!

Hamiltonian can be brought to quaternion real form with blocks
Spin systems
e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

\[H = \frac{\hat{p}^2}{2m} + U(r) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i \]

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

commutes with

\[\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K \]

where

\[\mathcal{T}^2 = -1 \]

GSE statistics!

Hamiltonian can be brought to quaternion real form with blocks

\[H_{nm} = \begin{pmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{pmatrix} = a_0 1 + a_1 i\sigma_1 + a_2 i\sigma_2 + a_3 i\sigma_3 \]

\[= l \quad = j \quad = k \]
Main message

GSE statistics can arise without spin.

example: a quantum graph

background: discrete geometrical symmetries
Main message

GSE statistics can arise without spin.
Main message

GSE statistics can arise without spin.
GSE statistics can arise without spin.

- example: a quantum graph
Main message

GSE statistics can arise without spin.

- example: a quantum graph
- background: discrete geometrical symmetries
Quantum graphs

networks of vertices connected by bonds (with lengths)

Schrödinger equation on each bond

$$-\hbar^2 \frac{d^2}{dx^2} \psi(x) = E \psi(x)$$

conditions at the vertices:

e.g. continuity

+ Neumann conditions (sum over $d\psi/dx$ of adjacent bonds is 0)

large well connected graphs display RMT spectral statistics

if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[
- \hbar \frac{d^2}{dx^2} \psi(x) = E \psi(x)
\]

conditions at the vertices: e.g. continuity
+ Neumann conditions (sum over \(d \psi dx\) of adjacent bonds is 0)

large well connected graphs display RMT spectral statistics
if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[
- \frac{\hbar}{2m} \frac{d^2 \psi(x)}{dx^2} = E \psi(x)
\]

Conditions at the vertices:
- e.g. continuity
- Neumann conditions (sum over \(d\psi dx\) of adjacent bonds is 0)

Large well connected graphs display RMT spectral statistics if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x) \]

- Schrödinger equation on each bond

- large well connected graphs display RMT spectral statistics

 if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

$$-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)$$

- conditions at the vertices:
Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

 \[- \frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)\]

- conditions at the vertices: e.g. continuity
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x) \]

- Schrödinger equation on each bond

- conditions at the vertices: e.g. continuity
 + Neumann conditions (sum over \(\frac{d\psi}{dx} \) of adjacent bonds is 0)
Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E\psi(x) \]

- conditions at the vertices: e.g. continuity
 + Neumann conditions (sum over \(\frac{d\psi}{dx} \) of adjacent bonds is 0)
- large well connected graphs display RMT spectral statistics
Quantum graphs

- networks of vertices connected by bonds (with lengths)

Schrödinger equation on each bond

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)\]

- conditions at the vertices: e.g. continuity
 + Neumann conditions (sum over \(\frac{d\psi}{dx} \) of adjacent bonds is 0)

- large well connected graphs display RMT spectral statistics

- if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs
here time-reversal invariance is broken by a complex phase factor: GUE
Quantum graphs

The following graph has a symmetry $T = PK$ ($P =$ switching to other copy, $K =$ complex conjugation) \Rightarrow GOE
the following graph has a symmetry $\mathcal{T} = PK$
($P = \text{switching to other copy}, \ K = \text{complex conjugation}$)
Quantum graphs

- the following graph has a symmetry $\mathcal{T} = PK$
 ($P =$ switching to other copy, $K =$ complex conjugation)

$\mathcal{T}^2 = 1$
the following graph has a symmetry $\mathcal{T} = PK$
($P =$ switching to other copy, $K =$ complex conjugation)

$\mathcal{T}^2 = 1 \implies \text{GOE}$
Quantum graphs

The following graph has the anti-unitary symmetry T defined by:

$$T\psi(x) = \begin{cases} \psi^\ast(Px) & x \in \text{left half} \\ -\psi^\ast(Px) & x \in \text{right half} \end{cases}$$

$$T^2 = -1 \Rightarrow \text{GSE}$$
the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}$$
the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}$$

$\mathcal{T}^2 = -1$
Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}
$$

$$
\mathcal{T}^2 = -1 \implies \text{GSE}
$$
the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}$$

$$\mathcal{T}^2 = -1 \implies \text{GSE}$$
the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}
$$

$\mathcal{T}^2 = -1 \implies \text{GSE}$
General approach to symmetries
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries

Example: reflection symmetry
two subspectra:
eigenfunctions even under reflection ⇒ GOE
eigenfunctions odd under reflection ⇒ GOE
subspectra uncorrelated
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:
eigenfunctions even under reflection ⇒ GOE

eigenfunctions odd under reflection ⇒ GOE

subspectra uncorrelated
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry
Symmetries

Spectral statistics in systems with (discrete) \textit{geometric symmetries}?

Example: reflection symmetry

two subspectra:
Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection
Symmetries

Spectral statistics in systems with (discrete) **geometric symmetries**?

Example: reflection symmetry

![Diagram of reflection symmetry with two subspectra](image)

Two subspectra:
- Eigenfunctions even under reflection \Rightarrow GOE
- Eigenfunctions odd under reflection \Rightarrow GOE
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

Two subspectra:
- eigenfunctions even under reflection \Rightarrow GOE
- eigenfunctions odd under reflection
Symmetries

Spectral statistics in systems with (discrete) **geometric symmetries**?

Example: reflection symmetry

- **two subspectra:**
 - eigenfunctions even under reflection \Rightarrow GOE
 - eigenfunctions odd under reflection \Rightarrow GOE
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection \Rightarrow GOE
- eigenfunctions odd under reflection \Rightarrow GOE
- subspectra uncorrelated
General discrete symmetries

- group of **classical** symmetry operations g
General discrete symmetries

- group of **classical** symmetry operations g

 in our example identity and reflection
General discrete symmetries

- group of **classical** symmetry operations g

 in our example identity and reflection

- **quantum** symmetries

 $$U(g)\psi(r) = \psi(g^{-1}r)$$

 commute with Hamiltonian,
General discrete symmetries

- group of **classical** symmetry operations g
 - in our example identity and reflection

- **quantum** symmetries

 \[U(g)\psi(r) = \psi(g^{-1}r) \]

 commute with Hamiltonian,

 they form a representation of the classical symmetry group, i.e.,

 \[U(gg') = U(g)U(g') \]
General discrete symmetries

General discrete symmetries can diagonalize H and block-diagonalize symmetry operators $U(g) = \begin{pmatrix} M^T_1(g) & \cdots & \cdots & \cdots & M^T_1(g) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ M^T_2(g) & \cdots & \cdots & \cdots & M^T_2(g) \end{pmatrix}$ blocks $M^\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy $M^\alpha(gg') = M^\alpha(g)M^\alpha(g')$. Eigenfunctions corresponding to each block have same energy if they are grouped into a vector $\psi'\psi'\psi'$. We get:

$U(g)\psi'\psi'\psi' = M^\alpha(g)T\psi'\psi'\psi'$

Consider subspectra corresponding to irreducible representations
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$U(g) = \begin{pmatrix}
M_1^T(g) \\
\ldots \\
M_1^T(g) & M_2^T(g) \\
\ldots \\
M_2^T(g) & \ldots \\
\ldots
\end{pmatrix}$$

blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy $M_{\alpha}(gg') = M_{\alpha}(g)M_{\alpha}(g')$. Each eigenfunction corresponding to each block has the same energy if grouped into a vector ψ, we get:

$$U(g)\psi = M_{\alpha}(g)\psi$$

consider subspectra corresponding to irreducible representations
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

\[
U(g) = \begin{pmatrix}
M_1^T(g) & & \\
& \ddots & \\
& & M_1^T(g)
\end{pmatrix}
\begin{pmatrix}
& & \\
& \ddots & \\
& & \\
M_2^T(g) & & M_2^T(g)
\end{pmatrix}
\]

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$ U(g) = \begin{pmatrix} M_1^T(g) \\ \vdots \\ M_1^T(g) & M_2^T(g) \\ \vdots \\ M_2^T(g) \end{pmatrix} $$

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$ M_\alpha(gg') = M_\alpha(g)M_\alpha(g') $$
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

 $U(g) = egin{pmatrix}
 M_1^T(g) \\
 \vdots \\
 M_1^T(g) \\
 \vdots \\
 M_2^T(g) \\
 \vdots \\
 M_2^T(g)
 \end{pmatrix}

 blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

 $M_\alpha(gg') = M_\alpha(g)M_\alpha(g')$

- eigenfunctions corresponding to each block have same energy
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$U(g) = \begin{pmatrix}
M_1^T(g) & & \\
& \ddots & \\
& & M_1^T(g)
\end{pmatrix}$$

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$M_\alpha(gg') = M_\alpha(g)M_\alpha(g')$$

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector ψ we get:

$$U(g)\psi = M_\alpha(g)^T\psi$$
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$U(g) = \begin{pmatrix} M_1^T(g) & \cdots & \cdots & M_1^T(g) \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & \cdots \\ M_2^T(g) & \cdots & \cdots & M_2^T(g) \end{pmatrix}$$

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$M_\alpha(gg') = M_\alpha(g)M_\alpha(g')$$

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector ψ we get:

$$U(g)\psi = M_\alpha(g)^T\psi$$

- consider subspectra corresponding to irreducible representations
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators $U(g) = \begin{pmatrix} M_1^T(g) & \cdots & \cdots & M_1^T(g) \\ \cdots & \ddots & \ddots & \cdots \\ \cdots & \cdots & M_2^T(g) & \cdots \\ \cdots & \cdots & \cdots & M_2^T(g) \end{pmatrix}$

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy $M_\alpha(gg') = M_\alpha(g)M_\alpha(g')$

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector ψ we get: $U(g)\psi = M_\alpha(g)^T\psi$

- consider subspectra corresponding to irreducible representations
General discrete symmetries
General discrete symmetries

types of representations:
types of representations:

- complex M_α
General discrete symmetries

types of representations:

- complex M_α
- real M_α
General discrete symmetries

types of representations:

- complex M_α
- real M_α
- quaternion real (pseudo-real) M_α
Why? consider $T = \text{complex conjugation}; 2d \text{pseudo-real representation}$.

ψ transform according to $U(g) \psi = M_\alpha(g) T \psi$ but $T \psi$ transforms with $(M_\alpha(g) T \psi) \ast \Rightarrow T$ not compatible with structure of subspace.

Use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ instead: $\bar{T} \psi$ transforms as desired and \bar{T} commutes with H.

$\bar{T}^2 = -1 \Rightarrow \text{GSE}$.
<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. $(T^2 = 1)$</th>
<th>T inv. $(T^2 = -1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- Consider $T = \text{complex conjugation}$; 2d pseudo-real representation
 - $\psi \psi \psi$ transform according to $U(g) \psi \psi \psi = M_\alpha(g) T \psi \psi \psi$
 - but $T \psi \psi \psi$ transforms with $(M_\alpha(g) T \psi \psi \psi)^*$ ⇒ T not compatible with structure of subspace
 - Use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ T instead:
 - $\bar{T} \psi \psi \psi$ transforms as desired and \bar{T} commutes with H
 - $\bar{T}^2 = -1$ ⇒ GSE

Find a graph whose symmetry group has a pseudo-real representation.
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no \mathcal{T} inv.</th>
<th>\mathcal{T} inv. ($\mathcal{T}^2 = 1$)</th>
<th>\mathcal{T} inv. ($\mathcal{T}^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $\mathcal{T} = \text{complex conjugation}$; 2d pseudo-real representation
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>\mathcal{T} inv. ($\mathcal{T}^2 = 1$)</th>
<th>\mathcal{T} inv. ($\mathcal{T}^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $\mathcal{T} =$ complex conjugation; 2d pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. $(T^2 = 1)$</th>
<th>T inv. $(T^2 = -1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $\mathcal{T} = \text{complex conjugation}; 2\text{d pseudo-real representation}$

- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$

- but $\mathcal{T}\psi$ transforms with $(M_\alpha(g)^T)^*$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T =$ complex conjugation; 2d pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- but $T\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no (T) inv.</th>
<th>(T) inv. ((T^2 = 1))</th>
<th>(T) inv. ((T^2 = -1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider \(\mathcal{T} \) = complex conjugation; 2d pseudo-real representation
- \(\psi \) transform according to \(U(g)\psi = M_\alpha(g)^T\psi \)
- but \(\mathcal{T}\psi \) transforms with \((M_\alpha(g)^T)^* \Rightarrow \mathcal{T} \) not compatible with structure of subspace
- use \(\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) \(T \) instead:
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $\mathcal{T} =$ complex conjugation; 2d pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T \psi$
- but $\mathcal{T} \psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} T$ instead:

 $\bar{T} \psi$ transforms as desired and \bar{T} commutes with H
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T = \text{complex conjugation}; 2d \text{pseudo-real representation}$
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- but $T\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
- use $\bar{T} = \begin{pmatrix}0 & 1 \\ -1 & 0\end{pmatrix} T$ instead:
 - $\bar{T}\psi$ transforms as desired and \bar{T} commutes with H
- $\bar{T}^2 = -1$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T = \text{complex conjugation}; 2d$ pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T \psi$
- but $T\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
- use $\tilde{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ T instead:
 - $\tilde{T}\psi$ transforms as desired and \tilde{T} commutes with H
 - $\tilde{T}^2 = -1 \Rightarrow \text{GSE}$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T =$ complex conjugation; 2d pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- but $T\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
- use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} T$ instead:
 - $\bar{T}\psi$ transforms as desired and \bar{T} commutes with H
 - $\bar{T}^2 = -1 \Rightarrow \text{GSE}$

Find a graph whose symmetry group has a pseudo-real representation.
Construction of a GSE quantum graph

simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
elements can be written as products of the generators I and J

Cayley graph: group elements as vertices
bonds of length connect group elements related by right multiplication with bonds of length connect group elements related by right multiplication with
Construction of a GSE quantum graph

simplest group with a pseudo-real representation:

\[
\begin{align*}
Q_8 &= \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = \pm 1, \quad ij = k, \quad jk = i, \quad ki = j\}\nonumber
\end{align*}
\]

Elements can be written as products of the generators \(i, j\), and \(k\). Cayley graph: group elements as vertices and bonds of length connect group elements related by right multiplication with bonds of length connect group elements related by right multiplication with
simplest group with a pseudo-real representation: quaternion group $Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \}$
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \}$
elements can be written as products of the generators i and j
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \}$
 - elements can be written as products of the generators i and j
- Cayley graph:
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation:
 quaternion group $Q8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
 elements can be written as products of the generators i and j

- Cayley graph:
simplest group with a pseudo-real representation: quaternion group \(Q8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \} \)
elements can be written as products of the generators \(i \) and \(j \)

Cayley graph:

- group elements as vertices
Construction of a GSE quantum graph

simplest group with a pseudo-real representation:
quaternion group \(Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \} \)
elements can be written as products of the generators \(i \) and \(j \)

Cayley graph:

- group elements as vertices
- bonds of length \(L \) connect group elements related by right multiplication with \(i \)
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
- elements can be written as products of the generators i and j
- Cayley graph:

 - group elements as vertices
 - bonds of length L, connect group elements related by right multiplication with i
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
- elements can be written as products of the generators i and j
- Cayley graph:

![Cayley graph diagram]

- group elements as vertices
- bonds of length L, connect group elements related by right multiplication with i
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
 - elements can be written as products of the generators i and j
- Cayley graph:
 - group elements as vertices
 - bonds of length L, connect group elements related by right multiplication with i
Construction of a GSE quantum graph

simplest group with a pseudo-real representation: quaternion group \(Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \} \) elements can be written as products of the generators \(i \) and \(j \)

Cayley graph:

- group elements as vertices
- bonds of length \(L_i \) connect group elements related by right multiplication with \(i \)
- bonds of length \(L_J \) connect group elements related by right multiplication with \(J \)
Construction of a GSE quantum graph
Construction of a GSE quantum graph

- increase size:
Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs
Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs
Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs

Graph with GSE subspectrum
Construction of a GSE quantum graph

... but boundary conditions mix pairs of degenerate eigenfunctions
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

\[I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics

... but boundary conditions mix pairs of degenerate eigenfunctions
Construction of a GSE quantum graph

Let each of the two eigenfunctions live on a separate copy of the graph with a pure GSE spectrum and no resemblance of spin.
Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph
Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph
Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph

graph with a pure GSE spectrum and no resemblance of spin
Numerical Results
Numerical Results

\[+1 + 1 - 1 - 1 + i + i - i - i\]
Numerical Results

Agreement with GSE 😊
Conclusions
Conclusions

- GSE statistics can be realised without spin
Conclusions

- GSE statistics can be realised without spin
- Spectral statistics in systems with geometric symmetries depends on time-reversal properties and type of subspectrum
Conclusions

- GSE statistics can be realised without spin
- Spectral statistics in systems with geometric symmetries depends on time-reversal properties and type of subspectrum
- Generalisation to the 'tenfold way'?
Conclusions

- GSE statistics can be realised without spin

- Spectral statistics in systems with geometric symmetries depends on time-reversal properties and type of subspectrum

- Generalisation to the 'tenfold way'?

- Experimental realisation?
Further example

Spectral statistics in systems with (discrete) geometric symmetries?
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by \(\frac{2\pi}{3} \)
(Leyvraz, Schmit, Seligmann 96)
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

eigenfunctions with
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

eigenfunctions with

$$\psi(r, \theta - \frac{2\pi}{3}) = \psi(r, \theta)$$
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

eigenfunctions with

\[\psi(r, \theta - \frac{2\pi}{3}) = \psi(r, \theta) \quad \Rightarrow \text{GOE} \]
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

\[
\psi(r, \theta - \frac{2\pi}{3}) = \psi(r, \theta) \quad \Rightarrow \text{GOE}
\]

\[
\psi(r, \theta - \frac{2\pi}{3}) = e^{i\frac{2\pi}{3}} \psi(r, \theta)
\]
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

\[
\psi(r, \theta - \frac{2\pi}{3}) = \psi(r, \theta) \quad \Rightarrow \text{GOE}
\]

\[
\psi(r, \theta - \frac{2\pi}{3}) = e^{i\frac{2\pi}{3}} \psi(r, \theta) \quad \Rightarrow \text{GUE}
\]
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

![Diagram showing a shape with threefold rotational symmetry.]

eigenfunctions with

- $\psi(r, \theta - \frac{2\pi}{3}) = \psi(r, \theta)$ \implies \text{GOE}
- $\psi(r, \theta - \frac{2\pi}{3}) = e^{i2\pi/3}\psi(r, \theta) \implies \text{GUE}$
- $\psi(r, \theta - \frac{2\pi}{3}) = e^{i4\pi/3}\psi(r, \theta)$
Further example

Spectral statistics in systems with (discrete) **geometric symmetries**?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

eigenfunctions with

- $\psi(r, \theta - \frac{2\pi}{3}) = \psi(r, \theta)$ \ \ \ \Rightarrow GOE
- $\psi(r, \theta - \frac{2\pi}{3}) = e^{i\frac{2\pi}{3}} \psi(r, \theta)$ \ \ \ \Rightarrow GUE
- $\psi(r, \theta - \frac{2\pi}{3}) = e^{i\frac{4\pi}{3}} \psi(r, \theta)$ \ \ \ \Rightarrow GUE
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

eigenfunctions with

- $\psi(r, \theta - \frac{2\pi}{3}) = \psi(r, \theta) \Rightarrow \text{GOE}$
- $\psi(r, \theta - \frac{2\pi}{3}) = e^{i\frac{2\pi}{3}}\psi(r, \theta) \Rightarrow \text{GUE}$
- $\psi(r, \theta - \frac{2\pi}{3}) = e^{i\frac{4\pi}{3}}\psi(r, \theta) \Rightarrow \text{GUE}$
Further example

Spectral statistics in systems with (discrete) geometric symmetries?

Example: symmetry w.r.t. rotations by $\frac{2\pi}{3}$
(Leyvraz, Schmit, Seligmann 96)

\[
\begin{align*}
\psi(r, \theta - \frac{2\pi}{3}) &= \psi(r, \theta) \quad \Rightarrow \text{GOE} \\
\psi(r, \theta - \frac{2\pi}{3}) &= e^{i2\pi/3} \psi(r, \theta) \Rightarrow \text{GUE} \\
\psi(r, \theta - \frac{2\pi}{3}) &= e^{i4\pi/3} \psi(r, \theta) \Rightarrow \text{GUE}
\end{align*}
\]