Programme Specification for Postgraduate Programme Leading to:
MSc Statistics with Data Analytics

Applicable for all postgraduate students starting in 2020/21

<table>
<thead>
<tr>
<th>Version No.</th>
<th>Date</th>
<th>Notes – QA USE ONLY</th>
<th>AO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020.21</td>
<td>18 August 2020</td>
<td>Minor modification to programme, compulsory blocks CS5603 Data Visualisation replaced by MA5637 Data Visualisation, CS5608 Big Data Analytics replaced by MA5638 Big Data Analytics and CS5606 Quantitative Data Analysis replaced by MA5636 Quantitative Data Analysis. Optional block MA5630 Network Models replaced by MA5635 Cryptocurrencies.</td>
<td>JP</td>
</tr>
</tbody>
</table>

Postgraduate Taught Programme

1. Awarding institution
 - Brunel University London

2. Teaching institution(s)
 - Brunel University London

3. Home college/department/division
 - College of Engineering, Design and Physical Sciences/ Department of Mathematics

4. Contributing college/department/division/associated institution
 - Department of Computer Sciences

5. Programme accredited by
 - N/A

6. Final award(s) and FHEQ Level of Award
 - MSc Statistics with Data Analytics (FHEQ L7)

7. Programme title
 - MSc Statistics with Data Analytics

8. Programme type
 - N/A

9. Normal length of programme (in months) for each mode of study
 - FT 12 months (equivalent to 52 weeks)
 - PT 24 months (equivalent to 2 years from the 1st September)

10. Maximum period of registration for each mode of study
 - Normal or standard duration plus 2 years

11. Variation(s) to September start
 - N/A

12. Modes of study
 - Full time/Part time

13. Modes of delivery
 - Standard

14. Intermediate awards and titles and FHEQ Level of Award
 - PGDip Statistics - FHEQ Level 7
 - PGCert Statistics - FHEQ Level 7

15. UCAS Code
 - G300PSTATDAT

16. HECOS Code
 - 100406 (45%), 101034 (20%) 101030 (20%), 100371 (15%)

17. Route Code
 - G300PSTATDAT

18. Relevant subject benchmark statements and other external and internal reference points used to inform programme design
 - UK Quality Code for Higher Education
 - QAA Subject Benchmark Statement (Mathematics, Statistics and Operational Research)
 - Brunel University 2030
 - Brunel Placement Learning Policy, as published under the ‘Placements’ section of the ‘Managing Higher Education Provision with Others’ page.

19. Admission Requirements
 - Details of PGT entry requirements are provided on the University’s and College website.
 - Levels of English for non-native speakers are outlined on Brunel International’s language requirements pages.

20. Other relevant information (e.g. study abroad, additional information on placements)
 - N/A

21. Programme regulations not specified in Senate Regulation 3. Any departure from regulations specified in Senate Regulation 3 must be stated here and approved by Senate.
 - N/A

22. Further information about the programme is available from the College website.
 - https://www.brunel.ac.uk/cedps

UNCLASSIFIED
23. EDUCATIONAL AIMS OF THE PROGRAMME

Statistics is the study of the collection, analysis, interpretation, presentation, and organization of data. The aim of the MSc Statistics and Data Analytics is to produce graduates that:

- are equipped with a range of advanced statistical methods and the associated computational skills for handling large quantities of unstructured data;
- have developed a critical awareness of the underlying needs of industry and commerce through relevant case studies;
- are able to analyse real-world data and to communicate the output of sophisticated statistical models in order to inform decision making processes;
- have the necessary computational skills to build and analyse simple/appropriate solutions using statistical Big Data technologies.

24. PROGRAMME AND INTERMEDIATE LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding (K) cognitive (thinking) skills (C) and other skills and attributes (S) in the following areas:

<table>
<thead>
<tr>
<th>Level</th>
<th>Category</th>
<th>Learning Outcome</th>
<th>Masters Award Only</th>
<th>Associated Assessment Blocks Code(s)</th>
<th>Associated Study Blocks Code(s)</th>
<th>Associated Modular Blocks Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>K & C</td>
<td>Demonstrate knowledge and a critical understanding of modern regression models and classification methods.</td>
<td></td>
<td>MA5602 MA5631 MA5632 MA5634 MA5635</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K & C</td>
<td>Demonstrate a critical understanding of the challenges and issues arising from taking heterogeneous data at volume and scale and to be able to use modern statistical skills and tools to deal with massive data.</td>
<td></td>
<td>MA5632 MA5633 MA5634 MA5636 MA5638</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K & C</td>
<td>Demonstrate knowledge and a critical understanding of further statistical methods; for example Bayesian inference, network methods and modern Lasso theory.</td>
<td></td>
<td>MA5631 MA5633 MA5634 MA5635</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K & S</td>
<td>Evaluate critically the effectiveness of statistical analysis methods.</td>
<td></td>
<td>MA5602 MA5627 MA5629 MA5631 MA5632 MA5634 MA5635</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C & S</td>
<td>Evaluate the effectiveness of the application of statistical methods to engineering, social and business data.</td>
<td></td>
<td>MA5627 MA5629 MA5632 MA5633</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>To be able to conduct, report and evaluate a significant programme of research related to the problems and challenges of unstructured data.</td>
<td></td>
<td>MA5627 MA5633</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning/teaching strategies and methods to enable learning outcomes to be achieved, including formative assessments

In relation to the learning outcomes above:

- Knowledge and understanding in the theoretical areas indicated above will be acquired through a combination of lectures, seminars, and self-study (and, where applicable, individual projects).
- In the lectures, statistical theory and important concepts will be illustrated and explained; such concepts include both the relevant background in mathematical computing and probability.
- Seminars and group tutorials are used to apply acquired knowledge via exercises and/or to develop critical insight and reflect on the taught material.
- Practical laboratory sessions are used to demonstrate and apply key approaches, tools and techniques etc. Modern computing statistical languages such as R based coding and algorithms will be demonstrated.

Directed private study is used to (a) supplement and consolidate the points above and (b) broaden individual knowledge and understanding of the subject matter.

Summative assessment strategies and methods to enable learning outcomes to be demonstrated.

The assessment of all learning outcomes above is achieved by a balance of coursework and examinations (as detailed in the individual module specifications). Assessments range from written reports/essays, group work, presentations through to conceptual/statistical modelling and programming exercises, according to the demands of particular modular blocks. Additionally, class tests are used to assess a range of knowledge, including a range of specific technical subjects.

25. Programme Structure, progression and award requirements

Programme structures and features: levels, assessment blocks, credit and progression and award requirements

- **Compulsory block**: one which all students registered for the award are required to take as part of their programme of study. These will be listed in the left hand column;

- **Optional block**: one which students choose from an ‘option range’. These will be listed in the right hand column;

- **A core assessment** is an assessment identified within an assessment block or modular block (either compulsory or optional) which must be passed (at grade C- or better) in order to be eligible to progress and to be eligible for the final award. All core assessments must be specified on the programme specification next to the appropriate assessment or modular block:

 Where students are expected to pass the block at C- or better, but not necessarily all elements, then the block itself is core.

 e.g. AB5500 Project (40)
 Core: Block

 Where only some elements of assessments are required to be passed at C- or better, these will be identified by listing each element that is core.

 e.g. ABXXX1 Title (XX credits)
 Core: 1 & 4

 Where students are expected to pass all assessments in a block then this will be identified. By setting the assessment this way, students are also required to pass the block by default. This will be identified thus:

 e.g. ABXXXX Title (XX credits)
 Core: All, Block

- **A non-core assessment** does not have to be passed at grade C- or better, but must D- or better in order to be eligible for the final award.
<table>
<thead>
<tr>
<th>Level 7</th>
<th>Optional modular block codes, titles and credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory modular block codes, titles and credits</td>
<td>From 2019-20, 15 credits in Term 2 will be optional</td>
</tr>
<tr>
<td>Term 1:</td>
<td>Any one modular blocks from:</td>
</tr>
<tr>
<td>CS5606 MA56xx Quantitative Data Analysis (15 credits)</td>
<td>MA5629 Time Series Modelling (15 credits)</td>
</tr>
<tr>
<td>MA5602 Probability and Stochastics (15 credits)</td>
<td>MA5635 Cryptocurrencies (15 credits)</td>
</tr>
<tr>
<td>MA5627 Research Methods and Case Studies (15 credits)</td>
<td>MA5631 Bayesian Statistics (15 credits) (will not run in 2020-2021)</td>
</tr>
<tr>
<td>MA5632 Computer Intensive Statistical Methods (15 credits)</td>
<td></td>
</tr>
<tr>
<td>Term 2:</td>
<td></td>
</tr>
<tr>
<td>CS5603 MA56yy Data Visualisation (15 credits)</td>
<td></td>
</tr>
<tr>
<td>CS5608 MA56zz Big Data Analytics (15 credits)</td>
<td></td>
</tr>
<tr>
<td>MA5634 Fundamentals of Machine Learning (15 credits)</td>
<td></td>
</tr>
<tr>
<td>Over the summer:</td>
<td></td>
</tr>
<tr>
<td>MA5633 Dissertation (60 credits)</td>
<td></td>
</tr>
<tr>
<td>Core: Block</td>
<td></td>
</tr>
<tr>
<td>Part-Time Curriculum:</td>
<td></td>
</tr>
<tr>
<td>Year 1 Term 1: MA5632, MA56xx</td>
<td></td>
</tr>
<tr>
<td>Term 2: MA56yy, MA56zz</td>
<td></td>
</tr>
<tr>
<td>Year 2 Term 1: MA5627, MA5602</td>
<td></td>
</tr>
<tr>
<td>Term 2: MA5634, one of MA5629 or MA5635</td>
<td></td>
</tr>
<tr>
<td>MA5633 Dissertation</td>
<td></td>
</tr>
</tbody>
</table>

Progression and Award Requirements

As per Senate Regulation 3

PGDip may not be awarded by substitution of the dissertation (MA5633) for modular/assessment blocks in the taught part of the programme.

Please note: this specification provides a concise summary of the main features of the programme and the learning outcomes that a student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the learning outcomes, content and teaching, learning and assessment methods can be found in the modular block, assessment and study block outlines and other programme and block information. The accuracy of the information contained in this document is reviewed by the University from time to time and whenever a modification occurs.