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Abstract 

This paper investigates the role of the frequency of price overreactions in the cryptocurrency market 
in the case of BitCoin over the period 2013-2018. Specifically, it uses a static approach to detect 
overreactions and then carries out hypothesis testing by means of a variety of statistical methods 
(both parametric and non-parametric) including ADF tests, Granger causality tests, correlation 
analysis, regression analysis with dummy variables, ARIMA and ARMAX models, neural net 
models, and VAR models. Specifically, the hypotheses tested are whether or not the frequency of 
overreactions (i) is informative about Bitcoin price movements (H1) and (ii) exhibits seasonality 
(H2). On the whole, the results suggest that it can provide useful information to predict price 
dynamics in the cryptocurrency market and for designing trading strategies (H1 cannot be rejected), 
whilst there is no evidence of seasonality (H2 is rejected). 
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1. Introduction 

Cryptocurrencies have attracted considerable attention since their recent creation and 
experienced huge swings. For instance, in 2017 Bitcoin prices rose by more than 20 
times, but in early 2018 fell by 70%; similar sharp drops had in fact already occurred 
5 times before (June 2011, January 2012, April 2013, November 2013, December 
2017). Such significant deviations of asset prices from their average values during 
certain periods of time are known as overreactions and have been widely analysed in 
the literature since the seminal paper of De Bondt and Thaler (1985), various studies 
being carried out for different markets (stocks, FOREX, commodities etc.), countries 
(developed and emerging), assets (stock prices/indices, currency pairs, oil, gold etc.), 
and time intervals (daily, weekly, monthly etc.). However, hardly any evidence is 
available to date on the cryptocurrency market, which is particularly interesting 
because of its very extremely high volatility compared to the FOREX or stock market 
(see Caporale and Plastun, 2018a for details).  

The present paper aims to analyse the role of the frequency of overreactions, 
specifically whether or not it can help predict price behaviour and/or exhibits 
seasonality, by using daily prices for BitCoin over the period 2013-2018. 
Overreactions are detected by plotting the distribution of logreturns. Then the 
following null hypotheses are tested: (i) the frequency of overreactions is informative 
about BitCoin price movements (H1), and (ii) it exhibits seasonality (H2). For this 
purpose a variety of statistical methods (parametric and non-parametric) are used 
such as ADF tests, Granger causality tests, correlation analysis, regression analysis 
with dummy variables, ARIMA and ARMAX models, neural net models, and VAR 
models. 

The remainder of the paper is organised as follows. Section 2 contains a brief 
review of the literature on price overreactions in the cryptocurrency market. Section 3 
describes the methodology. Section 4 discusses the empirical results. Section 5 
provides some concluding remarks. 
 

2. Literature Review 

The cryptocurrency market is relatively young and as a result there is only a limited 
number of studies examining its features, such as long memory and persistence 
(Caporale et al, 2018; Bariviera, 2017; Urquhart, 2016), efficiency (Urquhart, 2016; 
Bartos, 2015), correlations between different cryptocurrencies (Halaburda and 
Gandal, 2014), price predictability (Brown, 2014), volatility (Cheung et al., 2015; 
Carrick, 2016), calendar anomalies (Kurihara and Fukushima, 2017 and Caporale and 
Plastun, 2017), and intraday patterns (Eross et. al., 2017). 

Analysing overreactions in the case of the cryptocurrency market is particularly 
interesting because of its extreme volatility (see Caporale and Plastun, 2018a, Cheung 
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et al., 2015 and Dwyer, 2015). Also, its average daily price amplitude is up to 10 
times higher than in the FOREX or stock market (see Table 1). 

Table 1: Comparative analysis of the average daily price amplitude in different 
financial markets* 

Instrument Market 2014 2015 2016 2017 Average 
EURUSD FOREX 0.6% 1.1% 0.8% 0.6% 0.8% 
Dow-Jones Industrial Stock Market 0.8% 1.2% 1.0% 0.5% 0.9% 
CSI300 1.5% 3.0% 1.5% 0.9% 1.8% 
Gold Commodities 1.3% 1.4% 1.5% 0.9% 1.3% 
Oil 1.8% 3.9% 3.9% 2.1% 2.9% 
BitCoin 

Cryptocurrency 

5.0% 4.2% 2.4% 6.3% 5.1% 
LiteCoin 6.6% 6.4% 2.9% 9.6% 7.3% 
Dash 22.0% 9.0% 7.1% 11.3% 12.1% 
Ripple 7.1% 4.2% 3.2% 12.7% 7.3% 

* Source: Caporale and Plastun (2018a) 

Further, the log return distribution of prices has unusually fat tails (see Table 
A.1), which suggests their being prone to overreactions. Catania and Grassi (2017) 
show that their dynamic behaviour is quite complex, with outliers, asymmetries and 
nonlinearities that are difficult to model.  

Another issue worth investigating is whether overreactions exhibit seasonality. 
De Bondt and Thaler (1985) show that they tend to occur mostly in a specific month 
of the year, whilst Caporale and Plastun (2018b) do not find evidence of seasonal 
behaviour in the US stock market. Whilst most studies examine abnormal returns and 
the subsequent price behaviour (in general, contrarian movement) for a given time 
interval (day, week, and month), the current paper focuses on the frequency of 
abnormal price changes. Only a few papers have considered this issue in the case of 
the FOREX or stock market (see Govindaraj et al., 2014; Angelovska, 2016), and 
none in the case of the cryptocurrency market. 

 

3. Methodology 

The first step in the analysis of overreactions is their detection. There are two 
main methods. One is the dynamic trigger approach, which is based on relative 
values. Wong (1997) and Caporale and Plastun (2018a) in particular proposed to 
define overreactions on the basis of the number of standard deviations to be added to 
the average return. The other is the static approach which uses actual price changes as 
an overreaction criterion. For example, Bremer and Sweeney (1991) use a 10% price 
change as a criterion. Caporale and Plastun (2018b) compare these two methods in 
the case of the US stock market and show that the static approach produces more 
reliable results. Therefore this will also be used here. 
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The static approach was introduced by Sandoval and Franca (2012) and 
developed by Caporale and Plastun (2018b). Returns are defined as: 

𝑆𝑆𝑡𝑡 = ln(𝑃𝑃𝑡𝑡) −  ln(𝑃𝑃𝑡𝑡−1)     (1) 

where 𝑆𝑆𝑡𝑡 stands for returns, and 𝑃𝑃𝑡𝑡 and 𝑃𝑃𝑡𝑡−1 are the close prices of the current 
and previous day. The next step is analysing the frequency distribution by creating 
histograms. We plot values 10% above or below those of the population. Thresholds 
are then obtained for both positive and negative overreactions, and periods can be 
identified when returns were above or equal to the threshold.  

Such a procedure generates a data set for the frequency of overreactions (at a 
monthly frequency), which is then divided into 3 subsets including respectively the 
frequency of negative and positive overreactions, and of them all. In this study we 
also use an additional measure (named the “Overreactions multiplier”), namely the 
negative/positive overreactions ratio:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖

  (2) 

Then the following hypotheses are tested: 

Hypothesis 1 (H1): The frequency of overreactions is informative 
about price movements in the cryptocurrency market. 

There is a body of evidence suggesting that typical price patterns appear in 
financial markets after abnormal price changes. The relationship between the 
frequency of overreactions and BitCoin prices is investigated here by running the 
following regressions (see equations 3 and 4):  

Yt = a0 + a1+D1t
+ + a1

- D1t
- + εt  (3) 

where 𝑌𝑌𝑡𝑡 – BitCoin log differences on day t; 

an– BitCoin mean log differences; 

𝑎𝑎1+ (𝑎𝑎1−) – coefficients on positive and negative overreactions respectively; 

D1n
+  (𝐷𝐷1n− ) a dummy variable equal to 1 on positive (negative) overreaction 

days, and 0 otherwise; 

εt – Random error term at time t. 

Yt = a0 + a1 Ot
+ + a2 Ot

- + εt   (4) 

where 𝑌𝑌𝑡𝑡 – BitCoin log differences on day t; 

a0– BitCoin mean log differences; 
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𝑎𝑎1  (𝑎𝑎2 ) – coefficients on positive and negative overreactions respectively; 

Ot
+ (Ot

−) – the number of positive (negative) overreaction days during a period 
t; 

εt – Random error term at time t. 

 

The size, sign and statistical significance of the coefficients provide 
information about the possible influence of the frequency of overreactions on BitCoin 
log returns.  

To assess the performance of the regression models a multilayer perceptron 
(MLP) method will be used (Rumelhart and McClelland, 1986). This method is based 
on neural networks modelling. The algorithm is as follows. The data is divided into 3 
groups: the learning group (50%), the test group (25%), and the control group (25%). 
The learning process in the neural network consists of 2 stages: the first stage is based 
on an inverse distribution method (number of periods -100, training speed -0.01) and 
the second uses a conjugate gradient method (number of periods -500). This 
procedure generates an optimal neural net. The results from the neural net are then 
compared with those from the regression analysis. 

To obtain further evidence an ARIMA(p,d,q) model is also estimated: 

tjt

q

j
jtit

p

i
itt YaY εεqψ +++= −

=
−−

=
− ∑∑

11
0     (5) 

where  𝑌𝑌𝑡𝑡 – BitCoin log differences on day t; 

−0a constant; 

−−− jtit θψ ; coefficients the log differences on day t-i and random error term at 
time t-j respectively; 

𝑌𝑌𝑡𝑡-i – BitCoin log differences on day t-i; 

εt−j – random error term at time t-j; 

εt – random error term at time t; 

To improve the basic ARIMA(p,d,q) specification additional variables are 
thenn added, namely the frequency of negative and positive overreactions 
respectively:  

tit

s

i
itit

s

i
itit

q

i
itit

p

i
itt OFbOFaYaY εεqψ +++++= +

−
=

−
−
−

=
−−

=
−−

=
− ∑∑∑∑

21

1111
0     (6) 
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Information criteria, specifically AIC (Akaike, 1974) and BIC (Schwarz, 
1978), are used to select the best ARMAX specification for BitCoin log returns. 

As a robustness check, VAR models are also estimated: 

∑= − ++=
p

i titit yAay
10 ε      (7) 

where ),...,,( 21 k
tttt yyyy = - is a time series vector; tA  is a time-invariant matrix; 0a  

is vector of constants; tε - is a vector of error terms. Impulse response functions 
(IRFs) are then computed and Variance Decomposition (VD) is also carried out. In 
addition, Granger causality tests (Granger, 1969) and Augmented Dickey-Fuller tests 
(Dickey and Fuller, 1979) are performed. 

Hypothesis 2 (H2): The frequency of overreactions exhibits 
seasonality  

We perform a variety of statistical tests, both parametric (ANOVA analysis) 
and non-parametric (Kruskal-Wallis tests), for seasonality in the monthly frequency 
of overreactions, which provides information on whether or not overreactions are 
more likely in some specific months of the year.  

 

4. Empirical Results 

The data used are BitCoin daily and monthly prices for the period 01.05.2013-
31.05.2018; the data source is CoinMarket (https://coinmarketcap.com/).  As a first 
step, the frequency distribution of log returns is analysed (see Table A.1 and Figure 
A.1). As can be seen, two symmetric fat tails are present in the distribution. The next 
step is the choice of thresholds for detecting overreactions. To obtain a sufficient 
number of observations we consider values +/-10% the average from the population, 
namely -0.04 for negative overreactions and 0.05 for positive ones. Detailed results 
are presented in Appendix B. 

Visual inspection of Figures B.1-B.2 suggests that the frequency of 
overreactions varies over time. To provide additional evidence we carry out ANOVA 
analysis and Kruskal-Wallis tests (Table 2); both confirm that the differences 
between years are statistically significant, i.e. that the frequency of overreactions is 
time-varying.  

 

 

 



 7 

Table 2: Results of ANOVA and non-parametric Kruskal-Wallis tests for 
statistical differences in the frequency of overreactions between different years 

ANOVA test 
F p-value F critical Null hypothesis 

7.24 0.000 2.81 Rejected 
Kruskal-Wallis test  

Adjusted H p-value Critical value Null hypothesis 
14.98 0.001 9.49 Rejected 

 

Next we carry out correlation analysis. Table 3 reports the results for different 
parameters (number of negative overreactions, number of positive overreactions, 
overall number of overreactions and overreactions multiplier) and indicators (BitCoin 
close prices, BitCoin returns, BitCoin logreturns) 

Table 3: Correlation analysis between the frequency of overreactions and 
different BitCoin series 

Parameter 
BitCoin close 
prices 

BitCoin 
returns 

BitCoin 
logreturns 

Over_negative 0.50 -0.21 -0.34 
Over_positive 0.41 0.62 0.53 
All_over 0.53 0.25 0.13 
Over_mult 0.15 -0.40 -0.60 

 

There appears to be a positive (rather than negative, as one would expect) 
correlation between BitCoin prices and negative overreactions. By contrast, there is a 
negative correlation in the case of returns and log returns. The overreaction multiplier 
exhibits a rather strong negative correlation with BitCoin log returns. Finally, the 
overall number of overreactions has a rather weak correlation with prices.  

To make sure that there is no need to shift the data in any direction we carry 
out a cross-correlation analysis of these indicators at the time intervals t and t+i , 
where I ∈ {-10, . . . , 10}. Figure 1 reports the cross-correlation between Bitcoin log 
returns and the frequency of overreactions for the whole sample period for different 
leads and lags; this suggests lag length zero (the corresponding correlation coefficient 
being the highest). 
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Figure 1: Cross-correlation between Bitcoin log returns and frequency of 
overreactions over the whole sample period for different leads and lags 

 

To analyse further the relationship between BitCoin log returns and the 
frequency of overreactions we carry out ADF tests on the series of interest (see Table 
4).  

 

Table 4: Augmented Dickey-Fuller test: BitCoin log returns and overreactions 
frequency data* 

Parameter logreturns Over_all Over_negative Over_positive 
Augmented Dickey-Fuller test (Intercept) 

 

Augmented Dickey-Fuller test statistic -7.55 -2.87 -5.48 -3.39 
Probability 0.0000 0.0549 0.0000 0.0152 
Test critical values (5% level): -2.89 -2.89 -2.89 -2.89 
Null hypothesis rejected not rejected rejected rejected 

Augmented Dickey-Fuller test (Trend and intercept) 
 

Augmented Dickey-Fuller test statistic -7.47 -2.91 -5.59 -3.37 
Probability 0.0000 0.1677 0.0001 0.0650 
Test critical values (5% level): -3.41 -3.41 -3.41 -3.41 
Null hypothesis rejected not rejected rejected not rejected 

Augmented Dickey-Fuller test (Intercept, 1-st difference) 
 

Augmented Dickey-Fuller test statistic -6.86 -12.21 -13.95 -11.65 
Probability 0.0000 0.0001 0.0000 0.0000 
Test critical values (5% level): -3.41 -3.41 -3.41 -3.41 
Null hypothesis rejected rejected rejected rejected 

 
* Lag Length: 0 (Automatic - based on Schwarz information criterion, maxlag=10) 

The unit root null is rejected in most cases implying stationarity. The next step 
is testing H1 by running a simple linear regression and one with dummy variables 

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

negative over positive over
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(see Section 3 for details). The results for BitCoin closes, returns and log returns 
regressed against all overreactions, negative and positive overreactions are presented 
in Table 5, 6, and 7 respectively. 

Table 5: Regression analysis results: BitCoin closes  

Parameter all 
overreactions  

negative and 
positive 

overreactions 
as separate 
variables 

regression with 
dummy variables 

𝑎𝑎0  -100.64 (0.85) -158.22 (0.77) 368.88 (0.32) 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 350.77 (0.00) - - 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) - 475.44 (0.00) 551.28 (0.00) 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) - 237.43 (0.10) 514.33 (0.00) 
F-test 22.55 (0.00) 11.69 (0.00) 16.32 (0.00) 
Multiple R 0.53 0.54 0.46 

* P-values are in parentheses 

Table 6: Regression analysis results: BitCoin returns 

Parameter all 
overreactions  

negative and 
positive 

overreactions 
as separate 
variables 

regression with 
dummy variables 

𝑎𝑎0  -0.0442 (0.72) 0.0395 (0.55) 0.0119 (0.88) 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 0.0328 (0.00) - - 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) - -0.1597 (0.00) 0.0023 (0.00) 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) - 0.2076 (0.00) 0.0922 (0.00) 
F-test 3.93 (0.05) 77.64 (0.00) 8.71 (0.00) 
Multiple R 0.25 0.86 0.36 

* P-values are in parentheses 

Table 7: Regression analysis results: BitCoin log returns 

Parameter all 
overreactions  

negative and 
positive 

overreactions 
as separate 
variables 

regression with 
dummy variables 

𝑎𝑎0  -0.0200 (0.72) 0.0645 (0.04) 0.0368 (0.35) 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 0.0084 (0.33) - - 
Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) - -0.0939 (0.00) -0.0122 (0.32) 
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Slope for the overreactions 
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) - 0.1013 (0.00) 0.0355 (0.00) 
F-test 0.98 (0.33) 96.48 (0.00) 6.85 (0.00) 
Multiple R 0.13 0.88 0.32 

* P-values are in parentheses 

 

As one would expect, the total number of overreactions is not a significant 
regressor in any case. The best specification is the simple linear multiplier regression 
model with the frequency of positive and negative overreactions as regressors, and 
the best results are obtained in the case of log returns as indicated by the multiple R 
for the whole model and the p-values for the estimated coefficients. Specifically, the 
selected specification is the following: 

Bitcoin log returni = 0.0645− 0.0939 × OFi− + 0.1013 × OFi+  (8) 

which implies a strong positive (negative) relationship between Bitcoin log returns 
and the frequency of positive (negative) overreactions. On the whole, the above 
evidence supports H1.The difference between the actual and estimated values of 
Bitcoin can be seen as an indication of whether Bitcoin is over- or under-estimated 
and therefore a price increase or decrease should be expected. Obviously BitCoin 
should be bought in the case of undervaluation and sold in the case of overvaluation 
till the divergence between actual and estimated values disappear, at which stage 
positions should be closed.  

As mentioned before, to show that the selected specification is indeed the best 
linear model we use the multilayer perceptron (MLP) method. Negative and positive 
overreactions are the independent variables (the entry points) and log returns are the 
dependent variable (the exit point) in the neural net. The learning algorithm 
previously described generates the following optimal neural net MLP 2-2-3-1:1 
(Figure 2): 

 

Figure 2: Optimal neural net structure 

We compare it with the linear neural net L 2-2-1:1 model, which consists of 2 
inputs and 1 output. The results are presented in Tables 8-9. 
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Table 8: Comparative characteristics of neural networks 
 

Architecture Performance Errors 
Learning Control Test Learning Control Test 

MLP 2-2-3-1:1 0.4484 0.4547 0.5657 0.0811 0.0392 0.0630 
L 2-2-1:1 0.3809 0.6265 0.8314 0.0664 0.0801 0.0836 

 
Table 9: Quality comparison of neural networks 

Parameters Type of neural net 
MLP 2-2-3-1:1 L 2-2-1:1 

Average 0.0677 0.0677 
Standard deviation 0.3103 0.3103 
Mean error 0.0067 -0.0158 
Standard deviation error 0.1450 0.1576 
Mean absolute error 0.1106 0.1244 
Standard deviation error and data ratio 0.4673 0.5078 
Correlation 0.8844 0.8719 

 
As can be seen, the neural net based on the multilayer perceptron structure 

provides better results than the linear neural net: the control error is lower (0.0392 
(MLP) vs 0.0801(L)); the standard deviation error and the data ratio are also lower 
(0.4673 vs 0.5078); the correlation is higher (0.8844 vs 0.8719). 

Figure 3 shows the distribution of BitCoin log returns, actual vs estimated 
(from the regression model and the neural network). 

 

           Figure 3: Distribution of BitCoin log returns: actual vs estimated (from 
the regression model and the neural network) 

As can be seen the estimates (from the regression model and the neural 
network respectively) are very similar and very close to the actual values, which 
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suggests that the regression model (eq. 8) captures very well the behaviour of BitCoin 
prices. 

We also estimate ARIMA(p,d,q) models with 0;3;3 =≤≤ dqp  choosing the 
best specification on the basis of the AIC and BIC information criteria. Specifically, 
we select the following models: ARIMA(2,0,2) (on the basis of the AIC criterion); 
ARIMA(1,0,0) and ARIMA(0,0,1) (on the basis of the BIC criterion). The parameter 
estimates are presented in Table 10. 

Table 10: Parameter estimates for the best ARIMA models 

Parameter Model 1: ARIMA(2,0,2) Model 2: ARIMA(1,0,0) Model 3: ARIMA(0,0,1) 
0a  0.0717(0.1019) 0.0676* (0.0931) 0.0676* (0.0929) 

1−tψ  0.2622 (0.1568) 0.0048 (0.9702) - 

2−tψ  -0.6935*** (0.0000) - - 

1−tθ  -0.2938*** (0.0052) - 0.0044 (0.9714) 

2−tθ  1.0000*** (0.0000) - - 
AIC 35.7555 35.8773 35.8788 
BIC 48.3215 42.1617 42.1618 
*,**,*** -   Significant at the 10%, 5%, 1% level 

As can be seen, Model 1 captures best the behaviour of BitCoin log returns: all 

regressors are significant at the 1% level, except 1−tψ , and AIC has the smallest value. 
To establish whether this specification can be improved by including 

information about the frequency of overreactions, ARMAX models (see equ. 6) are 
estimated adding as regressors −

tOF  (negative overreactions) and +
tOF (positive 

overreactions). The estimated parameters are reported in Table 11. Model 4 adds the 
frequency of negative overreactions positive overreactions to Model 1. Model 5 is a 
version of Model 4 chosen on the basis of the AIC and BIC criteria. 

 
Table 11: Estimated parameters for the ARMAX models 

Parameter Model 4 Model 5 
0a  0.0669 (0.3870) 0.0821 (0.3027) 

1−tψ  -0.1316 (0.3155) 0.7101***(0.0003) 

2−tψ  0.8245*** (0.0000) 0.8895***(0.0000) 

3−tψ  - -0.7811***(0.0000) 

1−tθ  -0.3383 (0.1969) -1.1925***(0.0000) 

2−tθ  -0.1307 (0.4683) - 

3−tθ  - 0.5468***(0.0000) 

1−ta  -0.0590***(0.0008) -0.0513***(0.0026) 

2−ta  0.0663***(0.0000) 0.0585***(0.0000) 
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3−ta  -0.0493***(0.0006) -0.0476***(0.0005) 

4−ta  0.0333**(0.0107) 0.0345***(0.0068) 

1−tb  0.0467***(0.0025) 0.0410**(0.0212) 

2−tb  -0.0498***(0.0000) -0.0506***(0.0002) 

6−tb  0.0103 (0.3459) 0.0069 (0.4879) 
AIC 22.2441 19.3993 
BIC 48.3395 47.5019 

                               *,**,*** -   Significant at the 10%, 5%, 1% level 

Clearly, Model 5 is the best specification for BitCoin log returns variable: all 
parameters are statistically significant (except 6−tb ), and there is no evidence of 
misspecification from the residual diagnostic tests. Figure 4 plots the estimated and 
actual values of BitCoin log returns. 

 

 
           Figure 4: Distribution of BitCoin log returns: actual vs estimated (based 
on Model 5) 

Table 12 reports Granger causality tests between BitCoin log returns and both 
negative (OF-) and positive overreactions (OF+). 

 
     Table 12: Granger Causality Tests  

Excluded 
Null Hypothesis: no causality 

Y −OF  +OF  
Chi-sq Probability Chi-sq Probability Chi-sq Probability 

Y - - 3.6428 0.0563* 8.6296 0.0033*** 

−OF  1.2724 0.2593 - - 7.8424 0.0051*** 

+OF  1.4541 0.2279 0.0011*** 0.9725 - - 
All 1.4902 0.4747 14.4342 0.0007*** 9.0730 0.0107** 

Null 
Hypothesis not rejected rejected rejected 
*,**,*** -   Significant at the 10%, 5%, 1% level 
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As can be seen, the null hypothesis of no causality is rejected for negative (OF-

) and positive overreactions (OF+), but not for BitCoin log returns (Y), and therefore 
there is evidence that forecasts of the latter can be improved by including in a VAR 
specification the two former variables. The optimal lag length implied by both the 
AIC and BIC criteria is one (see Table 13). The estimates are reported in Table 14. 
    

  Table 13: VAR lag length selection criteria 
lags AIC BIC 

1 7.4380 7.8969 
2 7.5663 8.3694 
3 7.7687 8.9160 
4 8.0171 9.5085 
5 7.9496 9.7852 
6 8.0571 10.2368 
7 8.2555 10.7793 
8 8.0228 10.8908 
9 7.6051 10.8173 
10 7.6916 11.2480 

 
 

     Table 14: VAR(1) parameter estimates  
Parameter Y −OF  +OF  
Сonst 0.0568 (0.3984) 1.2280** (0.0157) 1.0447* (0.0553) 

Y (-1) 0.3004 (0.2818) 3.8884*(0.0615) 6.4797*** (0.0048) 
−OF (-1) 0.0354 (0.2642) 0.4658**(0.0489) 0.7012*** (0.0070) 

+OF (-1) -0.0391 (0.2330) 0.0082 (0.9726) -0.2904 (0.2666) 

R-squared 0.0264 0.2874 0.2831 

Adj. R-squared -0.0267 0.2485 0.2440 

F-statistic 0.4971 7.3953 7.2412 

P – value 0.6857 0.0003*** 0.0004*** 

Akaike AIC 0.6009 4.5958 4.7547 

BIC criterion 0.7418 4.7366 4.8956 

Durbin-Watson stat 2.0280 2.2936 2.2109 

Akaike AIC 8.3870 

BIC criterion 8.8095 

*,**,*** -   Significant at the 10%, 5%, 1% level 
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This model appears to be data congruent: it is stable (no root lies outside the 
unit circle), and there is no evidence of autocorrelation in the residuals. The IRF 
analysis (see Appendix C, Figures C.1-C.3 for details) shows that, in response to a 1-
standard deviation shock to log returns, both negative (OF-) and positive 
overreactions (OF+) revert to their equilibrium value within six periods, whereas it 
takes log returns only one period to revert to equilibrium. There is hardly any 
response of log returns to shocks to either positive or negative overreactions, whilst 
both the latter variables tend to settle down after about six periods.  

The variance decomposition (VD) analysis (see Table 15) suggests the 
following: 

 
Table 15: Variance Decomposition  

Variable Lag Percentage of the variance accounted for by a variable 
Y −OF  +OF  

Y 1 100.00 0.00 0.00 
2 97.42 0.19 2.39 
3 > 97.42 0.19 2.39 

−OF  1 17.04 82.96 0.00 
2 22.02 77.98 0.00 
3 > 22.65 76.74 0.61 

+OF  1 36.13 38.65 25.22 
2 37.58 41.79 20.63 
3 > 36.86 43.04 20.10 

 
 

− The behaviour of Y is mostly explained by its previous dynamics 
(97.4%);  −OF  accounts for only 0.2 % of its variance, and +OF  only 2.4%; 

− The behaviour of −OF  is also mainly determined by its previous 
dynamics (76.7%), with Y explaining only 22.7 % of its variance and +OF  only 
0.6%; 

− The behaviour of +OF  is mostly accounted for by the −OF  dynamics 
(43%), with Y explaining 36.9% of its variance and +OF 20.1%. 

Finally, we address the issue of seasonality (H2). Figure 5 suggests that the 
overreactions frequency tends to be higher at the end and the start of the year and 
lower at other times. Also, there appears to be a mid-year cycle: the frequency starts 
to increase in April, peaks in June-July and then falls till September with a “W” 
seasonality pattern. 
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Figure 5: Monthly seasonality in the overreaction frequency 

Formal parametric (ANOVA) and non-parametric (Kruskal-Wallis) tests are 
performed; the results are presented in Tables 16 and 17. 

 

Table 16: Parametric ANOVA of monthly seasonality in the overreaction 
frequency 

 Parameter Frequency of negative 
overreactions 

Frequency of positive 
overreactions 

Frequency of 
overreactions (overall) 

F 0.90 0.77 0.72 
p-value 0.5461 0.6596 0.7055 
F critical 1.99 1.99 1.99 
Null hypothesis Not rejected Not rejected Not rejected 

 

Table 17: Non-parametric Kruskal-Wallis of monthly seasonality in the 
overreaction frequency 

 Parameter 
Frequency of negative 
overreactions 

Frequency of positive 
overreactions 

Frequency of 
overreactions (overall) 

Adjusted H 7.21 7.16 8.32 
d.f. 11 11 11 
P value: 0.78 0.79 0.68 
Critical value 19.675 19.675 19.675 
Null hypothesis Not rejected Not rejected Not rejected 
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As can be seen, there are no statistically significant differences between the 
frequency of overreactions in different months of the year (i.e. no evidence of 
seasonality), therefore H2 can be rejected, which is consistent with the visual 
evidence based on Figure 3.  

 

5. Conclusions 

This paper investigates the role of the frequency of price overreactions in the 
cryptocurrency market in the case of BitCoin over the period 2013-2018. 
Specifically, it uses a static approach to detect overreactions and then carries out 
hypothesis testing by means of a variety of statistical methods (both parametric and 
non-parametric) including ADF tests, Granger causality tests, correlation analysis, 
regression analysis with dummy variables, ARIMA and ARMAX models, neural net 
models, and VAR models. Specifically, the hypotheses tested are whether or not the 
frequency of overreactions (i) is informative about Bitcoin price movements (H1) and 
(ii) exhibits seasonality (H2).  

On the whole, the results suggest that the frequency of price overreactions can 
provide useful information to predict price dynamics in the cryptocurrency market 
and for designing trading strategies (H1 cannot be rejected) in the specific case of 
BitCoin. However, these findings are somewhat mixed: stronger evidence of a 
predictive role for the frequency of price overreactions is found when estimating 
neural net and ARMAX models as opposed to VAR models. As for the possible 
presence of seasonality, the evidence is very clear: no seasonal patterns are detected 
for the frequency of price overreactions (H2 is rejected).  
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Appendix A 

Frequency distribution of BitCoin 

TableA.1: Frequency distribution of BitCoin, 2013-2018* 

Plot Frequency 
<-0.04 181 
-0.03 75 
-0.02 96 
-0.01 164 

0 331 
0.01 345 
0.02 207 
0.03 136 
0.04 88 
0.05 68 

>0.05 168 
 

 

Figure A.1: Frequency distribution of BitCoin, 2013-2018* 

 

 
* 2013 data start on 01.05.2013; 2018 data end on 31.05.2018 
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Appendix B 

Frequency of overreactions 

Table B.1: Frequency of overreaction over the period 2013-2018, annual* 
Year Negative over Positive over All over Mult 
2013 29 41 70 0.7 
2014 35 22 57 1.6 
2015 25 21 46 1.2 
2016 11 11 22 1.0 
2017 50 53 103 0.9 
2018 30 19 49 1.6 

Mean 30 30 60 1.1 
 Std. Dev. 12.7 15.2 26.8 0.32 

 

Figure B.1: Frequency of overreactions: dynamic analysis over the period 
2013-2018, annual data* 
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Figure B.2: Frequency of overreactions: dynamic analysis over the period 2013-
2018, monthly data* 

 
 

* 2013 data start on 01.05.2013; 2018 data end on 31.05.2018 
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Appendix C 

Impulse response function (IRF) analysis: log returns (Y)-D; negative 

overreactions (OF-)- E; positive overreactions (OF+)-F 

 

Figure C.1: Response to a 1-standard deviation shock to log returns 

 
 

Figure C.2: Response to a 1-standard deviation shock to negative overreactions 
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Figure C.3: Response to a 1-standard deviation shock to positive overreactions 
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