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Abstract 

 

This paper uses fractional integration/cointegration methods to analyse (i) the persistence 

of the S&P500 and DAX stock indices as well as of the Fed’s Effective Federal Funds 

rate and the ECB’s Marginal Lending Facility rate, and (ii) the long-run linkages between 

stock prices and interest rates in the US and Europe respectively. The data are monthly 

and the sample period goes from January 1999 to December 2022. The results can be 

summarised as follows. All series examined are nonstationary: stock prices are found to 

be I(1) while interest rates display orders of integration substantially above 1, and 

therefore all four series are highly persistent, and mean reversion does not occur in any 

case. Moreover, the fractional cointegration analysis suggests that stock prices and 

interest rates are not linked in the long run. 
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1.  Introduction  

The aim of this paper is to examine the degree of persistence of some representative 

interest rate and stock price series for the US and Europe as well as the possible existence 

of long-run equilibrium linkages between these two variables in each case. More 

specifically, the two interest rate series used for the empirical analysis are the Fed’s 

Effective Federal Funds rate and the ECB’s Marginal Lending Facility rate, whilst the 

stock indices are the S&P500 and the German DAX; the former includes the 500 stocks 

with the largest market cap that are traded in the US and covers a wide variety of sectors: 

information and technology (Oracle, Microsoft, Mastercard), health care (Johnson & 

Johnson), financial (JPMorgan Chase & Co., Berkshire Hathaway, consumer 

discretionary (Starbucks), etc.; the latter comprises 40 companies with German 

headquarters chosen on the basis of their market cap as well as liquidity conditions.  

The Fed’s Effective Federal Funds rate is the interest rate charged to banks when 

they lend money to each other overnight (it is also known as the overnight rate), whilst 

the ECB’s Marginal Lending Facility rate is the rate banks pay when they borrow from 

the ECB overnight (a collateral being required). Therefore in both cases an interest rate 

rise will decrease profitability by making debt more expensive and thus reducing the 

capital available for investment; in addition, it will make savings accounts and fixed 

income securities more attractive to investors, who will become less inclined to invest in 

equity; for both these reasons, one would expect a negative effect of higher interest rates 

on stock prices. However, the financial industry (banks, brokerages, mortgage companies, 

and insurance companies) benefits from an increase in interest rates by being able to 

charge more for lending; therefore the total effect on stock prices of higher interest rates 

could be positive instead if the financial industry dominates. Interestingly, Bernanke and 
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Kuttner (2005) concluded that the effects of unanticipated monetary policy actions on 

expected excess returns account for the largest part of the response of stock prices.  

Note that causality could also run in the opposite direction. For instance, Rigobon 

and Sack (2003) used an identification method based on heteroscedasticity and reported 

that a 5 percent rise (fall) in the S&P 500 index increased the likelihood of a 25 basis 

point tightening (easing) by the Fed by about a half. Hashemzadeh and Taylor (1988) 

carried out the Granger–Sims test and also found that causality runs from interest rates to 

stock prices. Bjørnland and Leitemo (2009) estimated a Vector AutoRegressive (VAR) 

model and found bidirectional causality between the S&P500 and the Federal Funds rate. 

 The present study aims to shed further light on the behaviour of interest rates and 

stock indices, as well as their possible linkages, by using a fractional 

integration/cointegration approach, which is more general and flexible than the standard 

framework based on the I(0) versus I(1) (stationary versus non-stationary) dichotomy 

used in most previous studies since it allows for fractional values of the differencing 

(cointegration) parameter, and thus it encompasses a much wider range of stochastic 

processes and of adjustment mechanisms towards the long-run equilibrium. 

 The layout of the paper is the following: Section 2 describes the data; Section 3 

outlines the methodology; Section 4 discusses the empirical results; Section 5 summarises 

the main findings and offers some concluding remarks. 

 

2.  Data Sources and Description 

The four series analysed are the S&P500 and DAX stock indices, the Fed’s effective 

Federal Funds rate, and the ECB’s Marginal Lending Facility rate. The frequency is 

monthly, and the sample goes from January 1999 to December 2022, for a total of 288 

observations. The source for the S&P500 and the DAX is Yahoo finance; specifically, we 
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use the adjusted closing price (the results are almost the same using the closing price 

instead). The interest rate series have been obtained from the FRED webpage and are 

displayed in Figures 1-4 below. 

 

FED ECB 

Figure 1 

 

 

Figure 2 

 

 

S&P500 DAX 

Figure 3 

 

 

Figure 4 
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It is noteworthy that the ECB lowered interest rates to stimulate the economy 

much later than the Fed in the wake of both the DOTCOM and the Global Financial Crisis 

(GFC), and also kept them at a higher level compared to the Fed. Then, at the onset of the 

Covid-19 pandemic in 2020, unlike the Fed, it was not able to reduce rates since these 

had been very close to 0 from 2014. Most recently, in response to a surge in inflation, the 

Fed increased interest rates in March 2022 whilst the ECB did so in July 2002. At the end 

of 2022, the ECB’s Marginal Lending Facility rate was 2.75% whilst the Fed’s Federal 

Funds Effective Rate was 4.33%. Figures 3 and 4 show that both stock market indices 

exhibit volatility but have increased significantly since 1999 and peaked in December 

2021, before starting to decrease and then to rebound.  

 

3. Methodology 

For the empirical analysis we use fractional integration methods to model the series as 

I(d) processes, where d is the order of integration, which can be any real value, including 

fractional ones, as proposed by Granger (1980, 1981), Granger and Joyeux (1980) and 

Hosking (1981). Such a process xt can be represented as follows: 

 (1 − 𝐿)𝑑𝑥𝑡  = 𝑢𝑡                𝑡 =   1, 2 , …,    (1) 

where L is the lag operator, ut is assumed to be stationary I(0) and d can be a fractional 

value (see Gil-Alana and Robinson, 1997 for an empirical application to the 14 

macroeconomic variables analysed in Nelson and Plosser, 1992). Note that the parameter 

d can be interpreted as a measure of persistence, since the polynomial on the left-hand 

side of (1) can be expressed in terms of its Binomial expansion, such that for all real d, 

     (1 − 𝐿)𝑑     =     ∑ (
𝑑
𝑗

)∞
𝑗=0 (−1)𝑗𝐿𝑗 = 1 − 𝑑𝐿 +

𝑑(𝑑−1)

2
𝐿2−. . .,  (2) 

 

and thus, if d is a fractional value, xt can be expressed in terms for all its past history, i.e., 
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𝑥𝑡    =    𝑑𝑥𝑡−1   +    
𝑑(𝑑−1)

2
𝑥𝑡−2     −    …     +   𝑢𝑡.           (3) 

As already mentioned, the parameter d provides a measure of persistence, higher values 

of d corresponding to a higher degree of dependence between the observations.  

The estimated model is the following: 

 𝑦𝑡 = 𝛼 +  𝛽𝑡 + 𝑥𝑡 ,       𝑡 =    1, 2, …,    (4) 

where α is a constant, β is the slope coefficient, and 𝑥 𝑡  is the error that follows the process 

given by equation (1). Combining equations (1) and (2) one obtains the following 

framework: 

                   
,...,2,1,)1(, ==−++= tuxLxty tt

d
tt    (3) 

The parameter d is then estimated under three different assumptions for the errors: White 

Noise, Bloomfield-type and Seasonal MA(1) errors. In the first case no time dependence 

structure is imposed; in the second the adopted specification is used to approximate 

ARMA structures; in the third, given the monthly nature of the data, a seasonal MA(1) 

process is assumed which can be represented as:  

     𝑢𝑡 =  𝜌𝑢𝑡−12  +    휀𝑡,         𝑡  =   1, 2, ….      (4) 

In each of those three cases, three model specifications are estimated:  

i)  without either a constant or a trend, i.e., imposing α = β = 0 in equation (2). 

ii)  with a constant but without a trend, i.e., with β = 0 a priori in equation (2). 

iii) with a constant and a (linear) time trend  

 

Note that if there exists a linear combination of two (fractionally integrated) 

variables that displays an order of integration smaller than that of the individual series 

these are said to be (fractionally) cointegrated. Specifically, we follow the two-step 

approach originally developed by Engle and Granger (1982), testing first 
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i) If x1t (stock prices) and x2t (interest rates) are both integrated of a given 

order, say d, and then 

ii) Regressing each stock price series on the corresponding interest rate series, 

𝑥1𝑡
 =  𝛿   +     𝛾 𝑥2𝑡  +    휀𝑡,         𝑡  =   1, 2, ….      

  And testing if the estimated residuals are integrated of a smaller order, i.e., 

d – b, with b >0, which would imply cointegration (see Engle and Granger, 1987, and 

more recently Cheung and Lai, 1993, and Gil-Alana, 2003). 

  

4.  Empirical Results 

As a first step we carry out ADF, Phillips and Perron (1988), Kwiatkowski et al. (1992) 

or Elliot et al. (1996) unit root tests, all of which imply that the series are nonstationary.  

(these results are not reported for reasons of space). However, it is well known that these 

tests have low power against fractional alternatives (see Diebold and Rudebusch, 1991; 

Hassler and Wolters, 1993; Lee and Schmidt, 1996). This motivates the fractional 

integration approach we adopt to estimate the differencing parameter d using the three 

previously mentioned specifications for the error term: white noise (Table 2), Bloomfield-

type errors (Table 3) and seasonal AR (Table 4). Each table reports the estimated values 

of d (and the corresponding 95% confidence intervals) for the three cases of no 

deterministic terms (2nd column), a constant only (3rd column), and both a constant and a 

linear trend (last column) in the regression model. The coefficients in bold are those from 

the specification selected on the basis of the statistical significance of the regressors. 

Table 2 shows that for the DAX the estimated value of d is 0.96 with a confidence 

interval of (0.88, 1.06), whilst the corresponding value for the S&P500 is 0.94 with a 

confidence interval of (0.88 and 1.01). For the logged series the corresponding estimates 

are 1.02 and 1.01 respectively, and the confidence intervals still contain 1, so the null of 
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d = 1 cannot be rejected, which represents evidence in favour of the Efficient Market 

Hypothesis (EMH). For the ECB rate the estimated value of d is 1.45 with a confidence 

interval of (1.36, 1.57), and for the Fed rate it is 1.56 with a confidence interval of (1.48, 

1.66), and thus the null of d = 1 is decisively rejected for both interest rate series.  

 

Table 2: Estimates of d. White noise errors 

Series No deterministic 

terms 

An intercept 
An intercept and a 

linear time trend 

DAX 0.96   (0.88,   1.05) 0.96   (0.88,   1.06) 0.96   (0.88,   1.06) 

S&P500 0.91   (0.85,   0.98) 0.94   (0.88,   1.01) 0.93   (0.87,   1.00) 

Log DAX 0.98   (0.91,   1.08) 1.02   (0.94,   1.12) 1.02   (0.94,   1.12) 

Log S&P500 0.98   (0.91,   1.07) 1.01   (0.94,   1.10) 1.01   (0.94,   1.14) 

    ECB 1.27   (1.19,   1.38) 1.45   (1.36,   1.57) 1.45   (1.36,   1.59) 

FED 1.25   (1.18,   1.33) 1.56   (1.48,   1.66) 1.56   (1.48,   1.66) 

 

 

Under the assumption of Bloomfield-type errors (Table 3) the estimated value of 

of d is 0.88 with a confidence interval of (0.77, 1.05) for the DAX, and 1.03 with a 

confidence interval of (0.94, 1.17) for the S&P500, both of them being higher than in the 

previous case. The corresponding estimates for the logged series are 0.97 with a 

confidence interval of (0.84, 1.13) for the DAX, and a 1 with a confidence interval of 

(0.89, 1.14) for the S&P500. Those for the ECB and Fed rates are 1.23 and 1.45 with 

corresponding confidence intervals of (1.06, 1.40) and (1.31, 1.60) respectively, these 

values being lower than in previous case. 
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Table 3: Estimates of d. Bloomfield errors 

Series No deterministic 

terms 

An intercept 
An intercept and a 

linear time trend 

DAX 0.96   (0.83,   1.20) 0.88   (0.77,   1.05) 0.89   (0.77,   1.05) 

S&P500 1.05   (0.93,   1.22) 1.03   (0.94,   1.17) 1.03   (0.94,   1.17) 

Log DAX 0.97   (0.86,   1.14) 0.97   (0.84,   1.13) 0.97   (0.83,   1.13) 

Log S&P500 0.98   (0.85,   1.15) 1.00   (0.89,   1.14) 1.00   (0.89,   1.15) 

    ECB 1.17   (1.07,   1.37) 1.23   (1.06,   1.40) 1.23   (1.06,   1.40) 

FED 1.35   (1.22,   1.52) 1.45   (1.31,   1.60) 1.45   (1.31,   1.60) 

 

As can be seen, the estimates under the assumption of MA(1) errors (Table 4) are 

almost the same as those in the case of white noise errors. 

 

Table 4: Estimates of d. Seasonal MA(1) errors 

Series No deterministic 

terms 

An intercept 
An intercept and a 

linear time trend 

DAX 0.96   (0.88,   1.05) 0.96   (0.88,   1.05) 0.95   (0.88,   1.05) 

S&P500 0.91   (0.86,   0.99) 0.93   (0.88,   1.01) 0.93   (0.87,   1.00) 

Log DAX 0.98   (0.90,   1.08) 1.02   (0.94,   1.12) 1.02   (0.94,   1.12) 

Log S&P500 0.98   (0.90,   1.08) 1.01   (0.94,   1.10) 1.01   (0.94,   1.10) 

    ECB 1.27   (1.19,   1.38) 1.45   (1.36,   1.57) 1.45   (1.36,   1.59) 

FED 1.25   (1.18,   1.33) 1.56   (1.48,   1.66) 1.56   (1.48,   1.66) 

 

The next step is to check for the existence of a long-run relationship between the 

S&P500 and the Fed rate, as well as between the DAX and the ECB rate, using the 

cointegration approach of Engle and Granger (1987). Table 5 displays the OLS estimates 

of α and β for these two regressions. Both intercepts are positive, whilst both slope 

coefficients are negative, and all of them are statistically significant.  
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Table 5: Estimates of the coefficients in the regression model 

Regression model Intercept (t-value) Regr. Coefficient (t-value) 

S&P500   /   FED 3.2575   (212.67) -0.0209   (-3.59) 

DAX   /   ECB 4.0340   (316.99) -0.0741   (-16.54) 

 

 

 

Table 6: Estimates of d for the regression errors 

Series No deterministic 

terms 

An intercept 
An intercept and a 

linear time trend 

i)    White noise errors 

S&P500   /   FED 1.08   (1.01,   1.17) 1.08   (1.01,   1.16) 1.08   (1.01,   1.16) 

DAX   /   ECB 1.12   (1.04,   1.23) 1.13   (1.05,   1.22) 1.13   (1.05,   1.22) 

ii)    Bloomfield (autocorrelated) errors 

S&P500   /   FED 1.07   (0.95,   1.20) 1.09   (0.98,   1.24) 1.09   (0.98,   1.24) 

DAX   /   ECB 1.13   (0.96,   1.29) 1.13   (0.98,   1.33) 1.13   (0.98,   1.33) 

 

Table 6 reports the estimates d based on the errors in the above regression models.  

For cointegration to hold it is necessary that d = 0. Again three model specifications are 

used (with α=β=0, β = 0, α and β different from 0 respectively). The intercept and the 

time trend coefficients are found to be statistically insignificant and the estimates of d are 

above 1 in all four cases. When assuming white noise errors the estimates of d are 

significantly higher than 1, while under the assumption of autocorrelation the unit root 

null hypothesis cannot be rejected. The hypothesis of mean reversion (d < 1) is rejected 

in all four cases.  

Since the residuals are nonstationary, least squares and generalized least squares 

estimates will be inconsistent (see Robinson and Hidalgo, 1997). Robinson (1994) 

proposed a semi-parametric NBFDLS estimator which uses OLS on a degenerated band 
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of frequencies around the origin. An improved version of the test for the stationary case 

is given in Christensen and Nielsen (2006). 

 In the two-variable case, the NBFDLS estimator proposed in Robinson (1994) is 

given by: 

( ) ( )
1 1 1 1

1

1 1

1 1ˆ Re Re
m m

y y j y y j
j j

I I
m m

  

−

= =

 
   =     

 
      (5) 

which is asymptotically distributed as: 

          ( )
( )

( )

2

0

1

1 2
ˆ 0,

2 1 2 2
e ed d D

m

y e

g d
m N

g d d
  −

 −
− ⎯⎯→  

− −  

      (6) 

where 𝑔𝑦1 and 𝑔𝑒 are the elements of a 𝐺 diagonal 2 × 2 matrix. From (6), normality is 

ensured as long as 𝑑 + 𝑑𝑒 < 0.5 (Christensen and Nielsen, 2006).  Note that this 

estimator crucially depends on the value of the bandwidth parameter m.  

 

Table 7: Estimates of d in the regression errors 

Series No deterministic 

terms 

An intercept 
An intercept and a 

linear time trend 

S&P500   /   FED 

i)    White noise errors 

m  =  0.5 0.99   (0.91,   1.08) 1.05   (0.99,   1.13) 1.05   (0.99,   1.14) 

m  =  0.6 0.97   (0.90,   1.06) 0.95   (0.89,   1.05) 0.95   (0.88,   1.05) 

m  =  0.7 0.99   (0.91,   1.08) 1.05   (0.98,   1.13) 1.05   (0.98,   1.13) 

ii)    Bloomfield (autocorrelated) errors 

m  =  0.5 1.00   (0.86,   1.17) 1.08   (0.96,   1.22) 1.09   (0.96,   1.23) 

m  =  0.6 1.00   (0.86,   1.14) 1.08   (0.96,   1.11) 1.09   (0.97,   1.11) 

m  =  0.7 1.00   (0.86,   1.17) 1.09   (0.97,   1.22) 1.09   (0.97,   1.23) 

DAX   /   ECB 

i)    White noise errors 

m  =  0.5 1.00   (0.93,   1.10) 1.13   (1.05,   1.22) 1.13   (1.05,   1.22) 
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m  =  0.6 0.96   (0.89,   1.06) 1.04   (0.96,   1.14) 1.04   (0.96,   1.14) 

m  =  0.7 1.00   (0.93,   1.10) 1.13   (1.05,   1.22) 1.13   (1.05,   1.22) 

ii)    Bloomfield (autocorrelated) errors 

m  =  0.5 0.99   (0.87,   1.15) 1.13   (0.98,   1.33) 1.13   (0.98,   1.32) 

m  =  0.6 0.95   (0.84,   1.13) 0.96   (0.84,   1.12) 0.97   (0.83,   1.12) 

m  =  0.7 0.99   (0.87,   1.16) 1.13   (0.98,   1.33) 1.13   (0.98,   1.33) 

 

 

Table 7 reports the results based on this estimator, again for the three cases of no 

regressors, an intercept only, and an intercept as well as a time trend, for three different 

bandwidth parameters, m = 0.5, 0.6 and 0.7. In all cases the estimates are again very close 

to 1 and the unit root null hypothesis cannot be rejected, which again provides evidence 

against (fractional) cointegration. 

In the cointegration analysis it is implicitly assumed that all variables are 

stochastic. In what follows we depart from this assumption by assuming that interest rates 

are exogenous, and therefore estimate the following regressions with lagged rates:  

𝑆&𝑃 500𝑡 = 𝛼 + 𝛽𝐼𝑅𝑡−𝑘 + 𝑥𝑡   (7) 

     𝐷𝐴𝑋𝑡 = 𝛼 + 𝛽𝐼𝑅𝑡−𝑘 + 𝑥𝑡    (8)  

where k is the lag index, and xt is assumed again to be an I(d) process as in equation (1).  

 

Table 8: Estimates in a regression of SP500(t) on FED(t-k) 

K d (95% band) a (t-value) b (t-value) 

k  =  1 1.00   (0.88,   1.14) 7.117   (157.79) 0.0006   (0.60) 

k  =  2 1.02   (0.90,   1.15) 7.159   (161.04) 0.0038   (0.38) 

k  =  3 1.01   (0.90,   1.18) 7.200   (160.37) 0.0043   (0.42) 

k  =  4 1.01   (0.90,   1.16) 7.173   (163.10) 0.0070   (0.60) 

k  =  5 1.01   (0.90,   1.14) 7.225   (165.08) 0.0007   (0.70) 

k  =  6 1.00   (0.90,   1.17) 7.192   (165.44) 0.0006   (0.68) 

k  =  7 0.93   (0.89,   1.15) 7.186   (166.27) 0.0068   (0.70) 
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k  =  8 0.99   (0.88,   1.15) 7.157   (165.58) 0.0168   (0.70) 

k  =  9 0.99   (0.89,   1.16) 7.217   (166.68) 0.0068   (0.70) 

k  =  10 0.99   (0.90,   1.17) 7.733   (161.14) 0.0064   (0.66) 

k  =  11 1.00   (0.89,   1.18) 7.292   (170.71) 0.0061   (0.63) 

k  =  12 0.99   (0.90   1.17) 7.242   (170.24) 0.0062   (0.64) 

 

Table 8 reports the estimated values of d, α and β for the regression of S&P500 

on the Fed rate. The estimates of d are very close for all values of k, and the confidence 

intervals contain 1, therefore the hypothesis d = 1 cannot be rejected. Note that the 

estimates of α, but not those of β, are statistically significant. 

 

Table 9: Estimates in a regression of DAX(t) on ECB(t-k) 

K d (95% band) a (t-value) b (t-value) 

k  =  1 0.96   (0.85,   1.14) 8.492   (137.77) 0.0095   (0.70) 

k  =  2 0.99   (0.85,   1.17) 8.491   (140.23) 0.0055   (0.40) 

k  =  3 0.99   (0.84,   1.15) 8.490   (141.06) 0.0077   (0.56) 

k  =  4 0.97   (0.84,   1.15) 8.535   (142.09) 0.0087   (0.64) 

k  =  5 0.97   (0.84,   1.14) 8.590   (143.44) 0.0097   (0.72) 

k  =  6 0.96   (0.83,   1.16) 8.540   (142.98) 0.0098   (0.73) 

k  =  7 0.95   (0.84,   1.13) 8.373   (144.48) 0.0100   (0.75) 

k  =  8 0.96   (0.83,   1.14) 8.552   (143.80) 0.0100   (0.73) 

k  =  9 0.95   (0.83,   1.14) 8.624   (145.47) 0.0098   (0.74) 

k  =  10 0.95   (0.85,   1.13) 8.686   (145.44) 0.0098   (0.62) 

k  =  11 0.96   (0.86,   1.14) 8.846   (150.91) 0.0083   (0.55) 

k  =  12 0.96   (0.85,   1.14) 8.832   (150.52) 0.0072   (0.55) 

 

 

Table 9 reports the corresponding results for the regression of the DAX index on 

the ECB rate. The estimates of d are slightly below 1 but once more the unit root null 

hypothesis cannot be rejected; similarly to the previous case, only the intercepts are 

statistically significant.  
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5. Conclusions  

This paper has used fractional integration/cointegration methods to analyse (i) the 

persistence of the S&P500 and DAX stock indices as well as of the Fed’s Effective 

Federal Funds rate and the ECB’s Marginal Lending Facility rate, and (ii) the long-run 

linkages between stock prices and interest rates in both the US and Europe. The data are 

monthly and the sample period goes from January 1999 to December 2022. 

The results can be summarised as follows. All series examined are nonstationary: 

stock prices are found to be I(1) while interest rates display orders of integration 

substantially above 1, and therefore all four series are highly persistent, and mean 

reversion does not occur in any case. Moreover, the fractional cointegration analysis 

suggests that stock prices and interest rates are not linked in the long run.  

Future work should extend the analysis in two ways. First, a multivariate model 

including other relevant variables such as inflation, money supply, exchange rates etc. 

should be estimated to shed further light on the linkages between interest rates and stock 

prices. Second, expectations and announcement effects should be incorporated into the 

model. It is well known that stock prices can react to anticipated interest rate changes or 

monetary announcements even before these take place.  Because investors have already 

discounted those changes the observed correction at the time of their implementation will 

then be smaller, and so will be the estimated impact. Therefore, not allowing for 

expectation and announcement effect could result in underestimating the strength of the 

linkages between monetary policy and stock markets. 
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