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Abstract 

 

This paper analyses US nominal house prices at an annual frequency over the period from 

1927 to 2022 by means of a very general time series model. This includes both a (linear 

and non-linear) deterministic and a stochastic component, with the latter allowing for 

fractional orders of integration at both the long-run and the cyclical frequencies. The 

results are heterogeneous depending on the model specification and on whether or not the 

series have been logged. Specifically, a linear model appears to be more appropriate for 

the logged data whilst a non-linear one appears to be a better fit for the original ones. 

Further, the order of integration at the zero or long-run frequency is much higher than at 

the cyclical one. The former is in fact around 1 in all specified models, which implies a 

high degree of persistence of this component. Finally, the order of integration of the 

cyclical structure implies that cycles have a periodicity of about 8 years, but it is almost 

insignificant in all cases. 
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1.  Introduction 

 

House prices are a key variable whose fluctuations can have a significant impact on both 

the real and the financial sectors of the economy, as documented, among others, by Case 

et al. (2005), Davis and Heathcote (2005), Leamer (2007), Attanasio et al. (2011), Carroll 

et al. (2011), Funke and Paetz (2013), Chen et al. (2018). Their crucial importance became 

even more apparent as a result of the global financial crisis (GFC) of 2007-08. This 

originated from the US housing market, where the issuance of sub-prime mortgages had 

become widespread and led to a housing bubble and serious financial turmoil when it 

eventually burst (see, e.g.,  Shiller, 2007). Consequently, numerous empirical studies have 

been carried out to understand the behaviour of house prices. Broadly speaking, two main 

approaches have been followed in the literature for this purpose, the first focusing on their 

drivers, the second on their stochastic properties. Among studies belonging to the first 

category, Capozza and Helsely (1989, 1990) analysed the impact of real income on real 

house prices, whilst Caporale and Gil-Alana (2015) used fractional integration methods 

to show that the US Housing Price Index (HPI) and Disposable Personal Income (PDI) 

do not converge over time, presumably owing to the existence of a bubble.  

The second type of studies carry out univariate analysis of the house price series. 

The early literature used unit root tests (see, e.g. Meen, 1999, for UK regional prices, and 

Cook and Vougas, 2009 for aggregate prices in the presence of structural breaks; Clark 

and Coggin, 2011, and Zhang et al., 2017, for the US; Arestis and Gonzales, 2014, for 18 

OECD countries; etc.). However, it is well known that this type of tests has very low 

power against specific alternatives such as structural breaks (Campbell and Perron, 1991); 

trend-stationary models (DeJong et al., 1992), regime-switching (Nelson et al., 2001), or 

fractional integration (Diebold and Rudebusch, 1991; Hassler and Wolters, 1994; Lee and 

Schmidt, 1996; etc.). By contrast,  a fractional integration framework (see Granger, 1980; 
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Granger and Joyeux, 1980 and Hosking, 1981) is much more general, since it is not based 

on the dichotomy between I(0) stationary and I(1) non-stationary series, which is very 

restrictive. Instead the differencing parameter d is allowed to take any real value, 

including fractional ones. This approach encompasses a wide range of stochastic 

behaviours, including the unit root case, and provides evidence on whether or not the 

series of interest is mean-reverting (and thus on whether exogenous shocks have 

permanent or transitory effects) and on its degree of persistence. It has been used in some 

studies on house prices, such as Barros et al. (2012, 2015), Gil-Alana et al. (2013, 2014), 

and Gupta et al. (2014) to analyse long-run persistence.   

An important issue in this context is the possible presence of structural breaks. 

Caporale and Gil-Alana (2023) allow for them within a fractional integration framework 

to model the monthly Federal Housing Finance Agency (FHFA) House Price Index for 

Census Divisions, and the US as a whole, over the period from January 1991 to August 

2022. Their analysis detects segmented trends, with the subsample estimates of the 

fractional differencing parameter being lower and mean reversion occurring in several 

cases. 

Other recent papers argue that it is also essential to allow for both a long-run and 

a cyclical component in house prices. Such a modelling approach is followed by Canarella 

et al. (2021) to examine persistence in both US and UK house prices over a long time 

span. Their conclusion is that the long-run component dominates, and also that there are 

breaks in the series corresponding to different domestic factors. Compared to that study, 

the present one adopts an even more general specification, since it includes not only a 

stochastic component allowing for fractional integration at both the long-run and cyclical 

frequencies, but also a deterministic one which can be either linear or non-linear, the two 

being jointly modelled (see the specification in Section 2); moreover, autocorrelation of 
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a general form as in Bloomfield (1973) is allowed in the error term. This framework is 

applied to analyse US nominal house prices at an annual frequency over the period from 

1927 to 2022. 

The layout of the paper is the following. Section 2 outlines the modelling 

framework. Section 3 describes the data and presents the empirical results. Section 4 

offers some concluding remarks. 

 

2. The Econometric Model 

The model estimated in this study is more general than those used in the previous 

literature on house prices. Specifically, it includes both a deterministic and a stochastic 

component, with the latter allowing for fractional degrees of integration at both the long-

run and cyclical frequencies.  

The deterministic part of the model is specified as follows:  

         𝑦(𝑡)   =     𝑓(𝑧(𝑡);  𝜓)  +    𝑥(𝑡),          𝑡 =  1, 2, … ,   (1) 

where y(t) stands for house prices (either the original or the logged series), and f is a 

function that can be linear, for instance including an intercept and a linear time trend, 

(Bhargava, 1986, Schmidt and Phillips, 1992) as in the following equation: 

𝑓(𝑧(𝑡);  𝜓)  =    𝛼  +     𝑏 𝑡    (2) 

or non-linear, for example including Chebyshev polynomials in time of the following 

form: 

𝑓(𝑧(𝑡);  𝜓)  =    ∑ 𝜃𝑖𝑃𝑖𝑇
𝑚
𝑖=0 (𝑡),   (3) 

where m denotes the number of coefficients of the Chebyshev polynomial in time Pi,T(t) 

defined as: 

𝑃0,𝑇(𝑡) =  1, and 𝑃𝑖,𝑇(𝑡)  =  √2 𝑐𝑜𝑠(𝑖𝜋(𝑡 − 0.5)/𝑇),
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Hamming (1973) and Smyth (1998) provided a detailed description of these polynomials, 

whilst Bierens (1997) and Tomasevic and Stanivuk (2009) argued that it is possible to 

approximate highly non-linear trends with rather low degree polynomials. If m = 0 the 

model contains an intercept, and if m ≥ 1, it becomes non-linear - the higher m is, the less 

linear the approximated deterministic component becomes.  

Concerning the stochastic terms, x(t) in (1) is assumed to be a process characterised 

by two orders of integration, one for the long-run or zero frequency, which captures 

possible stochastic trends, and the other for the cyclical structure of the data. More 

precisely, x(t) is defined as follows:  

(1 − 𝐿)𝑑1  (1 − 2  cos 𝑤(𝑟) 𝐿 + 𝐿2)𝑑2  𝑥(𝑡)   =    𝑢(𝑡)𝑡,           𝑡 = 1, 2, . . .,  (4) 

where L is the lag operator (i.e., Lx(t) = x(t-1); d1 and d2 are real parameters, w(r) = 2πr/T, 

r = T/j, with j indicating the number of periods per cycle, and u(t) being a short memory 

or I(0) process, defined as a covariance stationary one with a spectral density function 

that is positive and finite at all frequencies. Thus, u(t) may be a white noise process with 

zero mean and constant variance, but it may also include some type of weak 

autocorrelation as in the case of the stationary and invertible AutoRegressive Moving 

Average (ARMA)-type of models. Here, we impose autocorrelation by applying the non-

parametric approach of Bloomfield (1973), which involves using a spectral density 

function of the following form: 

𝑓(𝜆;  𝜏)  =  [ 
𝜎2

2𝜋
 ] exp[ 2 ∑ 𝜏𝑖 cos(𝜆 𝑖) ] 

𝑛
𝑖=0  ,   (5) 

where σ2 is the variance of the error term and n denotes the number of short-run dynamic 

terms. Bloomfield (1973) showed that, given a stationary and invertible ARMA (p, q) 

process of the following form: 

𝑢(𝑡) =   ∑ 𝜑𝑟

𝑝

𝑟=1

𝑢(𝑡 − 𝑟)  +   𝜀𝑡   +   ∑ 𝜃𝑠𝜀(𝑡 − 𝑠) 

𝑞

𝑠=1

, 
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where εt is a white noise process, its spectral density function is given by: 

𝑓(𝜆; 𝜏)   =     
𝜎2

2𝜋
   |

1 +  ∑ 𝜃𝑠𝑒𝑖𝜆𝑠𝑞
𝑠=1

1 − ∑ 𝜑𝑟𝑒𝑖𝜆𝑟𝑝
𝑟=1

|

2

. 

According to Bloomfield (1973), the log of the above expression can be well 

approximated by Eq. (5) when p and q are small values, and thus it does not require the 

estimation of as many parameters as in the case of ARMA models. In addition, 

Bloomfield’s (1973) model has the advantage of being stationary for all its values (see 

Gil-Alana, 2004). 

Let us now consider further Eq. (4). Note that the first polynomial can be expanded 

for any real value d1 as 

 ∑ (
𝑑1

𝑗
)

∞

𝑗=0

(−1)𝑗𝐿𝑗   =    1 − 𝑑1𝐿 +  
𝑑1(𝑑1 − 1)

2
𝐿2 − ⋯ 

In this context, d1 indicates the degree of persistence of the series in relation to the long- 

run or zero frequency. Thus, if d2 = 0 in Eq. (4),  x(t) can be expressed as 

𝑥(𝑡)  =  𝑑1𝑥(𝑡 − 1)  −  
𝑑1(𝑑1 − 1)

2
 𝑥(𝑡 − 2)   +  … +   𝑢(𝑡)  

and the higher the value of d1 is, the higher is the degree of dependence between the 

observations. Moreover, if d1 is positive, x(t) displays the property of long memory since 

in that case its spectral density function becomes  

𝑓(𝜆;   𝜏) =  
 𝜎2

2𝜋
|

1

1 − 𝑒𝑖𝜆
|

𝑑1

,  

which tends to infinity as λ → 0+.           

 This specification allows us to consider a wide range of cases including, among 

others, the following ones: 

i)  anti-persistence, if d1 < 0, 

ii) short memory, if d1 = 0 
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iii) long memory, though covariance stationary processes, if 0 < d1 < 0.5, 

iv) 1/f noise, if d1 = 0.5, 

v) nonstationary mean reverting processes, if 0.5 ≤ d1 < 1, 

vi) unit roots, if d1 = 1, 

vii) explosive processes, if d1 > 1. 

 Next we focus on the cyclical structure of x(t) which is captured by the second 

polynomial in (4). Gray et al. (1989) showed that, by denoting μ = w(r), this polynomial 

can be expressed in terms of the orthogonal Gegenbauer terms  𝐶𝑖,𝑑2
(𝜇), such that for all 

real d2 ≠ 0, 

(1 − 2𝜇𝐿 + 𝐿2)−𝑑2  =  ∑ 𝐶𝑖,𝑑2

∞

𝑖=0

(𝜇)𝐿𝑖,  

where 𝐶𝑖,𝑑2
(𝜇) can be defined recursively as: 

 𝐶0,𝑑2
(𝜇𝑟

𝑗
) =  1,     𝐶1,𝑑2

(𝜇𝑟
𝑗
) =  2 𝜇 𝑑,  

and 

 𝐶𝑖,𝑑2
 =  2 𝜇 (

𝑑2−1

𝑗
+ 1) 𝐶𝑖−1,𝑑2

(𝜇) − (2
𝑑2−1

𝑖
+ 1) 𝐶𝑖−2𝑑2

(𝜇) . 

This type of process was introduced by Andel (1986), and authors such as Gray et al. 

(1989, 1994), Giraitis and Leipus (1995), Chung (1996a, 1996b), Gil-Alana (2001), Dalla 

and Hidalgo (2005), Caporale and Gil-Alana (2013) and others subsequently used it to 

analyse time series data. 

 

3. Data Description and Empirical Results 

We analyse nominal house prices for the US, at an annual frequency, from 1927 to 2022, 

which have been obtained from the Federal Reserve Bank of St. Louis database and 

compiled by Robert Shiller in http://www.econ.yale.edu//~shiller/data.htm. 

INSERT FIGURES 1 – 3 ABOUT HERE 

http://www.econ.yale.edu/~shiller/data.htm
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 Figure 1 displays time series plots of the original series, its logged transformation, 

and the first differences of both. It can be seen that the series in levels, whether logged or 

not, exhbit an upward trend throughout the sample period under examination, except for 

a sharp drop corresponding to the global financial crisis (GFC) of 2007-08, after which 

prices recovered and returned to their growth path. The first differenced series are much 

more volatile (especially the logged one), but again one can observe a fall coinciding with 

the GFC, which is followed by a swift recovery. 

Figure 2 shows the correlograms of all four series. It can be seen that the values 

for the original series and their log transformations decay very slowly, which may indicate 

the presence of unit roots, whilst the values for the first differenced data suggest the 

presence of a cyclical pattern. The first 20 values of the periodograms are reported in 

Figure 3. Similarly to the correlograms, these are large and positive at the long-run or 

zero frequency in the case of the series in levels (see the upper panel), which might 

indicate the presence of long memory (i.e., d1 > 0); however, the plots for the differenced 

series (see the lower panel also suggest possible cyclical patterns. 

The first estimated model focuses only on the long-run or zero frequency and is 

specified as follows:  

         𝑦(𝑡)  =  𝛼 +  𝛽 𝑡  +  𝑥(𝑡),            (1 − 𝐿)𝑑 𝑥(𝑡)  =   𝑢(𝑡),   (6) 

where d is the fractional differencing parameter, α and β are jointly estimated with d, t 

stands for a linear time trend, and u(t) follows the exponential spectral model of 

Bloomfield (1973) implicitly defined by equation (5). 

 Table 1 displays the estimates of d along with the corresponding 95% confidence 

intervals, under the assumption of i) no deterministic terms (α = β = 0 in (6)); ii) an 

intercept only (β = 0 a priori) and iii) an intercept and a linear time trend. The preferred 



9 
 

specification is chosen on the basis of the statistical significance of the estimated 

coefficients. We report the results for both the original and log-transformed data in levels. 

TABLES 1 AND 2 ABOUT HERE 

 Table 2 displays the estimated parameters from the selected model for each of the 

two series. The time trend is statistically significant in both cases with a positive  

coefficient, and the estimates of d are 0.85 for the original data and 0.97 for the log-

tansformed ones. However, the confidence intervals imply that the unit root null 

hypothesis (i.e., d = 1) cannot be rejected for either series. 

 Next, we consider a non-linear specification with Chebyshev polynomials in time. 

Specifically, the estimated model is now the following: 

     𝑦(𝑡)    =    ∑ 𝜃𝑖𝑃𝑖𝑇
𝑚
𝑖=0 (𝑡)   +  𝑥(𝑡),            (1 − 𝐿)𝑑 𝑥(𝑡)  =   𝑢(𝑡),  (7) 

where PiT are the Chebyshev polynomials defined above and u(t) again follows the 

exponential spectral model of Bloomfield (1973). The results, for m = 3, are displayed in 

Table 3. 

TABLE 3 ABOUT HERE 

 It can be seen that they now differ depending on the series analysed. More 

precisely, for the original data the estimate of d is about 0.52, though the confidence 

interval is extremely large and it includes both the I(0) and the I(1) hypotheses. In 

addition, the coefficients for the non-linear trends are statistically significant. However, 

for the logged values, these coefficients (θ2 and θ3) are insignificant and the estimate of d 

is 0.84 (0.34, 1.56), such that the unit root null hypothesis cannot be rejected.  

 Next we allow for a cyclical component. First we consider the linear case and thus 

estimate the following model:  

                             𝑦(𝑡)  =  𝛼 +  𝛽 𝑡  +  𝑥(𝑡),   

(1 − 𝐿)𝑑1  (1 − 2  cos 𝑤(𝑟) 𝐿 + 𝐿2)𝑑2  𝑥(𝑡)   =    𝑢(𝑡) ,           𝑡 = 1, 2, . . .,  (8) 
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where d1 refers to the long-run or zero frequency and d2 to the order of integration of the 

cyclical component. On the basis of the plots of the periodograms displayed in Figure 3, 

we assume that r in equation (8) is constrained between 4 and 20, which corresponds to 

cycles between 5 and 24 years.  

 Table 4 reports the results based once more on the assumption of u(t) following 

the exponential spectral model of Bloomfield (1973), again in the case of i) no 

deterministic terms, ii) a constant, and iii) a constant and a linear time trend. The time 

trend is again statistically significant for both the original and the logged data, with the 

estimated values of r  being 11 and 12 in those two cases, which corresponds to cycles of 

approximately 8 years (T = 96/11 = 8.72, and 96/12 = 8). As for the differencing 

parameters, their values from the selected specifications (marked in bold in the table) are 

0.94 and 0.91 for d1 in the case of the original data and the logged ones respectively, with 

the confidence intervals including the unit root case; the corresponding ones for d2 are 

0.07 and 0.09 respectively, with the confidence intervals being very wide, and thus the 

null of d2 = 0 not being rejected. This implies that there is no significant cyclical 

component in the series under examination. 

TABLES 4 AND 5 ABOUT HERE 

 Table 5 displays the corresponding results when allowing for non-linearities in the 

form of Chebyshev polynomials in time. As in the previous case, the estimates of r are 

equal to 11 and 12 for the original data and the logged ones respectively, which implies 

the presence of cycles of about 8 years. The estimates of d1 and d2 are now slightly higher 

than in the linear case. Specifically, they are equal to 1.10 and 1.06 for d1 in the case of 

the original and logged data respectively, which implies once more that the unit root null 

hypothesis, i.e., d1 = 1, cannot be rejected in either case. As for the estimated value of d2, 

this is now positive but only slightly significant in the case of the original data (d2 = 0.29) 
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while insignificant (d2 = 0.20) for the logged series. Finally, in line with the results 

reported in Table 3 for a model with a single order of integration, the non-linear 

coefficients are statistically significant in the case of the original data. 

 

4.  Conclusions 

This paper proposes a very general time series model not previously used in the literature 

on house prices to analyse their behaviour in the US from 1927 to 2022. Specifically, the 

adopted fractional integration framework includes both a deterministic and a stochastic 

component (the latter modelling both long-run and cyclical behaviour), and also allows 

for non-linearities. It has the advantage of encompassing a wide range of stochastic 

processes (including the standard unit root case) and provides useful information on 

properties such as mean reversion and persistence.  

 The results are heterogeneous depending on the model specification and on 

whether or not the series have been logged. Specifically, a linear model appears to be 

more appropriate for the logged data whilst a non-linear one seems to be a better fit for 

the original ones. Further, the order of integration at the zero or long-run frequency is 

much higher than at the cyclical one. The former is in fact around 1 in all specified 

models, which implies a high degree of persistence of this component. Finally, the order 

of integration of the cyclical structure implies that cycles have a periodicity of about 8 

years, but it is almost insignificant in all cases.  

These results are broadly consistent with those of Canarella et al. (2021), who had 

analysed a longer sample period from 1830 to 2016 in the case of the US (from 1845 to 

2016 in the case of the UK) and found evidence of significant cyclical persistence only 

in the first sub-sample, the dominant break in their sample corresponding to some 

important post-WWII developments in US housing policy, such the National Housing 
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Act of 1949 with the following 1955 Amendment, and the Housing and Urban 

Development Act of 1965. Therefore the more general framework we employ appears to 

confirm that cyclicality has more recently become a less crucial issue for US house prices, 

and that it might not be necessary to account explicitly for it when bulding forecasting 

models. In addition, our findings are important for policy makers, since they imply that 

their focus should be on long-run persistence rather than cyclical one in the case of house 

prices.  

 Our analysis could be extended in several ways. In particular, tests for structural 

breaks could be carried out using the approach of Bai and Perron (2003), or the one 

developed by Gil-Alana (2008) specifically in the context of fractional integration, and 

then sub-sample estimates could be obtained. Non-linearities could also be modelled 

using other methods such as Fourier transform functions (Gil-Alana and Yaya, 2021; 

Caporale et al., 2023) or neural networks (Yaya et al., 2021), all of them in the context of 

fractional integration. Finally, the robustness of the results could be checked using de-

seasonalised data as well as estimating the models at different frequencies. Future work 

will address these issues. 
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Figure 1: Time series plots 
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Note: The displayed series are annual US nominal house prices from 1927 to 2022.  
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Figure 2: Correlograms of the series 

House prices House prices (in logs) 
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Note: The values in black are the 95% confidence bands for the autocorrelations. 

 

 

 

 

 

 

 

 

 

 

 

 

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 6 11 16 21 26 31 36

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1 6 11 16 21 26 31 36

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 6 11 16 21 26 31 36

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1 6 11 16 21 26 31 36



19 
 

Figure 3: Periodograms of the series 

House prices House prices (in logs) 

 

 

 

 

 

 

 

 

(1 – L) House prices (1 – L) House prices (in logs) 

  
Note:  The displayed values are the discrete frequencies λj = 2πj/T, for j = 1, … 20 
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Figure 4: Data and estimated time trend 

House prices (non-linear) House prices (in logs) (linear) 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Estimated non-linear (left) and linear (right) trends for the original and logged values respectively. 
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Table 1: Estimates of d at the long-run frequency with a linear trend model 

Series No deterministic 

terms 

With an intercept With an intercept 

and a linear trend 

Original data 

 

0.83   (0.62,  1.66) 0.78   (0.65,  1.47) 0.85   (0.57,  1.45) 

Logged data 

 

0.78   (0.55,  1.28) 0.97   (0.80,  1.41) 0.97   (0.67,  1.41) 

Note: The reported values are the estimates of the differencing parameter d in the model given by Equation 

(8). The values in parenthesis are the 95% confidence bands, and those in bold are the ones corresponding 

to the selected models. 

 

 

Table 2: Estimated coefficients from the selected models in Table 1 

Series d  (95% conf. band) Intercept (tv) Time trend (tv) 

Original data 

 

0.85   (0.57,  1.45) 0.263   (2.05) 2.783   (9.91) 

Logged data 

 

0.97   (0.67,  1.41) 1.717   (39.37) 0.041   (10.56) 

Note: The values in column 2 are the estimates of d in the model given by Equation (8). In parenthesis, the 

95% confidence intervals. The values in columns 3 and 4 are the estimated α and β in the same equation 

with their associated t-statistics in parenthesis. 
 

 

Table 3: Estimates of d at the long-run frequency with a non-linear trend model 

Series d θ0 θ1 θ2 θ3 

Original data 
 

0.52 

(-1.58,  1.44) 

66.486 

(14.80) 

-62.863 

(-19.70) 

29.452 

(10.41) 

-12.545 

(-4.89) 

Logged data 

 

0.84 

(0.34,  1.56) 

3.586 

(19.04) 

-1.271 

(-11.77) 

0.039 

(0.61) 

-0.068 

(-1.47) 

Note: The values in column 2 are the estimates of d in the model given by Equation (9). In parenthesis, the 

95% confidence interval. Those in columns 3 – 6 are the Chebychev coefficients with their associated t-

statistics. 
 

 

 

 

 

 

 

 



22 
 

 

 

Table 4: Estimates in a model with two orders of integration. Linear case 

 

Linear case No terms An intercept 
An intercept and a linear 

time trend 

Original data j = 11 j   =  12 j  = 12 

 d1 =  0.95 

(0.61, 1.38) 

d2 =  -0.26 

(-0.47, 0.31) 

d1 =  1.02 

(0.58, 1.41) 

d2 =  -0.20 

(-0.55, 0.41) 

d1 =  0.94 

(0.43, 1.39) 

d2 =  0.07 

(-0.31, 0.66) 

 Intercept Time trend Intercept Time trend Intercept Time trend 

 --- --- 5.76  (3.81) --- 0.255 (17.89) 2.556  (4.35) 

 
Logged data j = 12 j   =  11 j  = 11 

 d1 =  0.91 

(0.62, 1.33) 

d2 =  -0.24 

(-0.61, 0.59) 

d1 =  0.91 

(0.70, 1.33) 

d2 =  -0.05 

(-0.31, 0.40) 

d1 =  0.91 

(0.56, 1.42) 

d2 =  0.09 

(-0.47, 0.68) 

 Intercept Time trend Intercept Time trend Intercept Time trend 

 --- --- 1.77  (2.88) --- 1.689   (15.43) 0.035  (2.34) 

Note: d1 and d2 are the orders of integration at the long-run and cyclical frequencies respectively as 

described in Equation (10). In parenthesis the 95% confidence bands. J refers to the frequency with a 

singularity in the spectrum, such that T/j indicates the number of periods (years) per cycle. 

 

Table 5: Estimates in a model with two orders of integration. Non-linear case 
Non-Linear 

case 
j = 11 θ0 θ1 θ2 θ3 

Original data d1 =  1.10 

(0.42, 1.77) 

d2 =  0.29 

(0.00, 0.67) 

61.332 

(11.54) 

-44.182 

(-22.31) 

34.231 

(20.08) 

-15.415 

(-2.00) 

Lll Non-Linear 

case 
j = 11 θ0 θ1 θ2 θ3 

Logged data d1 =  1.06 

(0.49, 1.82) 

d2 =  0.20 

(-0.19, 0.51) 

3.549 

(19.33) 

-1.199 

(-9.89) 

0.051 

(0.13) 

-0.061 

(-1.03) 

Note: d1 and d2 are the orders of integration at the long-run and cyclical frequencies respectively as 

described in Equation (10). In parenthesis the 95% confidence bands. The other values are the Chebychev 

coefficients with their associated t-statistics. 
 

 


