

Assessing Net Benefits of Macroprudential Policy: A Growth at Risk Approach

Fourth Brunel Banking Conference June 24, 2022

Erlend Nier
Based on joint work with
Luis Brandao-Marques, Gaston Gelos,
Machiko Narita

Disclaimer

 The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Benefits and Costs

- Benefits of macroprudential policy: reduction in tail-risks
 to future GDP
- Benefits relate to main objectives (e.g., IMF 2013):
 - 1. Lean against build-up of systemic vulnerabilities
 - Lean against increases in leverage and volatile funding against backdrop of easy financial conditions
 - 2. Increase resilience to adverse aggregate shocks
 - Building financial buffers that blunt amplification of adverse shocks,
 - e.g., reduce credit crunch, borrower deleveraging.
- Use of macroprudential policy may also impart costs to output, at inception and through time.

New Approach: Assessing Net Benefits

Measure net benefits by assessing effect of policy on the whole distribution of output—both at the center and in the in the tail.

- Treating endogeneity of macroprudential policy by distilling policy shocks,
- Using quantile regressions to estimate effects on the distribution of output—across 19 quantiles,
- Using "loss functions" to evaluate distributions over a horizon of 14 quarters.

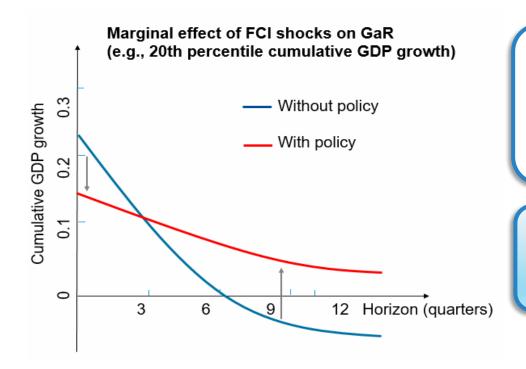
Conditional on an easing of financial conditions:

- capturing "leaning effects" of policy
- capturing "resilience building" effects

Improves on Existing Literature

- Goes beyond effects on credit and asset prices (as assessed in many papers, see Araujo and others 2020, Galati and Moessner, 2018)
 - By including the resilience benefit of macroprudential tools
- Goes beyond binary crisis/ non-crisis framework (Svensson 2016, Belkhir and others 2020)
 - Capturing amplification effects outside of full-blown crises
- Compares benefits of macroprudential policy with monetary policy.
 - Should countries "lean against the wind" with macroprudential policy or with monetary policy?

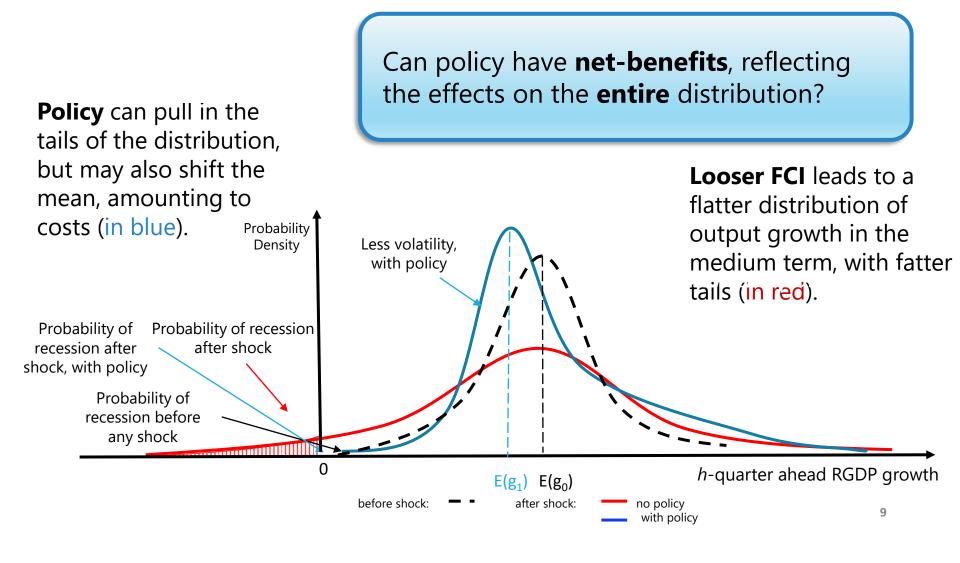
Overview

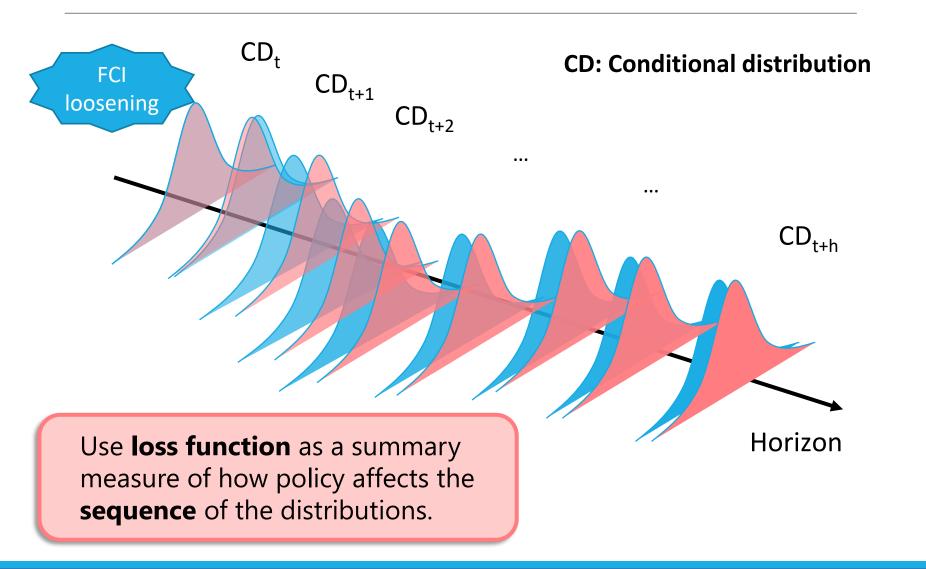

- Our new empirical approach—some detail.
- Main exercises:
 - Leaning against the wind with macroprudential versus monetary policy.
 - Comparing net benefits of borrower-based tools (e.g., LTV, LTI, DSTI) and financial institutions-based tools (e.g., capital and liquidity requirements).
 - Tracking net benefits of macroprudential tools over time.

Empirical Approach

Growth-at-Risk and Beyond

Starting Point: Growth-at-Risk Approach


- Growth-at-risk (GaR) framework forecasts the distribution of GDP growth
 - conditional on loose financial conditions (e.g., Adrian et al. 2018, 2019).


Loose **financial conditions** (FCI) today
increase downside risks to
GDP tomorrow.
(e.g., Adrian et al. 2018)

Can **policy** reduce **downside** risks?

Going Beyond Growth-at-Risk

Assessing Policy Effects Over the Medium-Term

Step 1: Implement Quantile Regressions

$$Q_{Yi,t+h}(q|Z_{it}) = \alpha_{0i}^h(q) + \beta_1^h(q)f_{it} + \beta_2^h(q)P_{it} + \beta_3^h(q)P_{it} \cdot f_{it} + x_{it}\Gamma$$
Conditional qth quantile Financial condition index (FCI)

Policy shock controls

- Regress future GDP growth on current economic and domestic financial conditions (Adrian, Boyarchenko, and Giannone, 2019)
- Interested in $\beta_3^h(q)$ on the interaction term of f with policy variable P
 - o for $q = 5^{th}$, ... 95^{th} quantiles and h = 1, ..., H quarters
 - Using the iMapp database (Alam and others) for P
 - Sample of 37 countries (AE and EME), 1990Q1-2016Q4
 - Domestic financial condition index (IMF, 2018)
- Do the same estimation for future inflation

Treating Endogeneity by Distilling Policy Shocks

- Macroprudential and other policies are endogenous. We address this by distilling policy shocks.
- Estimate ordered probit of macropru policies (MPMs) using credit-to-GDP gap, house-price gap, and indicator of lagged policy action as explanatory variables (X)
- Policy shock is given by difference between actual policy indicator and its conditional expectation:

$$\hat{\varepsilon}_{it}^{mpm} = mpm_{it} - \sum_{k=-2}^{2} \hat{p}_{k}(x_{it})k,$$

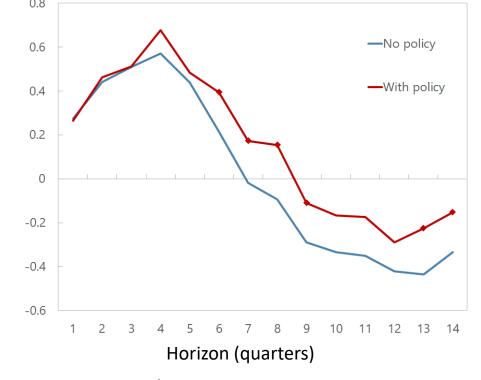
Step 2: Use a Loss Function to Evaluate Net-Benefits

$$L(\boldsymbol{\Theta}, \boldsymbol{P}) = \sum_{h=0}^{H} \boldsymbol{\beta}^{h} \, \widehat{E_{t}}[l_{t+h}|\boldsymbol{\Theta}, \boldsymbol{P}]$$

where

$$l_{t+h} = \omega_y (y_{t+h} - \overline{y_t})^2 + \omega_\pi \pi_{t+h}^2$$

- Quadratic loss function (baseline) for macro stabilization
- ω_y and ω_π weights on relative importance of **output** and **price** stability

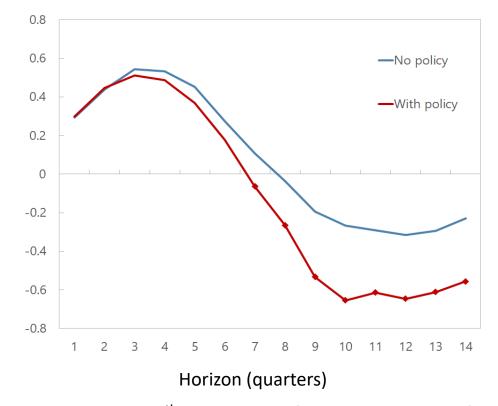

Compare losses for each policy *P*:

$$L(\Theta, P = 0)$$
 vs. $L(\Theta, P = \sigma^P)$

Main Findings

Macroprudential Tightening Reduces Downside Risks

- Responses of Growth-at-Risk to a FCI loosening
 - No policy: $\beta_1^h(q)$
 - With policy: $\beta_1^h(q) + \beta_3^h(q)\sigma^P$
- Tightening MaPP mitigate downside risks in the medium term
- Short-run effects are not significant



Notes: 10th percentile of the distribution of detrended RGDP growth.

 σ^P : Standard deviation of P

Monetary Policy Tightening Increases Downside Risks

- Responses of Growth-at-Risk to a FCI loosening
 - No policy: $\beta_1^h(q)$
 - With policy: $\beta_1^h(q) + \beta_3^h(q)\sigma^P$
- "Leaning against the wind" appears counter-productive in addressing tail risks
 - In line with Svensson (2017)

Notes: 10th percentile of the distribution of detrended RGDP growth.

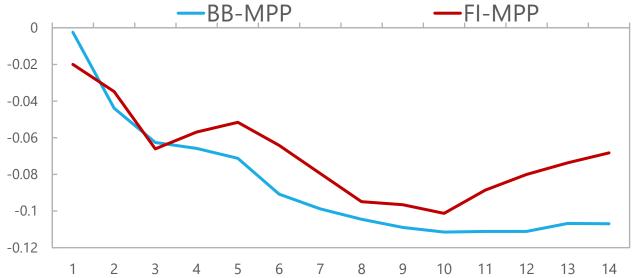
 σ^P : Standard deviation of P

Macroprudential Policy Tightening Reduces Losses, but Monetary Policy Tightening Increases Losses

	Domestic Shock				
	$\omega_{y}=1$, $\omega_{p}=0$ $\omega_{y}=1$, $\omega_{p}=1$		ω_{y} =0.542,		
			ω_p =1		
MPM All	-0.089 ***	-0.085 ***	-0.083 ***		
MPM Borrower-Based	-0.100 ***	-0.068 ***	-0.065 ***		
MPM FI-Based	-0.053 **	-0.036 **	-0.035 **		
MP	0.121 ***	0.115 ***	0.111 ***		
FXI	-	-	-		
CFM	-	-			

Notes: Changes in losses by tightening P, in percent of losses without policy ($L_o(\Theta, P=0)$). Confidence bands in brackets. Inference based on cluster bootstrap. *, **, *** means significance at 10, 5, 1 percent levels.

Net Benefit of BB-based Tools is Greatest


- Reduction in loss from Borrower-based (BB) tools is greater than that of Financial Institution (FI) -based tools, especially when credit is already high.
- Reduction in loss from FI based tools (capital and liquidity) can be stronger where credit is still low.

	Low Credit		High Credit			
	ω_{γ} =1, ω_{p} =0	$\omega_{\rm y}$ =1, $\omega_{\rm p}$ =1	ω_{γ} =0.542,	ω_{γ} =1, ω_{p} =0	ω_{y} =1, ω_{p} =1	ω_{y} =0.542,
			ω_p =1			ω_p =1
MPM All	-0.089 **	-0.086 **	-0.084 **	-0.099 **	-0.094 **	-0.090 **
MPM Borrower-Based	-0.033	-0.032	-0.031	-0.083 ***	-0.078 ***	-0.075 ***
MPM FI-Based	-0.076 **	-0.072 **	-0.070 **	-0.028	-0.027	-0.026
MP	0.137 ***	0.132 ***	0.129 ***	0.126 ***	0.120 ***	0.115 ***

Note: Confidence bands in brackets. Inference based on cluster bootstrap. *, **, *** means significance at 10, 5, 1 percent levels (first column only). Vulnerabilities measured by level of credit to GDP—high (low) vulnerabilities mean credit to GDP at 75th (25th) percentile.

Net Benefits of BB Tools Augment Over Time

- Reduction in loss from tightening BB tools persists and augments over time.
- Reduction in loss from tightening FI-based tools appear to wane with time.

Note: The charts show the cumulated change in the loss function when comparing a scenario of loose financial conditions without policy tightening to one where policy is tightened.

Summary

- New empirical approach, going beyond the tail risks
 - Estimate policy effects on the entire future distributions with quantile regressions
 - Treat endogeneity of policy—by distilling policy shocks
 - Evaluate the net benefit of each policy with loss functions
- Results suggest leaning against loose financial conditions is...
 - Beneficial with macroprudential policy
 - Not beneficial with monetary policy
- Benefits are greatest for BB based tools
- Benefits of BB tools increase over time

Thank you!

Appendix 1: Robustness to Alternative Loss Functions. MPMs Reduce Losses, but Not Other Policies.

	External Shock				
	Linear-qua	Asymmetric			
	ω_y =1, ω_p =0	ω_{y} =1, ω_{p} =1	ω_{y} =1, ω_{p} =0		
MPM All	-0.100 ***	-0.095 ***	-0.109 ***		
MPM Borrower-Based	-0.097 ***	-0.089 ***	-0.100 ***		
MPM FI-Based	-0.060 **	-0.058 **	-0.067 ***		
MP	0.046 **	0.044 **	0.040 *		
FXI	-0.029	-0.027 *	-0.024		
CFM	-0.040	-0.033	-0.041		

Notes: Reductions in losses by tightening P, in percent of losses without policy ($L_o(\Theta, P=0)$). Confidence bands in brackets. Inference based on cluster bootstrap. *, **, *** means significance at 10, 5, 1 percent levels.

Appendix 2: Robustness to Alternative Monetary Policy Shock. Monetary Policy is Not Helpful.

	Domestic FCI		External FCI			
	ω _γ =1, ω _p =0	ω _y =1, ω _p =1	ω _γ =0.542,	ω _γ =1, ω _p =0	ω_{y} =1, ω_{p} =1	ω _y =0.542,
			ω_p =1			ω_p =1
MPM All	-0.089 ***	* -0.085 ***	-0.083 ***	-0.112 ***	-0.107 ***	-0.104 ***
MPM Borrower-Based	-0.100 ***	* -0.068 ***	-0.065 ***	-0.107 ***	-0.101 ***	-0.096 ***
MPM FI-Based	-0.053 **	-0.036 **	-0.035 **	-0.068 ***	-0.067 ***	-0.065 ***
MP	0.121 ***	* 0.115 ***	0.111 ***	0.038 *	0.036 *	0.036 *
FXI	-	-	-	-0.022	-0.021	-0.021
CFM	-	-	-	-0.039	-0.034	-0.030
HF MP	-0.011	-0.011	-0.011	-0.025	-0.023	-0.022

Notes: Reductions in losses by tightening P, in percent of losses without policy ($L_o(\Theta, P=0)$). Confidence bands in brackets. Inference based on cluster bootstrap. *, **, *** means significance at 10, 5, 1 percent levels. HF MP: High-frequency monetary policy shocks.

Appendix 3: Results Are Similar Advanced Economies vs. Emerging Market Economies

	Domestic FCI		External FCI					
	ω _y =1, ω _p =0	ω _γ =1, ω _p =1	ω _γ =0.542, ω _p =1	ω _γ =1, ω _p =0	ω _γ =1, ω _p =1	$ω_y$ =0.542, $ω_p$ =1		
Advanced economies								
MPM All	-0.120 **	-0.116 **	-0.113 **	-0.139 **	-0.136 **	-0.133 **		
MPM Borrower-Based	-0.141 **	-0.136 **	-0.132 *	-0.142 ***	-0.139 ***	-0.136 ***		
MPM FI-Based	-0.027	-0.026	-0.025	-0.046	-0.045	-0.045		
MP	0.127 ***	0.124 ***	0.122 ***	0.075	0.075	0.075		
FXI	-	-	-	0.051	0.049	0.047		
CFM	-	-	-	0.015	0.015	0.015		
		Emer	rging economies					
MPM All	-0.081 ***	-0.078 ***	-0.075 ***	-0.143 ***	-0.062 ***	-0.038 ***		
MPM Borrower-Based	-0.067 **	-0.064 **	-0.061 **	-0.136 *	-0.099 *	-0.089 *		
MPM FI-Based	-0.074 **	-0.072 **	-0.070 **	-0.132 ***	-0.125 ***	-0.120 ***		
MP	0.086 **	0.080 ***	0.077 ***	0.092 *	0.089 *	0.086 **		
FXI	-	-	-	0.017	0.014	0.011		
CFM	-	-	-	-0.065 *	-0.050	-0.040		

Notes: Reductions in losses by tightening P, in percent of losses without policy ($L_o(\Theta, P=0)$). Confidence bands in brackets. Inference based on cluster bootstrap. *, **, *** means significance at 10, 5, 1 percent levels.