

Spectra of Sample Covariance Matrices for Multiple Time Series

Reimer Kühn, Peter Sollich

Disordered System Group, Department of Mathematics, King's College London

VIIIth Brunel-Bielefeld Workshop on Random Matrices, Dec 14-15, 2012

Sample Covariance Matrices of Multiple Time Series

• Covariance matrix of stationary stochastic process $x_t = (x_t^a)$, $t \in \mathbb{Z}, \ 1 \le a \le p$:

$$C_{ij}^{ab} = \frac{1}{M} \sum_{t=1}^{M} x_{i+t}^{a} x_{j+t}^{b} = \frac{1}{M} (XX^{T})_{ij}^{ab}$$
.

Here $X = (x_{it})$ is $pN \times M$ matrix with entries $x_{it} = x_{i+t}$. Expect finite sample fluctuation around mean

$$C_{ij}^{ab} = \langle x_i^a x_j^b \rangle \pm \mathcal{O}(1/\sqrt{M}) = \bar{C}^{ab}(i-j) \pm \mathcal{O}(1/\sqrt{M})$$

 $\Rightarrow C$ is randomly perturbed block Toeplitz matrix.

• Spectrum of C as $N\to\infty$, $M\to\infty$ @ fixed p and $\alpha=N/M$? Known result as $\alpha\to0$: Szegö's Theorem

$$\rho_0(\lambda) = \frac{1}{p} \sum_{s=1}^p \int_0^{2\pi} \frac{\mathrm{d}q}{2\pi} \, \delta(\lambda - \hat{C}_s(q))$$

Compare with Wishart-Laguerre Ensemble

• Empirical covariances for N data, evaluated on the basis of M measurements for each variable. Use $N \times M$ matrices $X = (x_{it})$ with i.i.d. entries x_{it} to compute:

$$C_{ij} = \frac{1}{M} (XX^T)_{ij} = \frac{1}{M} \sum_{t=1}^{M} x_{it} x_{jt}$$
.

Expect finite sample fluctuation around mean.

$$C_{ij} = \langle x_i x_j \rangle \pm \mathcal{O}(1/\sqrt{M}) = \delta_{ij} \pm \mathcal{O}(1/\sqrt{M})$$

- Spectrum of C as $N \to \infty$, $M \to \infty$ @ fixed $\alpha = N/M$?
 - ⇒ Marčenko Pastur-Law

$$\rho_{\alpha}(\lambda) = \frac{1}{2\pi\alpha\lambda} \sqrt{4\alpha - (\lambda - (1+\alpha))^2}$$

Principal Differences

• Rows of X for the multi-time series covariance problem groups of shifted sections of a set of p time series $(x_t)_{t\in\mathbb{Z}}$, $x_t\in\mathbb{R}^p$.

- Number of random variables in the problem is $\mathcal{O}(N)$, rather than $\mathcal{O}(N^2)$ as in the Wishart Laguerre ensemble.
- Extensive body of knowledge about the Wishart-Laguerre ensemble and its variants (applications in multivariate statistics, signal-processing, finance, . . .)
- Very little is known. Existence proofs (Basak, Bose, Sen 2011). p=1-case solved only recently. (RK, P Sollich, EPL 2012)

Spectral Density and Resolvent

Spectral density of sample covariance matrix from resolvent

$$\rho(\lambda) = \lim_{N \to \infty} \frac{1}{\pi N p} \operatorname{Im} \operatorname{Tr} \left\langle \left[\lambda_{\varepsilon} \mathbb{1} - C \right]^{-1} \right\rangle , \qquad \lambda_{\varepsilon} = \lambda - \mathrm{i}\varepsilon$$

• Express as (S F Edwards & R C Jones, JPA, 1976)

$$\rho_{\alpha}(\lambda) = \lim_{N \to \infty} \frac{1}{\pi N_{p}} \operatorname{Im} \frac{\partial}{\partial \lambda} \operatorname{Tr} \left\langle \ln \left[\lambda_{\varepsilon} \mathbb{1} - C \right] \right\rangle$$
$$= \lim_{N \to \infty} -\frac{2}{\pi N_{p}} \operatorname{Im} \frac{\partial}{\partial \lambda} \left\langle \ln Z_{N_{p}} \right\rangle,$$

where $N_p = N_p$ and Z_{N_p} is a Gaussian integral:

$$Z_{N_p} = \int \prod_{k,a} \frac{\mathrm{d}u_{ka}}{\sqrt{2\pi/\mathrm{i}}} \exp\left\{-\frac{\mathrm{i}}{2} \sum_{ka,\ell b} u_{ka} (\lambda_\varepsilon \delta_{ab} \delta_{k\ell} - C_{k\ell}^{ab}) u_{\ell b}\right\} .$$

Performing the Average

Standard Approach – Replica Method

$$\left\langle \ln Z_{N_p} \right\rangle = \lim_{n \to 0} \frac{1}{n} \ln \left\langle Z_{N_p}^n \right\rangle$$

- For integer n, $Z_{N_p}^n$ is partition function of n identical copies of the system (n-th power of Gaussian integral)
- Experience: final result has structure of replica-symmetric high-temperature solution \Leftrightarrow annealed calculation (n=1). $\langle \ln Z_{N_p} \rangle \simeq \ln \langle Z_{N_p} \rangle \Rightarrow$ Do annealed calculation from the start

$$\langle Z_{N_p} \rangle = \left\langle \int \prod_{k,a} \frac{\mathrm{d} u_{ka}}{\sqrt{2\pi/\mathrm{i}}} \, \exp \left\{ -\frac{\mathrm{i}}{2} \sum_{ka,\ell b} u_{ka} (\lambda_\varepsilon \delta_{ab} \delta_{k\ell} - C_{k\ell}^{ab}) u_{\ell b} \right\} \right\rangle$$

Performing the Average (contd.)

• Insert definition of C, and $\alpha_p = \alpha p$,

$$\langle Z_{N_p} \rangle = \left\langle \int \prod_{ka} \frac{\mathrm{d}u_{ka}}{\sqrt{2\pi/\mathrm{i}}} \exp\left\{ -\frac{\mathrm{i}}{2} \lambda_\varepsilon \sum_{ka} u_{ka}^2 + \frac{\mathrm{i}}{2} \alpha_p \sum_{i=1}^M z_i^2 \right\} \right\rangle$$

ullet with disorder dependence of Z_{N_p} only through the M variables

$$z_i = \frac{1}{\sqrt{N_p}} \sum_{ka} x_{k+i}^a u_{ka} , \quad 1 \le i \le M .$$

 \bullet By CLT (for weakly dependent rv's) normally distributed for large M with

$$\langle z_i \rangle = 0$$
, $\langle z_i z_j \rangle = \frac{1}{N_p} \sum_{ka,\ell b} \langle x_{k+i}^a x_{\ell+j}^b \rangle u_{ka} u_{\ell b} \equiv Q_{ij}$

and Q given in terms of true process auto-covariance

$$Q_{ij} = \langle z_i z_j \rangle = \frac{1}{N_p} \sum_{ka,\ell b} \bar{C}^{ab} (i - j + k - \ell) u_{ka} u_{\ell b}$$

Exploiting Szegö's Theorem for Spectral Sums

• $\{z_i\}$ average is Gaussian; with $\alpha_p = \alpha p$:

$$\langle Z_{N_p} \rangle = \int \prod_{ka} \frac{\mathrm{d} u_{ka}}{\sqrt{2\pi/\mathrm{i}}} \, \exp \left\{ -\frac{\mathrm{i}}{2} \lambda_\varepsilon \sum_{ka} u_{ka}^2 - \frac{1}{2} \ln \det(\mathbb{1} - \mathrm{i} \alpha_p Q) \right\}$$

• Q is a Toeplitz matrix. \Rightarrow evaluate In det $(1 - i\alpha_p Q)$ using Szegö's theorem:

$$\ln \det(\mathbf{1} - \mathrm{i}\alpha_p Q) \sim \sum_{\mu = -(M-1)/2}^{(M-1)/2} \ln \left(1 - \mathrm{i}\alpha_p Q_\mu\right)$$

where

$$Q_{\mu} = \frac{1}{N_{p}} \sum_{ka,\ell b} \widehat{C}^{ab}(q_{\mu}) e^{-iq_{\mu}(k-\ell)} u_{ka} u_{\ell b} = \frac{1}{p} \sum_{ab} \widehat{C}^{ab}(q_{\mu}) \widehat{u}_{a}^{*}(q_{\mu}) u_{b}(q_{\mu})$$
 with $\widehat{u}_{a}(q_{\mu}) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} e^{iq_{\mu}k} u_{ka}$ and $q_{\mu} = \frac{2\pi}{M} \mu$.

Closed Form Approximation & Scaling

• Get closed form expression of $\langle Z_{N_p} \rangle = \prod_{\nu \geq 0} I_{\nu}$ with

$$I_{\nu} = \frac{\mathrm{i}^{p}}{\prod_{s} \widehat{C}_{s}(p_{\nu})} \int_{0}^{\infty} \prod_{s=1}^{p} \mathrm{d}x_{s} \; \frac{\mathrm{e}^{-\mathrm{i} \sum_{s} x_{s} \lambda_{\varepsilon} / \widehat{C}_{s}(p_{\nu})}}{\left(1 - \mathrm{i} \frac{\alpha}{2} \sum_{s} x_{s}\right)^{2/\alpha}}$$

where $\hat{C}_s(p_{\nu})$, $s=1,\ldots,p$ are eigenvalues of $\hat{C}(p_{\nu})=(\hat{C}^{ab}(p_{\nu}))$

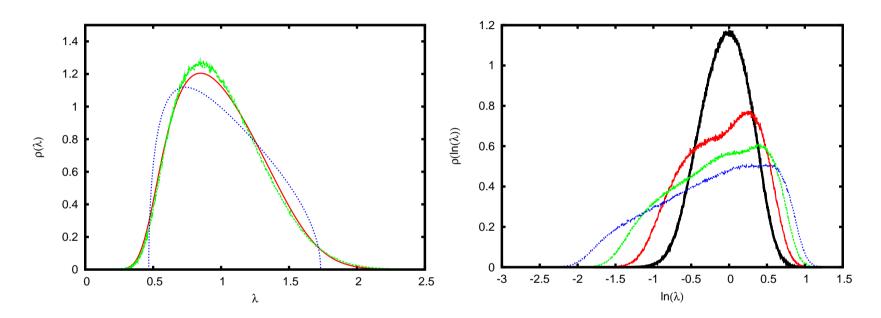
Gives

$$\rho_{\alpha}(\lambda) = \frac{1}{p} \int_{0}^{\pi} \frac{\mathrm{d}q}{\pi} \sum_{s=1}^{p} \frac{1}{\widehat{C}_{s}(q)} \rho_{s} \left(\left\{ \frac{\lambda}{\widehat{C}_{s}(q)} \right\} \right)$$

• For uncorrelated data $\hat{C}_s(q) \equiv 1$, and ρ_s is independent of $s \Rightarrow$ identify ρ_s with the spectral density for covariance matrices of p time series of i.i.d. (uncorrelated) data.

Numerical Tests

• Spectral density for $x_n \sim \mathcal{N}(0,1)$ i.i.d. @ $\alpha = 0.1$



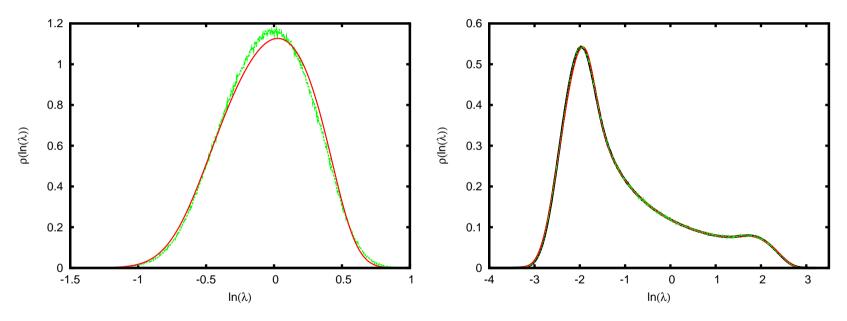
(Left) p=1: simulation results (green); analytic approximation for $\rho_{\alpha}^{(0)}(\lambda)$ (red), Marčenko-Pastur law (blue-dashed) (. From RK, P Sollich, EPL 2012.)

(Right) logarithmic spectral density; simulation results for p = 1, ..., 4. In all cases @

AR-1 Process @ $\alpha = 0.1$, p = 1

$$x_n = a_1 x_{n-1} + \sqrt{1 - a_1^2} \, \xi_n$$

• (Logarithmic) Spectral density for AR-1 process @ $\alpha = 0.1$



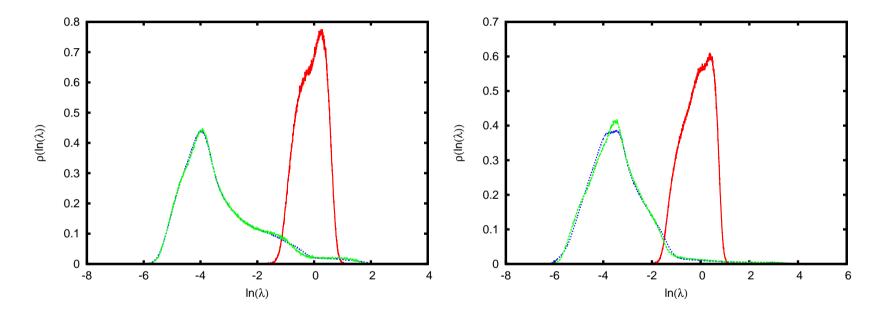
Left: i.i.d. data, simulation (green) and analytic result (red).

Right $a_1 = 0.8$. Comparing scaling based on the empirical scaling function (black) with that based on the analytic result (red) and simulations (green).

AR-1 Process @ $\alpha = 0.1$, p = 2 and p = 3

• (Logarithmic) Spectral density for AR-1 process @ $\alpha = 0.1$

$$x_n = A x_{n-1} + \sigma \xi_n$$



(Left) Spectra for p=2, uncorrelated data and $A=[0.8\ 0.1;0.1\ 0.8]$, (Right) p=3, uncorrelated data and $A=[0.8\ 0.2\ 0.1;0.2\ 0.6\ 0.1;0.1\ 0.1\ 0.5]$. In both cases $\sigma=0.2$, and simulation results are compared with scaling using an approximate evaluation of scaling integrals.

Summary

- Computed DOS of sample covariance matrices for multiple time-series using annealed calculation.
- Key ingredient: Szegö's theorem for (block) Toeplitz matrices
- Rectangular window and decorrelation approximation ⇒ Closed form approximation.
- Use of Szegös theorem suggests a scaling form for DOS.
 - scaling is requires knowledge of a function on \mathbb{R}^p ! DOS for i.i.d. data is insufficient.
 - currently working on effective methods to evaluate scaling function for p > 1.
- Lots of possible applications.