Self-averaging and Spectral Commutativity of Isotropic Random Matrices

Zdzislaw Burda 1,2 , Giacomo Livan 3 and Artur Swiech 1

¹Marian Smoluchowski Institute of Physics and
 ²Mark Kac Complex Systems Research Center, Jagiellonian University, Poland
 ³Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Abstract

We show that the eigenvalue distribution for the product of arbitrary number of random matrices from isotropic unitary ensemble (IUE) is independent of the order of multiplication in $N \to \infty$ limit. We present the procedure of calculating the average eigenvalue distribution for product of such matrices and employ it to numerous examples involving products of Girko-Ginibre matrices and so called "matrices with predefined eigenvalue distribution". In each case we obtain perfect agreement with Monte-Carlo simulations considering finite size effects.

Isotropic Random Matrices

Isotropic random variables: Isotropic random matrices:

 $ightharpoonup z = re^{i\phi}, \qquad
ightharpoonup x = hu,$

 $ightharpoonup r \in \mathbb{R}, r \geq 0$, ightharpoonup h - positive semi-definite Hermitian,

 $ightharpoonup \phi$ uniform on $[0,2\pi)$. ightharpoonup u - Haar measure on $U\left(N
ight)$.

In other words: For N imes N Isotropic Random Matrix x one has $P\left(x
ight) = P\left(xv
ight)$ where $v \in U\left(N
ight)$

Examples:

- Girko-Ginibre matrix
- Matrix of the form vhu where v and u are Unitary Haar measure random matrices and h is positive semi-definite hermitian random matrix.

Properties:

- ► Eigenvalue spectrum is rotationally symmetric on the complex plane.
- ► They form Isotropic Unitary Ensemble (IUE).

Order invariance of average eigenvalue spectrum

Our main result:

Average eigenvalue distribution for the product of n matrices generated from any type of IUE is independent of the order of multiplication in the $N \to \infty$ limit.

Or in other words:

Consider N independent IUE matrices $A_i, i=1,2,\ldots,N$. Defining $x=A_1A_2\ldots A_N$ and for any permutation π : $x_\pi=A_{\pi(1)}A_{\pi(2)}\ldots A_{\pi(N)}$ probability that the eigenvalue of x_π lies within a circle of radius r: $\operatorname{Prob}\left(\lambda_{x_\pi} < r\right) = \operatorname{Prob}\left(\lambda_x < r\right)$

The proof is based on Haagerup Larsen Theorem and multiplicative properties of S-transform in Free Random Variables calculus.

Haagerup-Larsen Theorem

Lets define radial cumulative density function for eigenvalues of IUE matrix $m{x}$ by:

 $F_{x}\left(r
ight)=\int_{0}^{r}2\pi\left|z\right|
ho_{x}\left(z,ar{z}
ight)d\left|z\right|, \qquad (1)$

where $\rho_x\left(z,\bar{z}\right)$ is the average eigenvalue distribution. Then one has the relation between it and S-transform for h^2 from usual decomposition x=hu, known as Haagerup-Larsen Theorem:

$$S_{h^2}\left(F_x\left(r\right)-1\right)=\frac{1}{r^2}.$$

Additionally $S_h = S_{h'}$ if eigenvalue distribution for h are the same as of h', so one can rewrite equation (2) in terms of x only:

$$S_{x^{\dagger}x}\left(F_{x}\left(r\right)-1\right)=rac{1}{r^{2}}.$$
 (3)

as $h^2=xx^\dagger$ and it has the same eigenvalues as $x^\dagger x$.

Finally, using properties of S-transforms, one has relation for $X=\prod_{i=1}^n x_i$:

$$\prod_{i=1}^{n} S_{x_i^{\dagger} x_i} \left(F_X \left(r \right) - 1 \right) = \frac{1}{r^2} \tag{4}$$

References

- Z. Burda, M.A. Nowak and A. Swiech, *New spectral relations between products and powers of isotropic random matrices*, arXiv:1205.1625
- U. Haagerup and F. Larsen, Journal of Functional Analysis, 176, 331 (2000).
- D. V. Voiculescu, J. Operator Theory 18, 223 (1987).

Numerical results

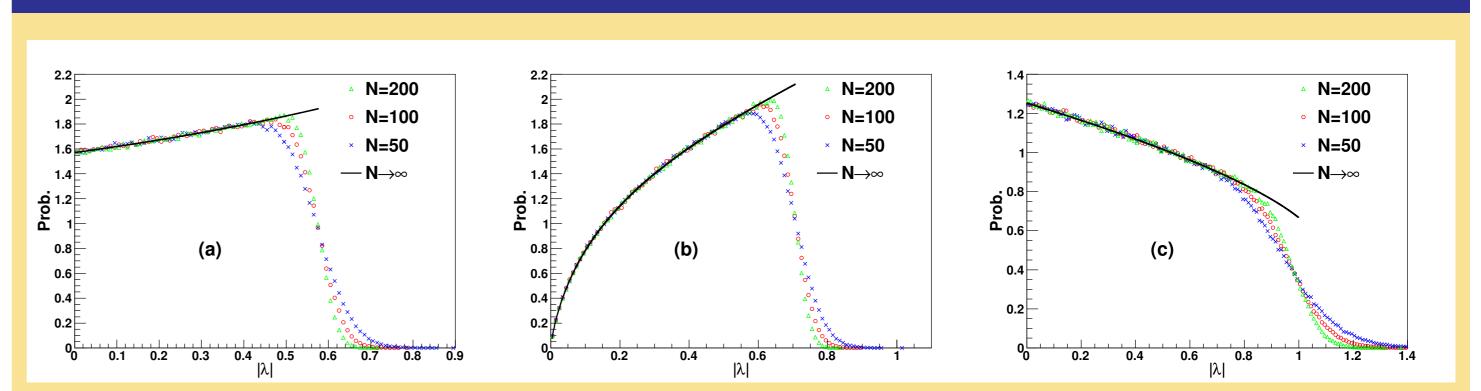


Figure: Numerical verification of theoretical predictions p(r)=F'(r) (1) for the mean radial spectral density of eigenvalues for the product of independent isotropic matrices. (a) Numerical histograms for the product of independent Girko-Ginibre matrix and matrix with $\rho_h(r)=1$ on interval (0,1) for N=200 (green triangles), N=100 (red circles) and N=50 (blue crosses) compared with theoretical predictions for $N\to\infty$. Each histogram is made for 10^7 eigenvalues. The numerical histograms approach theoretical curve as the size of matrices is increased. (b) An analogous plot to (a) for the product of Girko-Ginibre matrix and matrix with $\rho_h(r)=2r$ on interval (0,1). (c) An analogous plot to (a) and (b) for the product of Girko-Ginibre matrix and matrix with $\rho_h(r)$ being half-normal distribution.

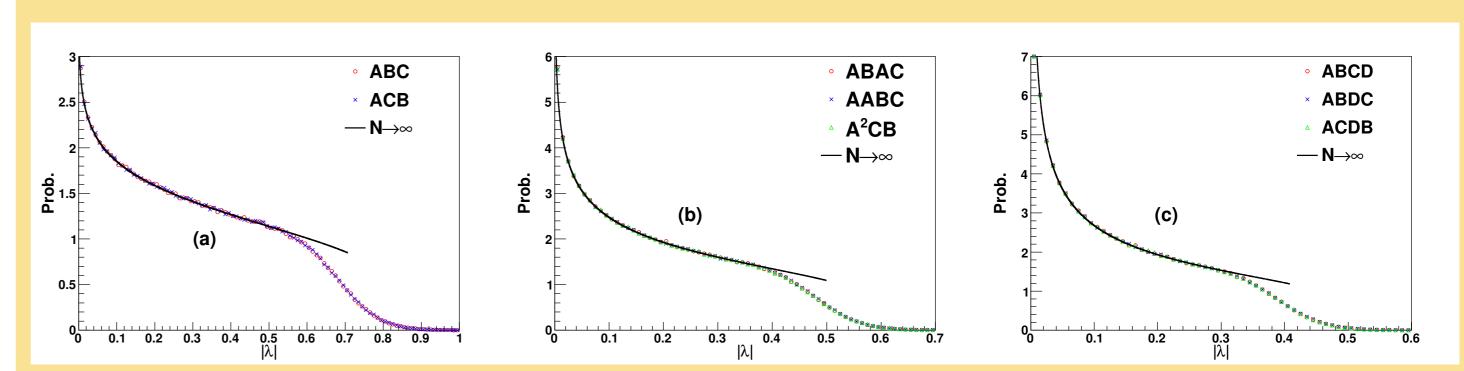


Figure: Numerical verification of theoretical predictions of the order-invariance of the mean radial spectral density, $\rho\left(z,\bar{z}\right)$, of the eigenvalues for the product of independent isotropic matrices. By A we define matrix with $\rho_h\left(r\right)=2r$ on interval (0,1), by B - Girko-Ginibre matrix, by C - matrix with $\rho_h\left(r\right)$ being half-normal distribution and by D - matrix with $\rho_h\left(r\right)=1$ on interval (0,1). (a) Numerical histograms for the product of 3 different IUE matrices for N=100, in different order compared with theoretical predictions for $N\to\infty$. ABC (red circles), ACB (blue crosses). Each histogram is made for 10^7 eigenvalues. The numerical histograms agrees with each other as well as with theoretical prediction for $N\to\infty$ limit taking into account finite size effects. (b) An analogous plot to (a) for the product of 4 IUE matrices, of which two are from same type. A_1BA_2C (red circles), A_1A_2BC (blue crosses) and A_1^2CB (green triangles). (c) An analogous plot to (a) for the product of 4 different IUE matrices. ABCD (red circles), ABDC (blue crosses) and ACDB (green triangles).

Numerical details

Having $\rho_x\left(r\right)$ or $\rho_h\left(r\right)\left(x=hu\right)$, one can compute the S-transform for matrix h^2 , via Haagerup-Larsen Theorem or series of equations:

$$\rho_{h^2}(r) = \frac{\partial}{\partial r} \int^{\sqrt{r}} \rho_h(x) dx,$$
(5)

$$G_{h^2}\left(z
ight) = \int_{-\infty}^{\infty} rac{
ho_{h^2}\left(\lambda
ight)}{z-\lambda} d\lambda, \hspace{1cm} (6)$$

$$\phi(z) = \frac{1}{z}G\left(\frac{1}{z}\right) - \frac{1}{z},\tag{7}$$

$$\chi\left(\phi\left(z\right)\right) = \phi\left(\chi\left(z\right)\right) = z,\tag{8}$$

$$S_{h^{2}}\left(z
ight)=rac{z+1}{z}\chi_{h^{2}}\left(z
ight). ag{9}$$

Having those, one can simply multiply S-transforms pointwise and use Haagerup-Larsen Theorem again to get eigenvalue distribution.
Unfortunately, the procedure is almost always impossible to perform fully

- analytically. There are few hints for numerical evaluation: The cdf takes values only from [0,1] interval.
- The S-transforms have to be calculated and multiplied only on the [-1,0] interval.
- The S-transforms has to be positive on the [-1,0] interval.
- The $\chi\left(z
 ight)$ is always negative and on [-1,0] interval. It approaches 0 for $z
 ightarrow0^{-}$.
- The S-transform (and $\chi(z)$) has to be continuous and injective. Altogether, $\chi(z)$ is a continuous, monotonically rising function. This facts allows one to specify good starting parameters to solve relevant equations numerically.