Asymptotics for Toeplitz determinants: perturbation of symbols with a gap

Christophe Charlier *

IRMP, Université Catholique de Louvain

Toeplitz Matrices

We consider Toeplitz determinants of the form $D_n(f) = \det(f_{j-k})_{j,k=0,\dots,n-1}, \quad f_j = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-ij\theta} d\theta,$ where the symbol f is of the form

$$f(e^{i\theta}) = e^{W(e^{i\theta})} \times \begin{cases} 1, & \text{for } -\theta_0 \le \theta \le \theta_0, \\ s, & \text{for } \theta_0 < \theta < 2\pi - \theta_0, \end{cases}$$

where $0 < \theta_0 < \pi$, $0 \le s \le 1$, and W is analytic on S_1 .

Three known results

• If s=1, the weight $f(e^{i\theta})=e^{W(e^{i\theta})}$ is **analytic**. To get asymptotics, we can use the Szegő strong limit theorem:

$$\ln D_n (s = 1, \theta_0, W) = nW_0 + \sum_{k=1}^{+\infty} kW_k W_{-k} + o(1),$$

as $n \to +\infty$, where $W_k = \frac{1}{2\pi} \int_0^{2\pi} W(e^{i\theta}) e^{-ik\theta} d\theta$. • If s=0, the symbol is **supported on an arc**:

$$f(e^{i\theta}) = e^{W(e^{i\theta})} \times \begin{cases} 1, & \text{for } -\theta_0 \le \theta \le \theta_0, \\ 0, & \text{for } \theta_0 < \theta < 2\pi - \theta_0. \end{cases}$$

Asymptotics for D_n are given by (Widom, 1971)

$$\ln D_n (s = 0, \theta_0, W) = n^2 \ln \sin \frac{\theta_0}{2} + nW_0 - \frac{1}{4} \ln n$$

$$+ \sum_{k=1}^{+\infty} kW_k W_{-k} - \frac{1}{4} \ln \cos \frac{\theta_0}{2} + \frac{1}{12} \ln 2 + 3\zeta'(-1) + o(1),$$

as $n \to +\infty$. These asymptotics are proved only if f is positive on its support and symmetric in θ .

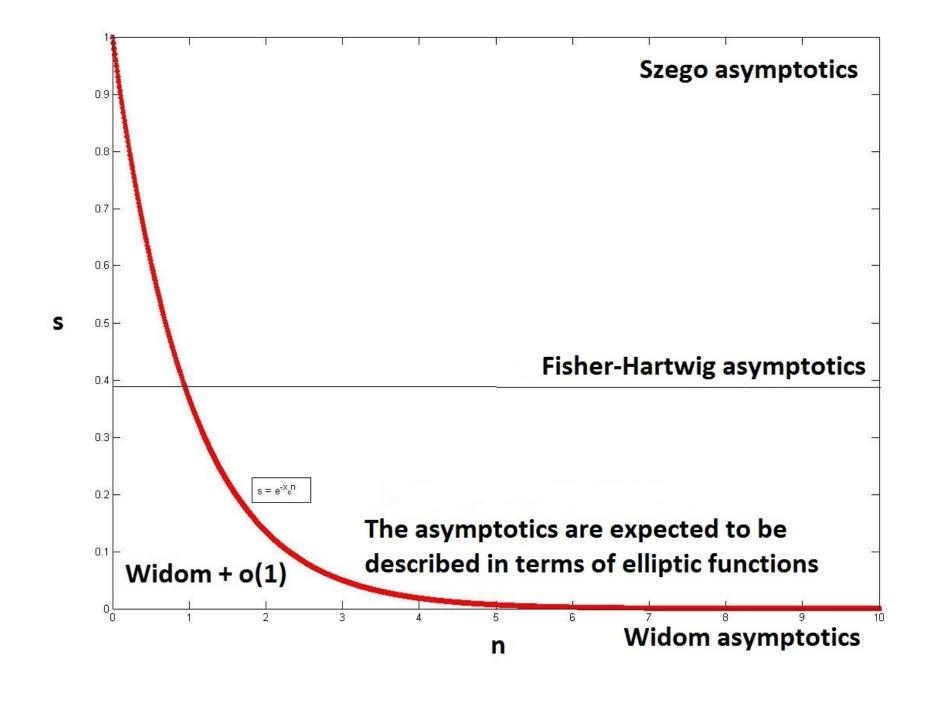
• If s is fixed, namely independent of n, f has two jump discontinuities which are special cases of **Fisher-Hartwig singularities**. Asymptotics for D_n are given by (Deift-Its-Krasovky 2010, Widom, Basor,...)

$$\ln D_n(s, \theta_0, W) = nW_0 + \frac{(\ln s)^2}{2\pi^2} \ln n + \frac{\ln(2\sin\theta_0)}{2\pi^2} + \frac{\ln s}{\pi} \sum_{k=1}^{+\infty} (W_k + W_{-k}) \sin(k\theta_0) + \sum_{k=1}^{+\infty} kW_k W_{-k} + 2\ln\left(G\left(1 + \frac{\ln s}{2\pi i}\right)G\left(1 - \frac{\ln s}{2\pi i}\right)\right) + o(1),$$

as $n \to +\infty$, where G is Barnes' G-function.

Critical transition

The asymptotic expansion is different for $s \to 0$ in Fisher-Hartwig asymptotics than for s = 0. This shows that there is critical transition when $s \to 0$, depending on the speed of convergence of s to 0.



Theorem [Charlier, Claeys 2014]

Let $\theta_0 \in (0, \pi)$ and define

$$x_c = -2\ln\tan\frac{\theta_0}{4}.$$

As $n \to \infty$ and simultaneously $s \to 0$ in such a way that $0 \le s \le e^{-x_c n}$, we have

$$\ln D_n(s, \theta_0, W) = \ln D_n(0, \theta_0, W) + o(1).$$

If $\epsilon < \theta_0 < \pi - \epsilon$,

$$o(1) = \mathcal{O}(n^{-1/2}se^{x_c n}).$$

We also generalise the result to the case where $\theta_0 \to \pi$, $\pi - \theta_0 > \frac{M}{n}$ with M sufficiently large. Here

$$o(1) = \mathcal{O}((\pi - \theta_0)^{1/2} n^{-1/2} s e^{x_c n}).$$

Applications

• The Circular Unitary Ensemble.

Define the random variable X as the number of eigenvalues of a CUE matrix on the arc $\gamma = \{e^{i\theta} : -\theta_0 \le \theta \le \theta_0\}.$

The moment generating function of X can be written in terms of a Toeplitz determinant:

$$F(\lambda) = \mathbb{E}_n(e^{\lambda X}) = e^{n\lambda} D_n(s = e^{-\lambda}, \theta_0, W = 0).$$

• The sine kernel determinants (Bothner, Deift, Its, Krasovsky 2014).

In the double scaling limit $n \to +\infty$ and $\pi \to \theta_0$ at a rate $\mathcal{O}(n^{-1})$, the Toeplitz determinant D_n converges to a Fredholm determinant.

The proof

Differential identity

 $\partial_s \ln D_n(s, \theta_0, W) = \frac{1}{2\pi i} \int_{S_1} z^{-n} \left[Y^{-1}(z) Y'(z) \right]_{21} \dot{f}(z, s) dz,$ where Y is the unique solution of a RHP for orthogonal polynomials on the unit circle.

- We want to obtain asymptotics for Y using the steepest descent analysis.
- This requires transformations on Y to get an "easy" RHP.
- The first transformation uses the equilibrium measure $u(e^{i\theta})d\theta$.

Equilibrium measure

We introduce the new parameter x: $s = e^{-xn}$

• For $x \geq x_c$,

$$u_x(e^{i\theta}) = \frac{1}{2\pi} \sqrt{\frac{\cos\theta + 1}{\cos\theta - \cos\theta_0}}$$

and its support is $\gamma = \{e^{i\theta} : -\theta_0 \le \theta \le \theta_0\}$. If $x \ne x_c$, it is "regular" on $S_1 \setminus \gamma$. If $x = x_c$, it is "regular" on $S_1 \setminus (\gamma \cup \{-1\})$, and it is "non-regular" on -1.

Steepest descent analysis:

- Normalisation at infinity.
- Opening of the lenses.
- Global Parametrix.
- Local parametrices near $e^{i\theta_0}$, $e^{-i\theta_0}$, with 4 branches using Bessel functions.
- Local parametrix near -1.
- Final transformation.

Integration of the differential identity:

We started integration from 0:

$$\ln D_n(s_0, \theta_0, W) = \ln D_n(0, \theta_0, W) + \int_0^{s_0} \partial_s \ln D_n(s, \theta_0, W) ds$$

The integral can be bounded using Y asymptotics.

Further developments

The case $s > e^{-x_c n}$

RH analysis can be done:

Equilibrium measure

• For $0 < x < x_c$, the support of the equilibrium measure consists of **two** disjoint arcs: we have

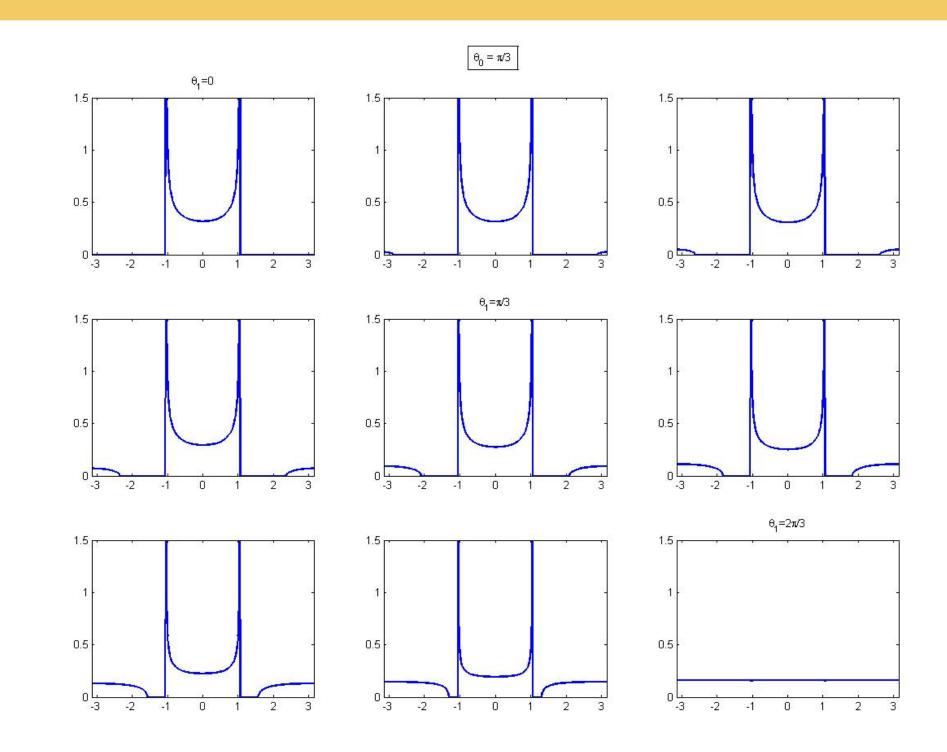
$$J_x = \gamma \cup \{e^{i\theta} : \theta \in [\pi - \theta_1, \pi + \theta_1]\},$$

where $\theta_1 \in [0, \pi - \theta_0]$ is the unique solution of

$$2\int_{[-\theta_0,\theta_0]\cup[\pi-\theta_1,\pi+\theta_1]} \log \left| \frac{1+e^{i\theta}}{1-e^{i\theta}} \right| u_x(e^{i\theta}) d\theta = x,$$
 and the density is given by

$$u_x(e^{i\theta}) = \frac{1}{2\pi} \sqrt{\frac{\cos\theta + \cos\theta_1}{\cos\theta - \cos\theta_0}}.$$

The equilibrium measure is "regular" on $S_1 \setminus J_x$



- The global parametrix involves elliptic θ functions.
- Local parametrices near $e^{i(\pi-\theta_1)}$, $e^{i(\pi+\theta_1)}$ using Airy functions.
- We still need to integrate the differential identity.
- * christophe.charlier@uclouvain.be arxiv:math/1409.0435