

LINEAR SPECTRAL STATISTICS FOR HALF-HEAVY-TAILED WIGNER MATRICES

Anna Maltsev, joint work with Florent Benaych-Georges

1. ABSTRACT

We consider a Wigner matrix A with entries whose cumulative distribution decays as $x^{-\alpha}$ with $2 < \alpha < 4$ for large x. We prove that the fluctuations of the linear statistics $N^{-1}\operatorname{Tr}\varphi(A)$, for some nice test functions φ , have order $N^{-\alpha/4}$. The behavior of such fluctuations has been understood for both heavy-tailed matrices (i.e. $\alpha < 2$) in [2] and light-tailed matrices (i.e. $\alpha > 4$) in [1]. This paper fills in the gap of understanding for $2 < \alpha < 4$. We find that while linear spectral statistics for heavy-tailed matrices have fluctuations of order $N^{-1/2}$ and those for light-tailed matrices have fluctuations of order $N^{-1/2}$, the linear spectral statistics for half-heavy-tailed matrices exhibit an intermediate α -dependent order of $N^{-\alpha/4}$.

2. WIGNER RANDOM MATRIX

Let h be a probability distribution on \mathbb{C} . A **Wigner matrix** H is a $N \times N$ matrix that is:

- Hermitian,
- entries are iid complex $random\ variables$ with distribution h,
- mean 0 and variance 1.

We consider $H_N = H/\sqrt{N}$ so that eigenvalues are order 1.

4. HALF-HEAVY-TAILED

We say a random variable is half-heavy-tailed if for a certain $\alpha \in (2,4)$ and a certain c>0, as $x\to +\infty$,

$$\mathbb{P}(|x_{ij}| > x) \sim \frac{c}{\Gamma(\alpha + 1)} x^{-\alpha}. \tag{1}$$

Get Wigner semicircle law whenever $\alpha > 2$.

REFERENCES

- [1] Z. D. Bai, J. W. Silverstein *Spectral analysis of large dimensional random matrices*, Second Edition, Springer, New York, 2009.
- [2] F. Benaych-Georges, A. Guionnet, C. Male *Central limit theorems for linear statistics of heavy tailed random matrices*. Comm. Math. Phys.Vol. 329 (2014), no. 2, 641–686.
- [3] F. Benaych-Georges, S. Péché *Localization and delocalization for heavy tailed band matrices*, Ann. Inst. Henri Poincaré Probab. Stat., Vol. 50 (2014), no. 4, 1385–1403.

3. OUR MATRICES

Let

$$A = [a_{ij}]_{1 \le i,j \le N} = \left[\frac{x_{ij}}{\sqrt{N}}\right]_{1 \le i,j \le N},$$

where one of two conditions holds: either

- (a) x_{ij} 's, $1 \le i \le j$, are i.i.d. real random variables with $\mathbb{E} x_{ij} = 0$, $\mathbb{E} |x_{ij}|^2 = 1$, and (1).
- (b) $x_{ij} = x_{ij}^R/\sqrt{2} + ix_{ij}^I/\sqrt{2}$ for 1 < i < j and $x_{ii} = x_{ii}^R$ where x_{ij}^I and x_{ij}^R are i.i.d. real symmetric random variables $\mathbb{E} x_{ij} = 0$, $\mathbb{E} |x_{ij}|^2 = 1$, and (1).

5. OUR TEST FUNCTIONS

We prove Gaussian convergence for any random variable of the form

$$\frac{1}{N^{1-\alpha/4}}(\operatorname{Tr}\varphi(A) - \mathbb{E}\operatorname{Tr}\varphi(A)),$$

where φ is a function of the type

$$\varphi(\lambda) = \sum_{j=1}^{p} \frac{c_j}{z_j - \lambda}$$

for some $p \geq 1, c_1, \ldots, c_p \in \mathbb{C}, z_1, \ldots, z_p \in \mathbb{C} \setminus \mathbb{R}$.

TABLE

Orders of the fluctuations of the r.v. $\frac{1}{N}$ Tr G of around its expectation as a function of the exponent α st $\mathbb{P}(|a_{ij}| > x) \approx x^{-\alpha}$ for x large.

	$\alpha < 2$	$2 < \alpha < 4$	$\alpha > 4$
Order of the fluctuations	$N^{-1/2}$	$N^{-\alpha/4}$	N^{-1}

6. THEOREM: OUR CURRENT WORK

Theorem 1. For

$$G(z) := (z - A)^{-1}$$

with A as above the process

$$\left(\frac{1}{N^{1-\alpha/4}}(\operatorname{Tr} G(z) - \mathbb{E} \operatorname{Tr} G(z))\right)_{z \in \mathbb{C} \setminus \mathbb{R}}$$

converges to a complex Gaussian centered process $(X_z)_{z \in \mathbb{C} \setminus \mathbb{R}}$ with covariance defined by the fact that $X_{\overline{z}} = \overline{X_z}$ and that for any $z, z' \in \mathbb{C} \setminus \mathbb{R}$, $\mathbb{E}[X_z X_{z'}] = C(z, z')$, for

$$C(z, z') := -\iint_{t, t' > 0} \partial_z \partial_{z'} \left\{ [(K(z, t) + K(z', t'))^{\alpha/2} - (K(z, t)^{\alpha/2} + K(z', t')^{\alpha/2})] \right\}$$

$$\exp \left(\operatorname{sgn}_z itz - K(z, t) + \operatorname{sgn}_{z'} it'z' - K(z', t') \right) \left\{ \frac{c \, dt \, dt'}{2tt'} \right\}$$

where c and α are as in (1), $\operatorname{sgn}_z := \operatorname{sgn}(\Im z)$ and $K(z,t) := \operatorname{sgn}_z it G_{\operatorname{sc}}(z)$, $G_{\operatorname{sc}}(z)$ being the Stieltjes transform of the semicircle law with support [-2,2].

7. PROOF OUTLINE

- 1. Truncate, renormalize, and, in the real case, centralize
- 2. Use the Martingale decomposition and the Central Limit Theorem for Martingales
- 3. Show that the off-diagonal terms of the resolvent do not contribute to the limit
- 4. Compute the limit with just the diagonal terms

9. REMARKS

- 1. If $\alpha > 4$, the eigenvalues of A fluctuate very little. The heavier the tails the more similar to sparse A is, and the more independently its eigenvalues behave. When $\alpha < 2$, the order of fluctuations is same as for independent r.v.'s. Half-heavy-tailed matrices show an exciting transitional regime (cf TABLE).
- 2. Our test functions φ of this type span (by closure) the set of continuous functions $\to 0$ at $\pm \infty$ by the Stone-Weierstrass theorem.
- 3. For real symmetric case, subtracting the mean from each matrix entry after truncation is rank 1, but it's not rank 1 for complex hermitian, hence need symmetric r.v.'s.

8. SOME DETAILS

- 1. To truncate: We use $|\operatorname{Tr}(G_B(z)-G_A(z))| \leq 2|\Im z|^{-1}\operatorname{rank}(B-A)$. Let $B=[a_{ij} \mathbb{1}_{|x_{ij}|\leq N^\beta}-\mu_N/\sqrt{N}]$. We will solve for β . Subtracting μ_N/\sqrt{N} from each matrix entry is a rank 1 perturbation. Then, as $\mathbb{P}(|x_{ij}|>N^\beta)\leq CN^{-\alpha\beta}$, we have $\operatorname{rank}(B-A)\leq 1+2\sum_{i=1}^N X_i$ where the X_i 's are independent Bernoulli r.v. with parameters $\mathbb{P}(X_i=1)=1-(1-CN^{-\alpha\beta})^i$. Need $(2-\alpha\beta)_+<1-\alpha/4$,i.e. $\beta>\frac{2-(1-\alpha/4)}{\alpha}=\frac{1}{4}(1+\frac{\alpha}{4})$.
- 2. Martingale: We will use a CLT for Martingales for $M(\varphi,N)$, with $M_N(N)=M(\varphi,N)$ and $\mathcal{F}_k(N):=\sigma(x_{i,j}\;;\;i\leq k \text{ and } j\leq k).$

Then, denoting $\mathbb{E}[\;\cdot\;|\mathcal{F}_k]$ by \mathbb{E}_k , the random variable $Y_k(N)$ of CLT for Martingales is $Y_k = Y_k(N) = \frac{1}{N^{1-\alpha/4}} (\mathbb{E}_k - \mathbb{E}_{k-1}) (\operatorname{Tr} \varphi(A)).$

We use $\varphi = \frac{1}{z - x}$

3. Rewrite Y_k 's as a log derivative; then by Cauchy Inequality suffices to bound the log

$$Y_{k} = \frac{1}{N^{1-\alpha/4}} (\mathbb{E}_{k} - \mathbb{E}_{k-1}) \frac{1 + \mathbf{a}_{k}^{*} (G^{(k)}(z))^{2} \mathbf{a}_{k}}{z - a_{kk} - \mathbf{a}_{k}^{*} G^{(k)}(z) \mathbf{a}_{k}}$$
$$= \partial_{z} \log|z - a_{kk} - \mathbf{a}_{k}^{*} G^{(k)}(z) \mathbf{a}_{k}|^{2}$$

4. Remove off-diagonal terms: we define define

$$\tilde{Y}_k := \frac{1}{N^{1-\alpha/4}} (\mathbb{E}_k - \mathbb{E}_{k-1}) \frac{1 + \mathbf{a}_k^* (G^{(k)}(z))_{\mathrm{diag}}^2 \mathbf{a}_k}{z - \mathbf{a}_k^* G^{(k)}(z)_{\mathrm{diag}} \mathbf{a}_k}$$

and \tilde{Y}'_k with z' instead of z. Then $\sum_{k=1}^N \mathbb{E}_{k-1}[Y_kY'_k] - \mathbb{E}_{k-1}[\tilde{Y}_k\tilde{Y}'_k]$ converges in probability to 0.

- 5. To compute the limit: For $w \in \mathbb{C} \backslash \mathbb{R}$, $\frac{1}{w} = -i \operatorname{sgn}_w \times \int_0^{+\infty} e^{\operatorname{sgn}_w itw} \, \mathrm{d}t$, with $\operatorname{sgn}_w = \operatorname{sgn}(\Im w)$ then $\frac{1 + \sum_j |\mathbf{a}_k(j)|^2 (G^{(k)}(z))_{jj}^2}{z \sum_j |\mathbf{a}_k(j)|^2 G^{(k)}(z)_{jj}} = 0$
- $-\int_0^{+\infty} \frac{1}{t} \partial_z \{e^{\operatorname{sgn}_z} it(z-\sum_j |\mathbf{a}_k(j)|^2 G^{(k)}(z)jj)\} \mathrm{d}t. \text{ Then taking } \\ \mathbb{E}_k \text{ the exponent splits into a sum of independent r.v.'s, and the integral into a product of Laplace transforms.}$