

Wronskians, Duality and Cardy Branes

Hirotaka Irie¹ and Benjamin Niedner²

¹Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan ²Rudolf Peierls Institute for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK E-Mail: irie@yukawa.kyoto-u.ac.jp, benjamin.niedner@physics.ox.ac.uk

Abstract

We calculate expectations of products of characteristic polynomials in the double-scaled hermitian twomatrix ensemble. When all spectral parameters coincide, these arise as solutions to an extension of the reduced KP hierarchy and are naturally expressed as a generalised Wronskian. The solutions are in oneto-one correspondence with entries in the Kac table of a conformal minimal model and we derive a Lax system that associates a spectral curve to each entry. We show that in the weak-coupling limit, our results reduce to the decomposition of Cardy branes into principal FZZT branes conjectured by Seiberg and Shih in the context of minimal string theory.

Hermitian two-matrix ensemble

We consider expectations of products of characteristic polynomials

$$\alpha_n^{(M)}(x_1, \dots x_M) = \left\langle \prod_{i=1}^M \det(x_i - X) \right\rangle_{n \times n},$$

where the average is taken in the hermitian two-matrix ensemble

$$\langle \mathcal{O} \rangle_{n \times n} = \frac{1}{Z} \int_{1 \le n \le N} dX dY e^{-N \operatorname{tr}[V_1(X) + V_2(Y) - XY]} \mathcal{O} ,$$

with suitably chosen polynomials deg $V_1 = p$, deg $V_2 =$ q. In the double scaling limit, $\alpha_n^{(M)}$ computes the partition function of M branes in minimal string theory with target space positions x_i [1]. At finite N, the exact, anti-symmetrised expression in terms of orthogonal polynomials $\{\alpha_n^{(1)} \equiv \alpha_n\}_{n=1}^N$ reads [2]

$$\alpha_n^{(M)}(x_1, \dots x_M) = \frac{\det_{1 \le a, b \le M} \alpha_{n+1-a}(x_b)}{\det_{1 < a, b < M} x_a^{b-1}}.$$

Setting $x_i = x_c + \varepsilon \zeta_i$, $n/N = \exp(-\varepsilon^{\mu}t)$ and taking the double scaling limit $N=1/g\to\infty,\,\varepsilon\to0$, the RHS becomes [1]

$$\frac{\det_{1 \le a,b \le M} \left(\partial_t^{a-1} \psi(t;\zeta_b)\right)}{\det_{1 \le a,b \le M} \zeta_a^{b-1}} , \quad \partial_t = g \frac{\partial}{\partial t} , \qquad (1)$$

where the wave function ψ of the so-called principal FZZT brane solves the p^{th} and q^{th} -order differential equations

$$\zeta \psi(t;\zeta) = \mathbb{P}(t;\partial_t)\psi(t;\zeta) ,$$

$$\partial_{\zeta}\psi(t;\zeta) = \mathbb{Q}(t;\partial_t)\psi(t;\zeta) ,$$
(2)

with compatibility condition $[\mathbb{P}, \mathbb{Q}] = g$ (pth reduction of KP hierarchy [2, 3]) and

$$\mathbb{P}(t; \partial_t) = 2^{p-1} g \partial_t^p + \sum_{n=2}^p u_n(t) \partial_t^{p-n} ,$$

$$\mathbb{Q}(t; \partial_t) = 2^{q-1} g \partial_t^q + \sum_{n=2}^q v_n(t) \partial_t^{q-n} .$$

Generally, the fermionic statistics prevent us from taking a coincidence limit of multiple FZZT branes $\zeta_i \to \zeta_i, i \neq j$ in (1). However, a nontrivial structure emerges when combining the p independent solutions to (2), whose label serves as an additional quantum number. The analogous notions can be defined for the matrix Y in terms of the dual system as

$$\partial_{\eta} \chi(t; \zeta) = \mathbb{P}(t; \partial_t)^T \chi(t; \zeta) ,$$

$$\eta \chi(t; \zeta) = \mathbb{Q}(t; \partial_t)^T \chi(t; \zeta) ,$$
(3)

where $(f(t) \circ \partial_t^n)^T = (-\partial_t)^n \circ f(t)$.

Generalised Wronskian I

Let $\{\psi^{(j)}\}_{j=1}^p$ denote the set of p independent solutions to (2). Given a partition λ , we define the generalised Wronskian

$$W_{\lambda}^{(n)}(t;\zeta) = \det_{1 \le a,b \le n} \left(\partial_t^{a-1+\lambda_a} \psi^{(j_b)}(t;\zeta_b) \right) \Big|_{\zeta_1 = \zeta_2 = \dots \zeta}$$

which is nontrivial for $1 \leq n \leq p-1$. This may be expressed in terms of the Schur polynomial S_{λ}

$$W_{\lambda}^{(n)}(t;\zeta) = S_{\lambda}(\{\partial_k\}_{k=1}^n)W_{\varnothing}^{(n)}(t;\zeta) ,$$

where \varnothing denotes the diagram with $\lambda_a = 0 \ \forall a$ and $\partial_k \psi^{(j_b)} = \delta_{bk} \partial_t \psi^{(j_b)}$. From the defining equations, we obtain p^{th} and q^{th} -order differential operators such that

$$\zeta W_{\lambda}^{(n)}(t;\zeta) = \mathbb{P}_{\lambda}^{(n)}(t;\partial_{t})W_{\varnothing}^{(n)}(t;\zeta) ,$$

$$\partial_{\zeta} W_{\lambda}^{(n)}(t;\zeta) = \mathbb{Q}_{\lambda}^{(n)}(t;\partial_{t})W_{\varnothing}^{(n)}(t;\zeta) .$$

The $\binom{p}{n}$ independent solutions to the above equations form the $\binom{p}{n} \times \binom{p}{n}$ linear system

$$\partial_t \vec{W}^{(n)}(t;\zeta) = \mathcal{B}^{(n)}(t;\zeta) \vec{W}^{(n)}(t;\zeta) ,$$

 $\partial_\zeta \vec{W}^{(n)}(t;\zeta) = \mathcal{Q}^{(n)}(t;\zeta) \vec{W}^{(n)}(t;\zeta) .$

E.g. when p = 4, n = 2 a basis is

$$\vec{W}^{(2)} = \left(W_{\varnothing}^{(2)}, W_{\square}^{(2)}, W_{\square}^{(2)}, W_{\square}^{(2)}, W_{\square}^{(2)}, W_{\square}^{(2)}, W_{\square}^{(2)}, W_{\square}^{(2)}\right).$$

The spectrum of the Lax pair $\mathcal{B}^{(n)}$, $\mathcal{Q}^{(n)}$ can be retrieved from the polynomials

$$F^{(n)}(t; P, z) = \det \left(\mathbb{1}_{\binom{p}{n}} z - \mathcal{B}^{(n)}(t; P) \right) ,$$

$$G^{(n)}(t; P, Q) = \det \left(\mathbb{1}_{\binom{p}{n}} Q - \mathcal{Q}^{(n)}(t; P) \right).$$

We define the spectral curve of the system by

$$C_{p,q}^{(n)}(t) = \{ (P,Q) \in \mathbb{C}^2 | G^{(n)}(t;P,Q) = 0 \},$$

which is uniformised by the solutions P(z) to $G^{(n)}(t; P, z) = 0.$

Generalised Wronskian II

Work in progress with Chuan-Tsung Chan (Tunghai U.) and Chi-Hsien Yeh (NCTS). From the q solutions $\{\chi^{(j)}\}_{j=1}^q$ of the dual system (3), we define

$$\tilde{W}_{\lambda}^{(m)}(t;\eta) = \det_{1 \le a,b \le m} \left(\partial_t^{a-1+\lambda_a} \chi^{(j_b)}(t;\eta) \right) ,$$

which is nontrivial for $1 \leq m \leq q-1$. The solution set and its dual are related by a simple Laplace transform:

$$\psi(t;\zeta) = \mathcal{L}[\tilde{W}^{(q-1)}](\zeta) , \quad \chi(t;\eta) = \mathcal{L}[W^{(p-1)}](\eta)$$

This leads us to a general proposal for (p-1)(q-1)functions, with $1 \le n \le p-1$ and $1 \le m \le q-1$

$$\mathcal{W}_{\lambda'\lambda}^{(n|m)}(t;\zeta) = \mathcal{L}_{\lambda'}^{\otimes n} \left[\tilde{W}_{\lambda}^{(n(q-m))} \right] \left(t;\zeta_1, \dots \zeta_n \right) \Big|_{\zeta_1 = \zeta_2 = \dots \zeta}$$

with a generalised Laplace transform $\mathcal{L}_{\lambda}^{\otimes n}$ on n variables. These are in one-to-one correspondence with entries of the Kac table for the (p,q) Virasoro minimal model, cf. Table 1.

$\mathcal{L}[\chi]$	$W^{(r)}[\mathcal{L}[\chi]]$	$W^{(p-1)}[\mathcal{L}[\chi]]$
$\mathcal{L}[ilde{W}^{(q-s)}]$	$\mathcal{W}^{(r s)}$	$\mathcal{W}^{(p-1 s)}$
ψ	$W^{(r)}$	$W^{(p-1)}$

Table 1: One-to-one correspondence between the generalised Wronskians and entries in the Kac table of the (p, q)-model

Main Results

We considered expectations of products of characteristic polynomials in the hermitian two-matrix ensemble with coinciding spectral parameters. We

- 1. expressed the averages as a generalised Wronskian;
- 2. found the associated differential equations and $\binom{p}{n} \times \binom{p}{n}$ Lax system;
- 3. generalised the observations of [4] to the latter;
- 4. defined the quantum spectral curve and showed that as $g \to 0$, the solutions realise the "Cardy branes" of minimal string theory non-perturbatively;
- 5. found evidence for a Kac table of (p-1)(q-1)/2allowed observables that describe the full brane spectrum, using duality.

Semiclassical limit

Our construction achieves the long-missing realisation of the remaining of the (p-1)(q-1)/2 branes (one for each Cardy state of the minimal model, which describes the "matter sector" of minimal string theory) in the matrix model: consider solutions to $[\mathbb{P}, \mathbb{Q}] = g$ that admit a power series expansion in g = 1/N

$$u_n(t) = \sum_{k \ge 0} g^k u_n^{[k]}(t) , \quad v_n(t) = \sum_{k \ge 0} g^k v_n^{[k]}(t) ,$$

such that $u_n^{[0]}(t)$, $v_n^{[0]}(t)$ are constant ("Liouville background", cf. e.g. [3, 5]). Then to leading order as $g \to 0$, the principal FZZT brane $\mathcal{W}_{\varnothing}^{(1|1)} = \psi$ is described by the spectral curve [6]

$$0 = T_p(Q) - T_q(P) .$$

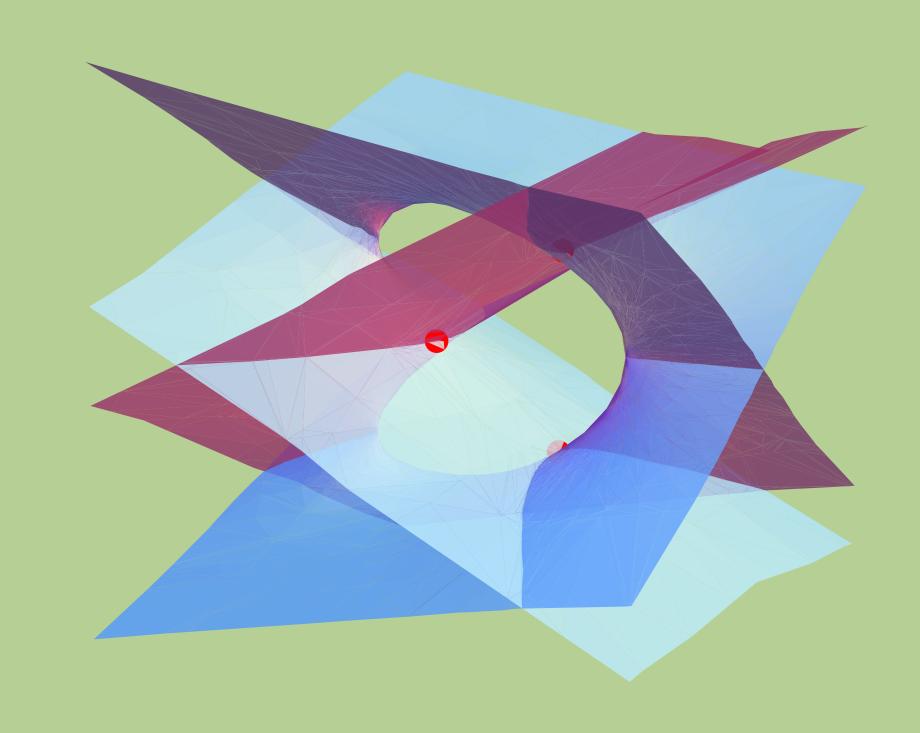


Figure 1: Semiclassical curve for (p, q) = (3, 4)

In the limit $g \to 0$, the spectral curve $\mathcal{C}_{p,q}^{(n)}(t)$ then factorises into disconnected pieces. E.g. when n=2, the semiclassical spectral curve is given by $(P,Q) \in$ \mathbb{C}^2 s.t.

$$0 = \prod_{k=1}^{(p-1)/2} \left[T_p(Q/\mathbf{d_k}) - T_q(P) \right]$$

for odd p and

$$0 = Q^{p/2} \prod_{k=1}^{(p-2)/2} \left[T_p(Q/d_k) - T_q((-1)^k P) \right]$$

for even p, with

$$d_k = 2\cos(2\pi qk/p)$$
, $T_p(\cos\phi) = \cos p\phi$.

The factors d_k are precisely the boundary entropies associated with non-trivial Cardy states of the minimal model [6].

2] A. Morozov, "Integrability and matrix models," *Phys. Usp.*, vol. 37, pp. 1–55, 1994.

B] M. Bergère, G. Borot, and B. Eynard, "Rational differential systems, loop equations, and application to the q-th reductions of KP," ArXiv e-prints, Dec. 2013. 4] M. Bertola, B. Eynard, and J. P. Harnad, "Duality, biorthogonal polynomials and multimatrix models," Commun. Math. Phys., vol. 229, pp. 73–120, 2002.

C.-T. Chan, H. Irie, and C.-H. Yeh, "Duality Constraints on String Theory: Instantons and spectral networks," 2013. Seiberg and D. Shih, "Branes, rings and matrix models in minimal (super)string theory," JHEP, vol. 0402, p. 021, 2004.

