

Direct Processes in Effective Hamiltonians to Mimic Microwave Communications in Noisy Environments

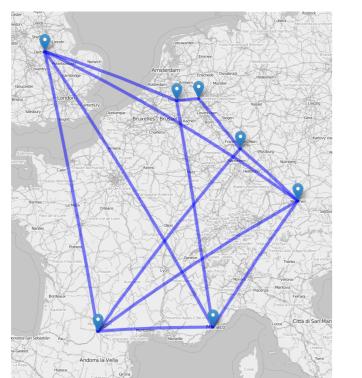
UNIVERSITÉ : Martin Richter, Ulrich Kuhl, Olivier Legrand & Fabrice Mortessagne

CÔTE D'AZUR : Université Côte d'Azur, CNRS, LPMC, France

Introduction / Project

Project Nemf21

- Partners across Europe
- Industry and Academia
- Aim: Improvement of Chip-2-Chip and On-Chip communications



Current State

- Increasing number of transistors on ICs
- Connected by wires → heat
- Miniaturization → cross talk between wires

Work Done In Nice

Microwave Experiments

- Reverberating resonators
- ► Microwaves over *PCB* boards

Theoretical Numerical

- Model communication processes in presence of noisy environments
- Analyze stability of transmission

Problem Description and Theoretical Approach

Create model system $oldsymbol{H}$ for communication process

Obtain Scattering Matrix $oldsymbol{S}$ for communication process

Calculate transmission $oldsymbol{T}$

between dedicated antennas

←add noise

Calculate transmission distribution $oldsymbol{P}(oldsymbol{T})$

Describe stability of $oldsymbol{P(T)}$ under *noise* given by RMT Hamiltonian

Effective Hamiltonian and the Scattering Matrix

Full Hamiltonian

$$(M + N \times M + N)$$

$$m{H}_{ ext{total}} = egin{pmatrix} m{H}_{ ext{channel}} & m{W}^T \ m{W} & m{H}_{ ext{system}} \end{pmatrix}$$

Effective Hamiltonian

 $(N \times N)$

$$H_{ ext{eff}} = H_{ ext{system}} - rac{ ext{i}}{2} W W^T$$

Scattering Matrix

 $(M \times M)$

$$S(E) = 1 - \mathrm{i} W rac{1}{E - H_{\mathrm{eff}}} W^T$$

- Transmission between specific antennas $T = |S_{12}(E=0)|^2$
- lacksquare Model noise via RMT on $oldsymbol{H_{ ext{system}}}$
- Measure for direct processes: $\langle S_{12}
 angle_{
 m ensemble}$

(Zero in standard *RMT*)

- Distribution of transmissions $P(T) = \left\langle \delta \left(T |S_{12}|^2 \right)
 ight
 angle_{\mathrm{ons}}$
- determine $\langle T \rangle$, $\mathrm{Var}(T)$, ...

Direct Communication Processes

Characterized by: Non-zero $\langle S_{12}
angle_{
m ensemble}$

- Change **S** directly
- Scattering phases Advantage: Access to broad knowledge Drawback: Less direct,

Link to micro-wave experiments?

- 2. Change Anti-Hermitian part of the $H_{
 m eff}$ Introduce correlation on levels/channels
- Change Hermitian part of $oldsymbol{H_{ ext{eff}}}$

$$H_{ ext{eff}} = H_{ ext{GOE}} + H_{ ext{direct}} + rac{ ext{i}}{2}WW^T$$

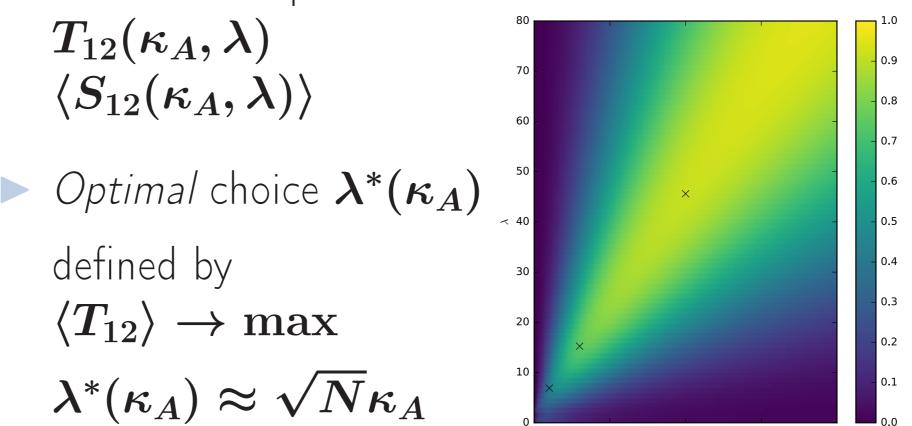
Advantage: Analyze spectrum of $oldsymbol{H}_{ ext{eff}}$ and the S-matrix (autocorrelation, P(T))

- riangle Use $H_{
 m direct} = rac{\sqrt{N}}{\pi} \lambda \left(|1
 angle \langle 2| + |2
 angle \langle 1|
 ight)$
- \triangleright Together with constant W (doorway states)

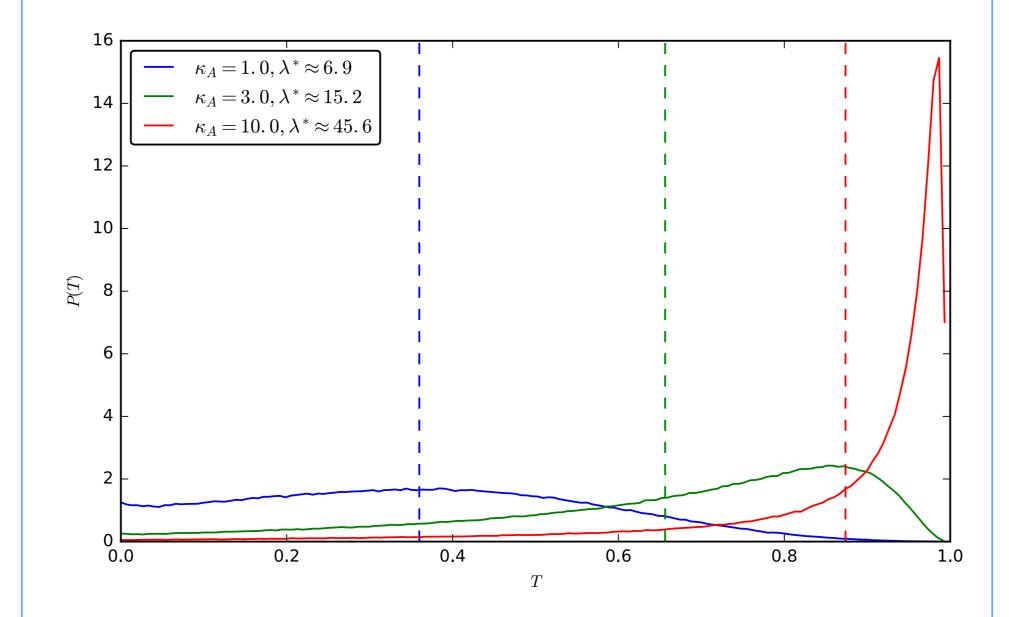
$$oldsymbol{W}^T = \sqrt{N} \sqrt{rac{2\kappa_A \Delta}{\pi}} egin{pmatrix} 1 & 0 \ 1 & 0 \cdots \ 1 & 0 \end{pmatrix}$$

Direct Process - Optimal Parameters

Parameter dependence

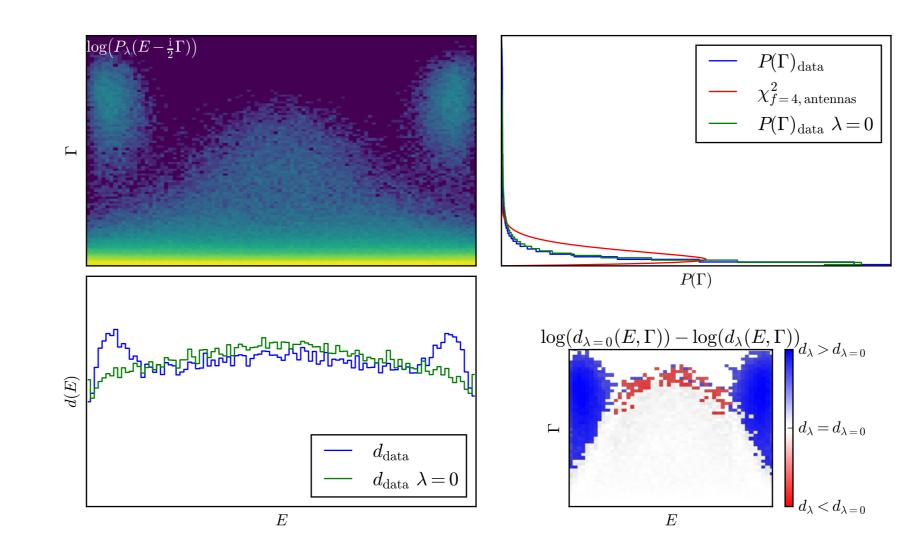


Transmission probability $oldsymbol{P(T)}$



Spectrum of $H_{ m eff}$ in Presence of a Direct Process

- lacktriangleright Analyze direct process through spectrum of $H_{
 m eff}$
- Example at optimal coupling $\kappa_A=1$



- > \(\lambda\) introduces another energy scale
- shifts eigenvalues from center to edges

Theoretical Description

ightharpoonup Optimal parameter $\lambda^*(\kappa_A)$ suggest:

$$H_{ ext{eff}} = arepsilon H_{ ext{GOE}} + H_{ ext{direct}} + rac{ ext{i}}{2} W W^T, arepsilon \ll 1$$

lacksquare 2 imes 2 model for averages in S_{12} $\langle f(S_{12}) \rangle =$

$$\int \int \int \mathrm{d}h_x P(h_x) \mathrm{d}h_a P(h_a) \mathrm{d}h_b P(h_b)$$

$$f \left(-\mathrm{i} N \sigma^2 rac{\left(1 - rac{h_x^2}{(2rac{\sqrt{N}\lambda}{\pi})^2}
ight) \left(rac{\sqrt{N}\lambda}{\pi} + h_b
ight)}{\left(E - \mathrm{i} rac{N\Delta\kappa_A}{\pi} - h_a
ight)^2 - \left(rac{\sqrt{N}\lambda}{\pi} + h_b
ight)^2}
ight)$$

- Similar for non-perturbative 2 imes 2 model
- Method of Steepest Descent

$$egin{aligned} P(T) &= \left\langle \delta \left(T - \left| S_{12}
ight|^2
ight)
ight
angle \ &= \delta \left(T - T_A \left(N \Delta^2 rac{\kappa_A^2}{\lambda^2}
ight)
ight) \end{aligned}$$

with $oldsymbol{T_A}$ as below.

- Right scaling for optimum $\lambda^*(\kappa_A) = \sqrt{N}\kappa_A$
- lacksquare But no statement about $\mathrm{Var}(T)$ possible

Direct Communication Processes Alternatives

lacksquare Add to $oldsymbol{S}$

How? By adding scattering phases Why? Usually done the other way around $S_{ab}^{
m RMT} = \left(U S^{
m direct} U^T
ight)_{ab}$

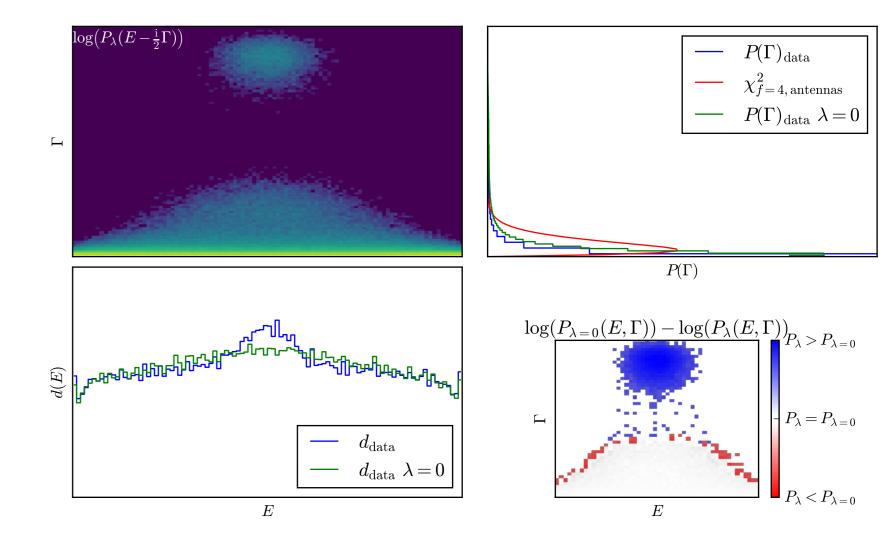
Model process in coupling matrices $oldsymbol{W}$ Make channels linearly dependent $W \cdot W^T =$

$$rac{2\kappa_A}{\pi} egin{pmatrix} 1 & \cos\left(rac{\pi(1- heta_{12})}{2}
ight) & 0 \ \cos\left(rac{\pi(1- heta_{12})}{2}
ight) & 1 & 0 \ & & 1 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

ightharpoonup Extreme Case $heta_{12}=1$:

One over-coupled channel, one ghost channel

Spectrum for maximally correlated $oldsymbol{W}$:



Open Questions

- Other models for communication processes
- Optimal modification of $H_{
 m eff}$ -Variational approach?
- \blacktriangleright Energy dependence of S(E) for $\lambda^*(\kappa_A)$
- Connection to experiments
- \triangleright Estimate κ_A from reflection $T_A(\kappa_A) = 1 - |\left\langle S_{ii}
 ight
 angle|^2 = rac{4\kappa_A}{\left|1 + \kappa_A
 ight|^2}$
- Decay of correlation functions?
- Extension to vector quantities $ec{E}, ec{B}$
- Modeling communication properties of $H_{
 m eff}$ by $POE \longrightarrow GOE$