Level statistics of the Gaussian beta ensemble across the many-body localization transition

Wouter Buijsman¹, Vadim Cheianov², and Vladimir Gritsev^{1,3}

Level statistics provide a common diagnostic for ergodicity. We study the level statistics of a paradigmatic model in the field of many-body localization, and compare them with the level statistics of the Gaussian β ensemble. We report near-perfect agreement over the full crossover range from the thermal to the many-body localized phase.

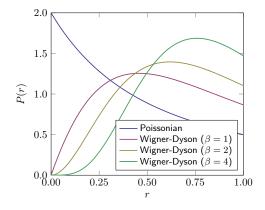
Level statistics

- Energy spectra show universal short-range statistics [1]. One finds Poissonian (Wigner-Dyson) level statistics for non-ergodic (ergodic) systems.
- Spectral statistics can be probed through the ratios of consecutive level spacings

$$r_i = \min\left(\frac{s_{i+1}}{s_i}, \frac{s_i}{s_{i+1}}\right) \in [0, 1],$$
 (1)

$$s_i = E_{i+1} - E_i. (2)$$

 \bullet Plot: distributions of r for Poissonian and Wigner-Dyson level statistics [2]. Dyson index $\beta=1,2,4$ if the Hamiltonian is diagonalized by respectively an orthogonal, unitary, or symplectic transformation.



Gaussian beta ensemble

- Wigner-Dyson level statistics are obtained from the level statistics of the Gaussian β ensemble [3] for $\beta=1,2,4$.
- \bullet The Gaussian β ensemble has joint probability distribution

$$\rho(E_1, \dots, E_N) = c_{\beta, N} \prod_{i < j} |E_i - E_j|^{\beta} \prod_{i=1}^N e^{-\frac{\beta}{2} E_i^2},$$
 (3)

with $c_{eta,N}$ a normalization constant.

Going beyond beta=1,2,4

- We propose to generalize Wigner-Dyson level statistics from $\beta=1,2,4$ to $\beta\in(0,\infty).$
- \bullet These statistics cover both Poissonian ($\beta \to 0$) and Wigner-Dyson ($\beta = 1, 2, 4$).
- These statistics smoothly interpolate between Poissonian and Wigner-Dyson.

Physical model

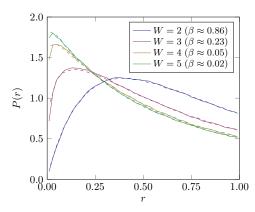
• Standard model in studies on many-body localization:

$$H = \frac{1}{2} \sum_{i=1}^{L} \left(c_i^{\dagger} c_{i+1} + c_i c_{i+1}^{\dagger} \right) + \sum_{i=1}^{L} h_i \left(n_i - \frac{1}{2} \right) + \sum_{i=1}^{L} \left(n_i - \frac{1}{2} \right) \left(n_{i+1} - \frac{1}{2} \right).$$
(4)

- L=16, h_i sampled from uniform distribution over [-W,W], half-filling, focus restricted to the middle of the spectrum.
- Model shows intermediate level statistics between Wigner-Dyson ($\beta=1$) and Poissonian for $1.7\lesssim W\lesssim 4.0$. Finite-size scaling analysis shows a many-body localization transition at $W\approx 3.6$ [4].

Results

• Plot: distributions r for the Hamiltonian (solid lines) and the Gaussian β ensemble (dashed lines) with β a single fitting parameter.



 \bullet Agreement is near-perfect for all $W\colon$ level statistics of the Gaussian β ensemble accurately describe level statistics for the Hamiltonian over the full crossover range.

References

- [1] M. L. Mehta, *Random Matrices*, 3rd ed., Pure and Applied Mathematics, Vol. 142 (Elsevier, New York, 2004).
- [2] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Phys. Rev. Lett. ${\bf 110},~084101~(2013).$
- [3] P. J. Forrester, *Log-Gases and Random Matrices*, London Mathematical Society Monographs, Vol. 34 (Princeton University Press, Princeton and Oxford, 2010).
- [4] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91, 081103 (2015).

 $^{^{1}}$ University of Amsterdam, Amsterdam, The Netherlands

² Leiden University, Leiden, The Netherlands

³ Russian Quantum Center, Moscow, Russia