
www.uclouvain.be

Laguerre polynomials and transitional asymptotics of the modified
Korteweg-de Vries equation for step-like initial data
Marco Bertola, Vladimir Kotlyarov, Alexander Minakov

Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain (UCL), Chemin du Cyclotron 2, Louvain-
la-Neuve, Belgium
oleksandr(dot)minakov(at)uclouvain(dot)be

Cauchy problem for the modified Korteweg – de Vries equation

We study the asymptotic behavior for large t of the Cauchy problem solution for MKdV equation

qt(x, t) + 6q2(x, t)qx(x, t) + qxxx(x, t) = 0, x ∈ R, t ≥ 0, (1)

q(x, 0) = q0(x), q0(x)→ c > 0, x→ −∞, q0(x)→ 0, x→ +∞. (2)

We assume that

1. exponential convergence to the background constants at
the infinity

0∫
−∞

e−Cx|q0(x)− c|x. +

+∞∫
0

e−Cx|q0(x)|x. <∞,

2. generic behavior of the associated spectral function a(k)
at the edge point k = ic,

3. no discrete spectrum,

Division of the x, t > 0-half-plane into regions with qualita-
tively different asymptotics.

These assumptions are satisfied for example for the pure-step function q0(x) =

{
c > 0, x < 0,

0, x > 0.
(3)

Results

The asymptotic behavior of the solution of the Cauchy problem (1)-(2) has qualitatively different forms in different domains of
the x,t plane.
D1 : For x < −(6c2 + ε)t the solution of the mKdV equation has the following asymptotic behavior
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Here
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12t
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1

2π
log
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))
, ϕ(ξ) is a bounded function,

and r(k) is the reflection coefficient associated with the initial data q0(x) via the spectral problem (5a).
D2 :

For −(6c2 − ε)t < x < (4c2 − ε)t : q(x, t) = qel(x, t) +O(t−1) , t→ +∞,
For −(6c2 − ε)t < x < 4c2t− βtσ ln t, 0 < σ < 1 : q(x, t) = qel(x, t) +O(t−σ) , t→ +∞,

where the main term of asymptotics of the solution of the mKdV equation is given by modulated elliptic wave

qel(x, t) =
√
c2 − d2(ξ)

Θ(πi + itB(ξ) + i∆(ξ)|τ (ξ))

Θ(itB(t, ξ) + i∆(ξ)|τ (ξ))
. (4)

Here Θ(z|τ ) is the standard theta-function, d = d(ξ), τ = τ (ξ) are increasing functions, defined for ξ ∈
(
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)
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= −∞, d
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= c, τ

(
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3
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= −0, B(ξ) is a complete elliptic integral,

∆(ξ) = i
id∫
ic

log a+(s)a−(s)ds

w+(s, ξ)

(
0∫

id

ds

w(s, ξ)

)−1

, where a−1(k) is the transmission coefficient associated with q0(x) via (5a).

D3 : For x ≥ 4c2t the asymptotic behavior of the solution is q(x, t) = O

(
e−8ct(3ξ−c2)

√
t

)
, t→ +∞.

? On the physical level of rigor this problem was studied by R. F. Bikbaev, 1995 ([1]).
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qel for the initial function (3).
D2a : Let β ∈ [ 1

K , K], K > 0, and let (x, t) lie on the curve x = 4c2t− βtσ ln t. Define n = n(t) ∼ [ βt
σ

1−σ ]. Then, as t→∞,

0 ≤ σ ≤ σ0 <
1

2
: q(x, t) =

2c

cosh
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2) ln t + αn
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)
,
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where the constant in O estimate depends only on σ0, K, and does not depend on σ, β.

? For σ = 0 the asymptotics in D2a

was studied by E. Ya. Khruslov and
V. P. Kotlyarov ([3]). Such a loga-
rithmic zone was first studied for the
KdV equation by E. Ya. Khruslov ([4]).

Zone scales in transition region.

Main method: the Riemann – Hilbert (RH) problem

mKdV equation (1) is a compatibility condition for the 2× 2 matrix system (M. Wadati, 1972)

iσ3
d

dx
Ψ(x, t, k)−

(
0 iq(x, t)

iq(x, t) 0

)
Ψ(x, t, k) = kΨ(x, t, k), σ3 =

(
1 0
0 1

)
, (5a)

iσ3
d

dt
Ψ(x, t, k)− iσ3Q̂(x, t, k)Ψ(x, t, k) = 4k3Ψ(x, t, k). (5b)

Denote by E0, Ec the solutions of system (5) for backgrounds q = c and q = 0. Function Ec is analytic in k ∈ C \ [ic,−ic].
Matrix Jost solutions of (5) has the following asymptotic behavior

Ψ0(x, t, k) ∼ E0(x, t, k), x→ +∞, Imk = 0, Ψc(x, t, k) ∼ Ec(x, t, k), x→ +∞, Im
√
k2 + c2 = 0.

Define a sectionally analytical matrix M(x, t, k)

M(x, t, k) =


(
a−1(k)Ψc,1(x, t, k)eikx+4ik3t, Ψ0,2(x, t, k)e−ikx−4ik3t

)
, Im

√
k2 + c2 > 0(

Ψ0,1(x, t, k)eikx+4ik3t, a−1(k)Ψc,2(x, t, k)e−ikx−4ik3t
)
, Im

√
k2 + c2 < 0,

where Ψc,j,Ψ0,j, j = 1, 2, are the columns of matrices Ψc, Ψ0. Then M(x, t, k) solves the following Riemann – Hilbert problem
on the contour Σ (x, t – parameters):

1. M(x, t, k) is analytic C \ Σ, continuous up to the boundary, and M(x, t, k) = I + O(k−1), k →∞.
2. M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ Σ \ ({0} ∪ {ic} ∪ {−ic}), where

J(x, t, k) =

(
1 r(k)e−2ikx−8ik3t

−r(k)e2ikx+8ik3t 1 + |r(k)|2

)
, k ∈ R ,

=

(
1 0

f (k)e2ikx+8ik3t 1

)
, k ∈ (0, ic) ,

=

(
1 f (k)e−2ikx−8ik3t

0 1

)
, k ∈ (0,−ic),

f (k) = r−(k)− r+(k) Contour Σ

The solution of the mKdV equation can be found via the solution of this RH problem by formula

q(x, t) = lim
k→∞

2ikM21(x, t, k).

Asymptotic analysis of the solution of the RH problem

For asymptotic analysis we distinguish the domains D1, D2, D3 in x, t half plane: Particularly, in D2 we use an auxiliary function
g(k, ξ), that has the following properties:

• g(k, ξ) is an odd analytic function in k ∈ C \ [ic,−ic],

• g−(k, ξ) + g+(k, ξ) = 0, k ∈ (ic, id(ξ)) ∪ (−id(ξ),−ic),
g−(k, ξ)− g+(k, ξ) = B(ξ), k ∈ (id(ξ),−id(ξ)),

• g(k, ξ)− 4k3 − 12ξk = O(k−1), k →∞.
g(k, ξ) can be presented as a normalized Abelian integral of the second kind on the Riemann surface of function w(k, ξ) with the
b-period B(ξ).
With the help of this function we make the first transformation of the solution of given RH problem M (1)(x, t, k) =

M(x, t, k)eit(g(k,ξ)−4ik3−ikx). Then by using the upper/lower triangular factorizations as in [2], we reduce the RH problem for

M (1)(x, t, k) to an equivalent RH problem for M̃(x, t, k) on the contour Σ̃ :

M̃−(x, t, k) = M̃+(x, t, k)J̃(x, t, k),

J̃ =



(
0 i

i 0

)
, k ∈ (ic, id) ∪ (−id,−ic) ,

e(itB(ξ)+i∆(ξ))σ3, k ∈ (id,−id) ,

I + o(1), k ∈ Σ̃ \ [ic,−ic], t→∞.
Contour Σ̃

As t→∞, the jump matrix J̃(x, t, k) becomes identity matrix on Σ̃\ [ic,−ic], and we come to the model problem on the contour
[ic,−ic], which can be solved explicitly. The solution of this problem gives us the main term (4) of asymptotics of the solution of
problem (1)-(2).

Analysis in transition zone

For (x, t) lying on the logarithmic curve x = 4c2t − ρ ln t, we proceed with the same factorization as for the region ξ > c2

3 .
The main contribution comes from the intervals ±(ic, i(c − r)), where r > 0 is small. Making a scaling change of variable
ζ = t · i(k − ic) in a vicinity of the point k = ic, we find that the jump matrix on the interval k ∈ (ic, i(c− r)) equals

(ϕ(k)tγ)σ
(

1 0√
ζe−ζ

)
(ϕ(k)tγ)−σ, ζ ∈ (0,+∞),

where ϕ is a regular function, and γ = cρ − 1
4.A solution to such jump problem can be constructed out of the monic Laguerre

polynomials of the order 1
2 πn(ζ) and the ir Cauchy transforms Cn(ζ)

Ln(ζ) =

(
βnCn−1(ζ) βnπn−1(ζ)
Cn(ζ) πn(ζ)

)
, Cn(ζ) =

1

2πi

+∞∫
0

πn(s)
√
se−sds

s− ζ
.

For those γ with {γ} ∈ [0, 1
2], we construct an approximation solution to the RHP as follows. Let n = bγc be the integer part of

γ. Define

M (1)
∞ =



G(k)
(
k−ic
k+ic

)−nσ3 , |k ∓ ic| > r,

G(k)B(k)

(
1 0
R1
ζ 1

)
Ln(ζ)(ϕ(k))σ3tγσ3, |k − ic| < r,

G(k)Bd

(
1 R1

ζd

0 1

)
Ld(iϕd)

−σ3/2t−γσ3, |k + ic| < r,

Here G(k) = I+ A
k−ic + Ã

k+ic is a function, which is introduced in order to cancel the singularity at k = ic, caused by the triangular

matrix factor. B(k) is a regular function, whose goal is to make the error matrix Merr = MM−1
∞ to be close to the identity

matrix.
Each n corresponds to a different asymptotic soliton. The soliton’s peak is situated at {γ} = 1

2.
For those γ with {γ} ∈ (1

2, 1) the construction of an approximate RHP solution is similar, with changing the triangularity of the
matrix factors.
Finally, for (x, t) on the line x = 4c2t − βtσ ln t , which correspond to n ∼ tσ, one needs to make a more sophisticated local
change of the variable k, in order to avoid the presence of terms (1 +O(k − ic))n in the jump matrix for the error matrix Merr.
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