The birth of a cut in unitary random matrix ensembles

Tom Claeys

Brunel workshop on random matrix theory

December 18, 2007

Outline

- 1. Unitary random matrix ensembles
- 2. Critical ensembles
- 3. The birth of a cut
- 4. Riemann-Hilbert problems

- Consider the set of Hermitian $n \times n$ matrices
- Probability measure of the form

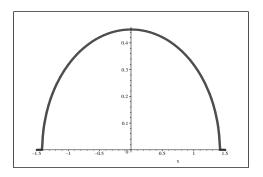
$$\frac{1}{Z_n} \exp(-n \operatorname{Tr} V(M)) \ dM,$$

with

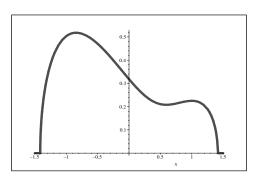
- V a real analytic function (e.g. a polynomial),
- ► V has enough growth at $\pm \infty$,
- $ightharpoonup dM = \prod_{j=1}^n dM_{jj} \prod_{i < j} d\operatorname{Re} M_{ij} d\operatorname{Im} M_{ij}$
- $ightharpoonup Z_n$ is a normalization constant

Some well-known facts (1):

- lacktriangle limiting mean eigenvalue density depends on V
 - for $V(x) = x^2$, GUE, Wigner semi-circle law



▶ for V of higher degree, density looks different, possibly more than one interval in the support



Some well-known facts (2):

 Eigenvalues of a random matrix follow a determinantal point process with correlation kernel

$$K_n(x,y) = e^{-\frac{n}{2}V(x)}e^{-\frac{n}{2}V(y)}\sum_{k=0}^{n-1}p_k(x)p_k(y),$$

 p_k orthonormal polynomials w.r.t. weight $e^{-nV(x)}$ on $\mathbb R$

- Kernel contains information about eigenvalues
 - m-point correlation functions,
 - ► largest eigenvalue distribution,
 - gap probabilities, ...

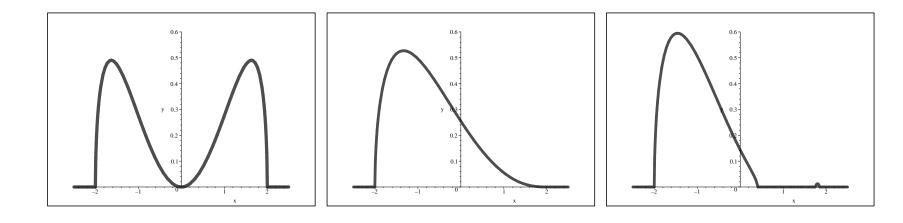
- We are interested in local behavior of eigenvalues near some reference point x^*
 - local scaling limits of the kernel

$$\lim_{n \to \infty} \frac{1}{cn^{\beta}} K_n(x^* + \frac{u}{cn^{\beta}}, x^* + \frac{v}{cn^{\beta}}) = ???$$

- in the bulk of the spectrum: sine kernel for $\beta = 1$, (Dyson, Deift-Kriechterbauer-McLaughlin-Venakides-Zhou, Bleher-Its, Pastur-Shcherbina)
- at the edge of the spectrum (generically): Airy kernel for $\beta=2/3$ (Forrester, Tracy-Widom, DKMVZ, BI, Deift-Gioev)

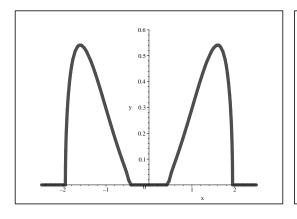
→ Universality

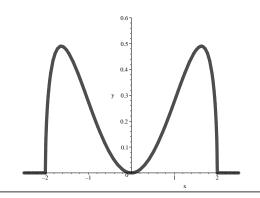
Universality breaks down in three cases:

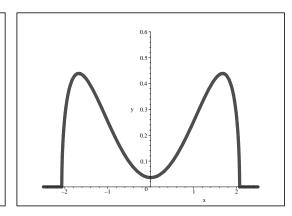


singular interior point, singular edge point, singular exterior point

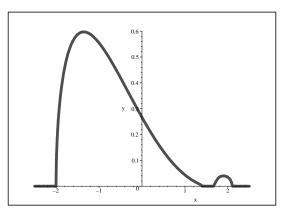
- Critical ensembles indicate a possible change of the number of intervals in the support
 - two merging intervals opening of a gap

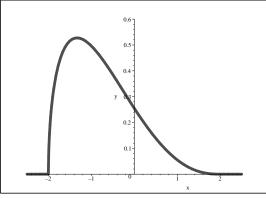


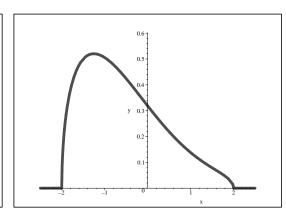




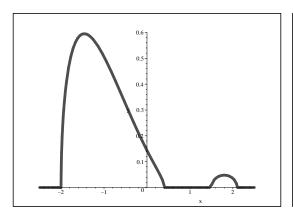
- Critical ensembles indicate a possible change of the number of intervals in the support
 - two merging intervals, with one of them shrinking at the same time

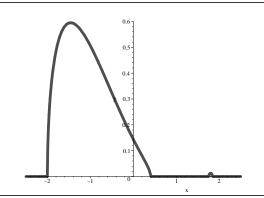


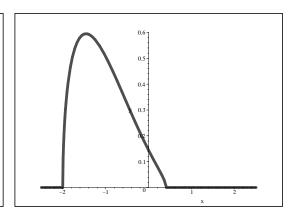




- Critical ensembles indicate a possible change of the number of intervals in the support
 - birth of a cut away from the spectrum disappearing of an interval







- Including a parameter in the potential, $V = V_t$, leads to those transitions
- Local eigenvalue behavior in the transitions is described by double scaling limits of the eigenvalue correlation kernel
 - $ightharpoonup n o \infty$ and $t o t_c$ at an appropriate rate
- no sine or Airy kernel in critical cases,
 - ▶ singular interior point: kernel built out of Ψ-functions for Painlevé II (Bleher-Its, TC-Kuijlaars, Shcherbina)
 - ► singular edge point: kernel built out of Ψ-functions for higher order Painlevé I (Bowick-Brézin, TC-Vanlessen)

The birth of a cut

- studied in physics literature by Eynard (2006)
- mathematics literature:
 'independent and simultaneous' works by
 Mo, Bertola-Lee, and myself
 (3 papers appeared on arXiv 19-26 november 2007)

The birth of a cut

- \blacksquare How does one recognize a critical potential V?
 - ▶ limiting mean eigenvalue density μ_V is an equilibrium measure minimizing

$$I_V(\mu) = \iint \log \frac{1}{|x-y|} d\mu(x) d\mu(y) + \int V(y) d\mu(y)$$

variational conditions

$$2\int \log|x-u|d\mu_V(u)-V(x)=\ell, \qquad \text{for } x\in \operatorname{supp}\mu_V,$$

$$2\int \log|x-u|d\mu_V(u)-V(x)\leq \ell, \quad \text{for } x\in \mathbb{R}\setminus \operatorname{supp}\mu_V.$$

singular exterior point occurs if there is equality outside the support

- We assume a potential V such that supp $\rho_V = [a, b]$, with a singular exterior point $x^* > b$,
- Additional assumption: variational equality at x^* is of order two (simplest case)
- \blacksquare We put $V_t = V/t$
 - \blacktriangleright t < 1: one interval
 - ightharpoonup t = 1: singular point
 - \blacktriangleright t > 1: new cut is born

Those conditions can be satisfied for polynomials of degree 4 or higher.

- limiting kernel in the birth of a cut-transition?
- \blacksquare double scaling limit where we let $n\to\infty$ and at the same time $t\to 1$
 - ▶ appropriate rate of convergence turns out to be such that $t 1 = \mathcal{O}\left(\frac{\log n}{n}\right)$
 - bounded number of eigenvalues expected in the new cut
- We write

$$\nu = c_V(t-1) \frac{n}{\log n}$$

and let $n \to \infty$, $t \to 1$ in such a way that

$$\nu \rightarrow \nu_0$$
.

The result:

In the double scaling limit, we have

$$\lim \frac{1}{(cn)^{1/2}} K_{n,t} \left(x^* + \frac{u}{(cn)^{1/2}}, x^* + \frac{v}{(cn)^{1/2}} \right)$$

$$= \begin{cases} \mathbb{K}^{\text{GUE}}(u, v; k) & \text{for } k - \frac{1}{2} < \nu_0 < k + \frac{1}{2}, k \ge 1, \\ 0 & \text{for } \nu_0 < 1/2, \end{cases}$$

$$\mathbb{K}^{\text{GUE}}(u, v; k) = \frac{e^{-\frac{u^2 + v^2}{2}}}{2^k \sqrt{\pi} (k-1)!} \frac{H_k(u) H_{k-1}(v) - H_k(v) H_{k-1}(u)}{u - v},$$

where H_k are Hermite polynomials

- t < 1, $\nu_0 < 0$: no eigenvalues expected, trivial limiting kernel
- lacktriangle when u_0 increases, more eigenvalues 'move' to the new cut
- eigenvalues in the new cut seem to behave like the eigenvalues in a finite GUE
- Discontinuity of limiting kernel when ν_0 is a half integer?

$$\frac{1}{(cn)^{1/2}} K_{n,t} \left(x^* + \frac{u}{(cn)^{1/2}}, x^* + \frac{v}{(cn)^{1/2}} \right) \\
= \begin{cases}
\lambda_{n,t}^- \mathbb{K}^{\text{GUE}}(u, v; k) \\
+\lambda_{n,t}^+ \mathbb{K}^{\text{GUE}}(u, v; k+1) + \mathcal{O}\left(\frac{\log n}{n^{1/2}}\right), & \text{for } k \le \nu \le k+1, \\
\mathcal{O}(n^{-1/2}), & \text{for } s < 0.
\end{cases}$$

Furthermore the sequences $\lambda_{n,t}^{\pm}$ are such that

$$\lambda_{n,t}^+ + \lambda_{n,t}^- = 1,$$

$$\begin{split} \lambda_{n,t}^+ &= 1 - \lambda_{n,t}^- = \mathcal{O}(n^{-1/2 + \nu - k}), & \text{as } k \leq \nu \leq k + 1/2, \\ \lambda_{n,t}^- &= 1 - \lambda_{n,t}^+ = \mathcal{O}(n^{1/2 + k - \nu}), & \text{as } k + 1/2 \leq \nu \leq k + 1. \end{split}$$

4. Riemann-Hilbert problems

- Proof based on the Deift/Zhou steepest descent analysis for the Riemann-Hilbert (RH) problem for orthogonal polynomials
 - (a) $Y: \mathbb{C} \setminus \mathbb{R} \to \mathbb{C}^{2 \times 2}$ is analytic.
 - (b) For $x \in \mathbb{R}$,

$$Y_+(x) = Y_-(x) \begin{pmatrix} 1 & e^{-nV_t(x)} \\ 0 & 1 \end{pmatrix}, \quad \text{for } x \in \mathbb{R}.$$

(c) Y has the following asymptotic behavior at infinity,

$$Y(z)=\left(I+\mathcal{O}(z^{-1})
ight) egin{pmatrix} z^n & 0 \ 0 & z^{-n} \end{pmatrix}, \qquad ext{as } z o \infty.$$

4. Riemann-Hilbert problems

Unique solution

$$Y(z) = \begin{pmatrix} \kappa_n^{-1} p_n(z) & \frac{\kappa_n^{-1}}{2\pi i} \int_{\mathbb{R}} \frac{p_n(u)e^{-nV_t(u)}}{u - z} du \\ -2\pi i \kappa_{n-1} p_{n-1}(z) & -\kappa_{n-1} \int_{\mathbb{R}} \frac{p_{n-1}(u)e^{-nV_t(u)}}{u - z} du \end{pmatrix}$$

in terms of OP's with respect to weight $e^{-nV_t(x)}$,

 \blacksquare Kernel can be expressed in terms of Y,

$$K_{n,t}(x,y) = e^{-\frac{n}{2}V_t(x)}e^{-\frac{n}{2}V_t(y)}\frac{1}{2\pi i(x-y)} \begin{pmatrix} 0 & 1 \end{pmatrix} Y_{\pm}^{-1}(y)Y_{\pm}(x) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

4. Riemann-Hilbert problems

- Goal is to find asymptotics for Y in the double scaling limit
- Deift/Zhou steepest descent method
 - series of transformations, 'undressing' of the RH problem
 - $ightharpoonup Y \mapsto T \mapsto S \mapsto R$
 - $ightharpoonup R(z) = I + o(1) \Rightarrow \text{asymptotics for } Y$
 - ► Two crucial features
 - → Construction of g-function using modified equilibrium measures
 - \rightarrow Construction of local parametrix near x^* using RH problem for Hermite polynomials

Comparison with Mo and Bertola-Lee

■ Mo

- he considers also higher order variational inequality
- he does not consider transition near half integers

Bertola-Lee

- they consider also higher order variational inequality and transition near half integers
- ► they do not construct the g-function explicitly and they restrict to a local deformation of the potential