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1 - O(n) model
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. v vertices

. nj j-gons (j ≥ 3 ≥ d , d fixed but arbitrary)

. ` triangles carrying a piece of path forming exactly L loops

. a marked ji-gon (ji ≥ 1) with a marked edge as i-th boundary (1 ≤ i ≤ k)

For n ∈ N, it admits a representation as a formal hermitian matrix model [1, 6]:
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. equalities between formal series in t , of polynomials in tj ’s and rational functions in xi ’s

. c for cumulant

. analytic continuation for n ∈ R

We proved an algorithm to compute all W(g)
k ’s

2 - Interest for the O(n) model
Critical points . Exhibits critical points [2] different from pure gravity at tc > 0, for 0 < |n| ≤ 2

For n = −2 cos πg (g ∈]0, 1[), several continuum limits

. Believed to be CFTc⊗ gravity, with
c = 1− 6

(
g̃1/2 − g̃−1/2

)2
where g̃ = ε(1− g) + 2p + 1

→ reach non rational CFT’s by the continuum limit of a microscopic model

Combinatorics → Counting discrete surfaces with additional structure

. Duality to q = n2 Potts model

. Fully packed loops ↔ dimer configurations when V(x) = x2/2

Matrix models → A direction of generalization of the algebraic geometry tools
developed for the 1-matrix model (n = 0) [5]

3 - The method of loop equations
Loop equations = change of variables in the matrix integrals

Powerful way to prove automatically combinatorial recursion relations [7]

Lemma 0 . When x →∞

{
W(0)

1 (x) ∼ t/x
W(g)

k (x, J) ∈ O(1/x2) else

Combinatorial . in each variable (for k ≥ 1), W(g)
k (x1, . . . , xk) is

lemma holomorphic with one cut [a(t), b(t)] ⊆ C
. When x → ai ∈ {a(t), b(t)} W(0)

1 (x)−W(0)
1 (ai) ∝

√
(x− ai)

There exists a set of loop equations determining uniquely
W(g)

k satisfying these analytical properties

4 - Analytical properties of W(g)
k

The one-cut property implies ∀x ∈ [a(t), b(t)] and ε → 0 :
[3] W(0)

1 (x + iε) + W(0)
1 (x− iε) + n W(0)

1 (−x) = V′(x)
[3] W(0)

2 (x1 + iε, x2) + W(0)
2 (x1 − iε, x2) + n W(0)

2 (−x1, x2) = −1
(x1−x2)2

[4] W(g)
k (x1 + iε, J) + W(g)

k (x1 − iε, J) + n W(g)
k (−x1, J) = 0 else

→ Riemann-Hilbert problem: solution in terms of functions on a spectral curve S
Def. of spectral curve data S = (Σ, x , y), where
. Σ is a Riemann surface
. x and y are two meromorphic functions on Σ

5 - Topological recursion
. In [4], we have extended the topological recursion of [5] to the O(n) model
. One recovers the formalism valid for the 1-hermitian matrix for n = 0
. Once the spectral curve is found, few modifications arise when n 6= 0

Here, one can construct x : C → C ∪ {∞} \ {cuts}, such that limε→0

(
W(0)

1 (x(u) + iε)−W(0)
1 (x(u)− iε)

)
defined on [u(a),u(b)], can be analytically continued as a monovalued function on Σ → this function is called y(u)

. W(g)
k (x(u1), . . . , x(uk))dx(u1) · · · dx(uk) defines by analytic continuation

meromorphic forms on Σ : ω
(g)
k (u1, . . . , uk)

Physical sheet We choose a maximal open set Σ0 ⊆ Σ such that
x maps bijectively Σ0 to C ∪ {∞} \ {cuts}

Branch points We choose a set of simple zeroes of dx : {ai} ⊆ Σ0

Local involution We define u defined locally around ai by x(u) = x(u)

Bergman kernel Unique differential two form on Σ

with prescribed double poles without residues at x(u1) = ±x(u2)
More precisely, such that, ∀u1, u2 ∈ Σ0:

B(u1, u2) = ω
(0)
2 (u1, u2) +

dx(u1)dx(u2)

4− n2

(
2

(x(u1)− x(u2))2
− n

(x(u1) + x(u2))2

)
Recursion kernel We define globally in u1, locally around ai in u:

K(u1, u) = −1

2

∫ u
u B(u1, u

′)
(y(u)− y(u))dx(u)

Correlation forms For 2g − 2 + k > 0, ω
(g)
k can be reached

with a string of 2g − 2 + k residues at branch points.
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Free energies For g ≥ 2, Fg = W(g)
0 can be reached with a string of 2g − 2 residues.

Let φi be a local primitive of ydx around ai :

Fg =
1

2− 2g

∑
i

Res
u→ai

(
φi(u) ω

(g)
1 (u)

)
. We also have n-deformed expressions for F0 and F1

(these expressions are always more involved)
. Properties wrt infinitesimal deformation [5] of S are preserved

The topological recursion commutes with (singular) limits of spectral curves:

Sα :

{
x(z) = c + α x∗(z)
y(z) = αµ y∗(z)

=⇒ W(g)
k [Sα](c + α x∗1, . . . , c + α x∗k) ∼

α(2−2g−k)(µ+1)−k W(g)
k [S∗](x∗1 , . . . , x∗k )

when α→ 0 for 2g−2+k ≥ 0

6 - Study of critical points

. The most important one is the string susceptibility: ∂2
t F0 ∝ (1− t/tc)

−γstr

. Planar (g = 0) critical exponents and amplitudes were already known for small k

. KPZ scaling expected from Liouville th. predicts
a (2− 2g − k) dependance of the general exponents

Pure gravity = No macroscopic loops in the continuum limit
already exists in the 1-hermitian matrix model
Reached by blowing up S around a branch pt which becomes a zero of order p of dx at t = tc

µ = p + 1
2 , γstr = −1/(p + 1)

Dense phase = Macroscopic loops filling densely the surface
(critical pt) Reached when a → 0 (defines t → tc), by blowing up x ∼ a x∗

µ = g , γstr = 1− 1
g

Dilute phases = Macroscopic loops and regions dominated by gravity simultaneously
(multicritical pt) Reached when V is properly tuned while a → 0, by blowing up x ∼ a x∗

Parametrization by (ε, p) ∈ {±} × N with (ε, p) 6= (−1, 0)

µ = ε(1− g) + 2p + 1 , γstr = − 2(1−g)
g+ε(1−g)+2p+1

Critical spectral curve
{

x∗(z) = ch(z)
y∗(z) =

∑
p′ Ap′ sh[(g + 2p′ + 1)z + 2iπg]

. W(g)
k [S∗] are the bulk correlators in CFTc⊗ gravity (amplitudes for FZZT branes)

. Proves KPZ scaling with a2 → 0 interpreted as a cosmological constant

7 - Conclusion

. A microscopic model which has a non algebraic spectral curve
is shown to satisfy the topological recursion

. Perspective : computing all possible boundary conditions
(insertion of paths on boundaries, e.g. [8, 9, 10]) as done in the 2-hermitian matrix model

. Generalization to β-ensembles coupled to an O(n) model ?
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