1 - O(n) model

tth3...tnd Lé
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> ranges over connected genus g discrete surface with k boundaries, built with:
> v vertices

> nj j-gons (j > 3 > d, d fixed but arbitrary)
> (¢ triangles carrying a piece of path forming exactly L loops
> a marked ji-gon (j; > 1) with a marked edge as i-th boundary (1 </ < k)

For n € N, it admits a representation as a formal hermitian matrix model |1, 6]:
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equalities between formal series in t, of polynomials in ¢;'s and rational functions in x;'s

¢ for cumulant
analytic continuation for n € R
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We proved an algorithm to compute all Wf(g)'s

2 - Interest for the O(n) model

Critical points > Exhibits critical points [2] different from pure gravity at tc > 0, for 0 < |n| < 2
For n = —2cosmg (g €]0, 1]), several continuum limits

> Believed to be CF T, ® gravity, with

2
c:1—6(§;1/2—ij_1/2) where g =¢(l—g)+2p+1

— reach non rational CFT's by the continuum limit of a microscopic model

Combinatorics — Counting discrete surfaces with additional structure

> Duality to q = n® Potts model
> Fully packed loops < dimer configurations when V(x) = x%/2

Matrix models — A direction of generalization of the algebraic geometry tools
developed for the 1-matrix model (n = 0) [5]

Loop equations = change of variables in the matrix integrals

Powerful way to prove automatically combinatorial recursion relations [7]

0y
lemma 0 > When x — oo (\gl (x) ~ t/x

W,/ (x, J) € O(1/x?) else

Combinatorial > in each variable (for kK > 1), Wf(g) X1, ..., Xg) IS
lemma holomorphic with one cut [a(t), b(t)] C C
)(x) —

(
> When x — aj € {a(t), b(t)} Wgo —

|
(x) - Wi(a)  \/x = 27)

There exists a set of loop equations determining uniquely

Wf(g) satisfying these analytical properties

(g)

4 - Analytical properties of W)

The one-cut property implies Vx € [a(t), b(t)] and ¢ — 0 :

3 w§°>(x+ i)  + vvio)(x —ie) o+ nWiO)(—x) ~ V/(x)
3 WYkt iex) + Wo)xa = ie,xa) + W (—xa,x0) = =i
4] Wf(g)(x1 +ie,J) + Wg(g)(xl —ie,J) + nWE{g)(—xl, J) =0 else

— Riemann-Hilbert problem: solution in terms of functions on a spectral curve S

Def. of spectral curve data S = (%, x,y), where

> 2 is a Riemann surface
> x and y are two meromorphic functions on X
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3 - The method of loop equations

5 - Topological recursion

> In [4], we have extended the topological recursion of [5] to the O(n) model
> One recovers the formalism valid for the 1-hermitian matrix for n =0
> Once the spectral curve is found, few modifications arise when n # 0

Here, one can construct x : C — CU {oo} \ {cuts}, such that lim._g (Wgo)(x(u) + i€) — Wgo)(x(u) — ie))

defined on [u(a),u(b)], can be analytically continued as a monovalued function on ¥ — this function is called y(uv)

> Wf(g)(x(ul), oy x(ug))dx(ug) - - - dx(uy ) defines by analytic continuation

(g)

meromorphic forms on X : w; > (ug, ..., uy)

Physical sheet We choose a maximal open set 2y C X such that
x maps bijectively Xy to CU {oo} \ {cuts}

Branch points We choose a set of simple zeroes of dx: {a;} C ¥

Local involution We define @ defined locally around a; by x(7) = x(u)

Bergman kernel Unique differential two form on X

with prescribed double poles without residues at x(uj) = +x(up)
More precisely, such that, Vuy, uy € 2¢:

dx(uq)dx(up) ( 2 n )

4—n2  \(x(u1) = x(1)?  (x(u1) + x(u2))?

Recursion kernel We define globally in ug, locally around a; in u:

1 Y B(uy,
K(uy, u) = —3 J5 5 e )
2(y(u) — y(@))dx(u)
Correlation forms For 2g — 2+ k > 0, w/((g) can be reached

with a string of 2g — 2 4 k residues at branch points.

B(uy, 1) = w1y, up) +

/
B, 1) =5 Res K(up,u) ["wE w0y + Y aafﬁll(u, /)@E},"’)(E,J\/)
j ICJ h

(g)

Free energies For g > 2, Fg =Wy’ can be reached with a string of 2g — 2 residues.
Let ¢; be a local primitive of ydx around a;:

> We also have n-deformed expressions for Fg and F;
(these expressions are always more involved)
> Properties wrt infinitesimal deformation [5] of S are preserved

The topological recursion commutes with (singular) limits of spectral curves:

[ x(2) = c+ ax(2)
s {0 ey

Wf(g)[S@](c +axi,...,ctaxy)~

—
(2—2g—k)(u+1)—k Wg(g)[s*](xik, o ,le)

when a — 0 for 2g—2+k >0

6 - Study of critical points

> The most important one is the string susceptibility: 8?F0 o (1 —t/te) Tstr

> Planar (g = 0) critical exponents and amplitudes were already known for small k

> KPZ scaling expected from Liouville th. predicts
a (2 — 2g — k) dependance of the general exponents

Pure gravity = No macroscopic loops in the continuum limit
already exists in the 1-hermitian matrix model

Reached by blowing up S around a branch pt which becomes a zero of order p of dx at t = t.

p=p+%, Ysr=—1/(p+1)

Dense phase Macroscopic loops filling densely the surface

(critical pt) Reached when a — 0 (cleﬁnes t — tc), by blowing up x ~ ax*
_ _ 1
H=29, VStl‘_l_ﬁ

Dilute phases Macroscopic loops and regions dominated by gravity simultaneously

Reached when V is properly tuned while a — 0, by blowing up x ~ ax*
Parametrization by (¢, p) € {£} x N with (¢, p) # (—1,0)

2(1—
Hn = 5(1 — g) + 2P +1 ) Vstr = _g—|—g(1(—g)3—)2p—|—1

(multicritical pt)

x*(z) = ch(z)

Critical spectral curve {y*(z) _ Zp/ Ap/sh[(g 4 2p + 1)z + 2img]

> Wf(g)[S*] are the bulk correlators in CF T, ® gravity (amplitudes for FZZT branes)

> Proves KPZ scaling with a®> — 0 interpreted as a cosmological constant

7 - Conclusion

> A microscopic model which has a non algebraic spectral curve

s shown to satisfy the topological recursion
> Perspective : computing all possible boundary conditions

(insertion of paths on boundaries, e.g. [8, 9, 10]) as done in the 2-hermitian matrix model
> Generalization to B-ensembles coupled to an O(n) model ?
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