The $\mathcal{O}(\mathfrak{n})$ model on random lattices of all topologies

G. Borot, B. Eynard

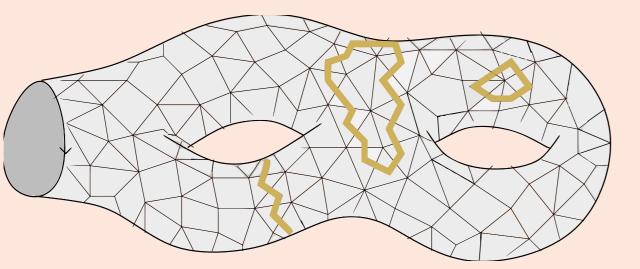
IPhT, CEA Saclay

1 – $\mathcal{O}(\mathfrak{n})$ model

$$W_k^{(g)}(x_1,\ldots,x_k) = \sum \frac{1}{\text{number of automorphisms}} \frac{t^{v} t_3^{n_3} \cdots t_d^{n_d} \mathbf{n}^L}{x_1^{j_1+1} \cdots x_k^{j_k+1}}$$

 \sum ranges over connected genus g discrete surface with k boundaries, built with: \triangleright v vertices

- ▷ n_i *j*-gons ($j \ge 3 \ge d$, *d* fixed but arbitrary)
- \triangleright ℓ triangles carrying a piece of path forming exactly *L* loops
- ▷ a marked j_i -gon ($j_i \ge 1$) with a marked edge as *i*-th boundary ($1 \le i \le k$)



For $n \in \mathbb{N}$, it admits a representation as a formal hermitian matrix model [1, 6]:

Lebesgue measure on $\mathcal{H}_N^{1+\mathfrak{n}}$ $\begin{bmatrix} N_{\mathrm{Tr}} \left(\sqrt{(M)} + \sum_{n=1}^{\mathfrak{n}} (1 + M) A^2 \right) \end{bmatrix}$

5 – Topological recursion

 \triangleright In [4], we have extended the topological recursion of [5] to the $\mathcal{O}(\mathfrak{n})$ model \triangleright One recovers the formalism valid for the 1-hermitian matrix for n = 0 \triangleright Once the spectral curve is found, few modifications arise when $n \neq 0$ <u>Here</u>, one can construct $x : \mathbb{C} \to \mathbb{C} \cup \{\infty\} \setminus \{\text{cuts}\}$, such that $\lim_{\epsilon \to 0} \left(W_1^{(0)}(x(u) + i\epsilon) - W_1^{(0)}(x(u) - i\epsilon) \right)$ defined on [u(a),u(b)], can be analytically continued as a monovalued function on $\Sigma \rightarrow$ this function is called y(u)

 $\triangleright W_k^{(g)}(x(u_1), \ldots, x(u_k)) dx(u_1) \cdots dx(u_k)$ defines by analytic continuation meromorphic forms on Σ : $\omega_k^{(g)}(u_1, \ldots, u_k)$

Physical sheet We choose a maximal open set $\Sigma_0 \subseteq \Sigma$ such that *x* maps bijectively Σ_0 to $\mathbb{C} \cup \{\infty\} \setminus \{\text{cuts}\}$

Branch points We choose a set of simple zeroes of dx: $\{a_i\} \subseteq \Sigma_0$

<u>Local involution</u> We define \overline{u} defined locally around a_i by $x(\overline{u}) = x(u)$

Bergman kernel Unique differential two form on Σ with prescribed double poles without residues at $x(u_1) = \pm x(u_2)$

$$d\lambda(M, A_1, \dots, A_n) = dM dA_1 \cdots dA_n \exp\left[-\frac{1}{t} \operatorname{Ir} \left(V(M) + \sum_{i=1}^{\infty} (\frac{1}{2\mathfrak{z}} + M)A_i^2 \right) \right]$$
$$\left\langle \prod_{x_i \in K} \operatorname{Tr} \frac{1}{x_i - M} \right\rangle_c = \sum_{g=0}^{\infty} \left(\frac{N}{t}\right)^{2-2g-k} W_k^{(g)}(K)$$

 \triangleright V(x) = $\frac{x^2}{2} - \sum_{j=3}^{d} \frac{t_j}{i} x^j$

- \triangleright equalities between formal series in t, of polynomials in t_i 's and rational functions in x_i 's
- \triangleright c for cumulant
- \triangleright analytic continuation for $\mathfrak{n} \in \mathbb{R}$

We proved an algorithm to compute all $W_k^{(g)}$'s

2 – Interest for the $\mathcal{O}(\mathfrak{n})$ model

Critical points \triangleright Exhibits critical points [2] different from pure gravity at $t_c > 0$, for $0 < |n| \le 2$ For $\mathfrak{n} = -2 \cos \pi \mathfrak{g}$ ($\mathfrak{g} \in]0, 1[$), several continuum limits

- \triangleright Believed to be CFT_c \otimes gravity, with $\mathfrak{c} = 1 - 6\left(ilde{\mathfrak{g}}^{1/2} - ilde{\mathfrak{g}}^{-1/2}
 ight)^2$ where $ilde{\mathfrak{g}} = arepsilon(1-\mathfrak{g}) + 2p + 1$
- \rightarrow reach non rational CFT's by the continuum limit of a microscopic model

<u>Combinatorics</u> \rightarrow Counting discrete surfaces with additional structure

- \triangleright Duality to $q = n^2$ Potts model
- ▷ Fully packed loops \leftrightarrow dimer configurations when V(x) = $x^2/2$

<u>Matrix models</u> \rightarrow A direction of generalization of the algebraic geometry tools

More precisely, such that, $\forall u_1, u_2 \in \Sigma_0$:

$$\mathcal{B}(u_1, u_2) = \omega_2^{(0)}(u_1, u_2) + \frac{\mathrm{dx}(u_1)\mathrm{dx}(u_2)}{4 - \mathfrak{n}^2} \left(\frac{2}{(x(u_1) - x(u_2))^2} - \frac{\mathfrak{n}}{(x(u_1) + x(u_2))^2}\right)$$

<u>Recursion kernel</u> We define globally in u_1 , locally around a_i in u:

$$\mathcal{K}(u_1, u) = -\frac{1}{2} \frac{\int_{\overline{u}}^{u} \mathcal{B}(u_1, u')}{(y(u) - y(\overline{u})) \mathrm{d}x(u)}$$

<u>Correlation forms</u> For 2g - 2 + k > 0, $\omega_k^{(g)}$ can be reached with a string of 2g - 2 + k residues at branch points.

$$\omega_k^{(g)}(u_1,J) = \sum_i \operatorname{Res}_{u \to a_i} \mathcal{K}(u_1,u) \left["\omega_{k+1}^{(g-1)}(u,\overline{u},J)" + \sum_{I \subseteq J,h}' \tilde{\omega}_{|I|+1}^{(g)}(u,I) \tilde{\omega}_{k-|I|}^{(g-h)}(\overline{u},J \setminus I) \right]$$

Free energies For $g \ge 2$, $F_g = W_0^{(g)}$ can be reached with a string of 2g - 2 residues. Let ϕ_i be a local primitive of ydx around a_i :

$$\mathsf{F}_{g} = \frac{1}{2 - 2g} \sum_{i} \operatorname{Res}_{u \to a_{i}} \left(\phi_{i}(u) \, \omega_{1}^{(g)}(u) \right)$$

 \triangleright We also have *n*-deformed expressions for F₀ and F₁ (these expressions are always more involved) \triangleright Properties wrt infinitesimal deformation [5] of S are preserved

The topological recursion commutes with (singular) limits of spectral curves:

 $S_{\alpha} : \begin{cases} x(z) = c + \alpha x^{*}(z) \\ y(z) = \alpha^{\mu} y^{*}(z) \end{cases}$

$$W_{k}^{(g)}[S_{\alpha}](c + \alpha x_{1}^{*}, \dots, c + \alpha x_{k}^{*}) \sim \alpha^{(2-2g-k)(\mu+1)-k} W_{k}^{(g)}[S^{*}](x_{1}^{*}, \dots, x_{k}^{*})$$
for $2g-2+k \geq 0$

developed for the 1-matrix model (n = 0) [5]

3 – The method of loop equations

Loop equations = change of variables in the matrix integrals

Powerful way to prove automatically combinatorial recursion relations [7]

 \triangleright When $x \to \infty$ Lemma 0

 $\begin{cases} W_1^{(0)}(x) \sim t/x \\ W_L^{(g)}(x,J) \in O(1/x^2) \text{ else} \end{cases}$

$$\begin{array}{lll} \underline{Combinatorial} & \triangleright & \text{in each variable (for } k \geq 1\text{), } W_k^{(g)}(x_1, \ldots, x_k) \text{ is} \\ \underline{lemma} & & \text{holomorphic with one cut } [a(t), b(t)] \subseteq \mathbb{C} \\ & \triangleright & \text{When } x \rightarrow a_i \in \{a(t), b(t)\} & W_1^{(0)}(x) - W_1^{(0)}(a_i) \propto \sqrt{(x-a_i)} \end{array}$$

There exists a set of loop equations determining uniquely $W_{\mu}^{(g)}$ satisfying these analytical properties

4 – Analytical properties of $W_{k}^{(g)}$

The one-cut property implies $\forall x \in [a(t), b(t)]$ and $\epsilon \to 0$: (\cap)

$$\begin{bmatrix} 3 \end{bmatrix} = W_1^{(0)}(x + i\epsilon) + W_1^{(0)}(x - i\epsilon) + \mathfrak{n} W_1^{(0)}(-x) = V'(x) \\ = W_1^{(0)}(x_1 + i\epsilon, x_2) + W_1^{(0)}(x_1 - i\epsilon, x_2) + \mathfrak{n} W_1^{(0)}(-x_1, x_2) = -1 \end{bmatrix}$$

$$[3] \quad W_{2}^{\prime} (x_{1} + i\epsilon, x_{2}) + W_{2}^{\prime} (x_{1} - i\epsilon, x_{2}) + \mathfrak{n} W_{2}^{\prime} (-x_{1}, x_{2}) = \frac{1}{(x_{1} - x_{2})^{2}}$$

$$[4] \quad W_k^{(g)}(x_1 + i\epsilon, J) + W_k^{(g)}(x_1 - i\epsilon, J) + \mathfrak{n} W_k^{(g)}(-x_1, J) = 0 \qquad \text{else}$$

 \rightarrow Riemann-Hilbert problem: solution in terms of functions on a spectral curve S

when $\alpha \rightarrow 0$

6 – Study of critical points

▷ The most important one is the string susceptibility: $\partial_t^2 F_0 \propto (1 - t/t_c)^{-\gamma_{str}}$ \triangleright Planar (g = 0) critical exponents and amplitudes were already known for small k ▷ KPZ scaling expected from Liouville th. predicts a (2 - 2g - k) dependance of the general exponents

- = No macroscopic loops in the continuum limit Pure gravity already exists in the 1-hermitian matrix model Reached by *blowing up* S around a branch pt which becomes a zero of order p of dx at $t = t_c$ $\mu = p + \frac{1}{2}$, $\gamma_{str} = -1/(p+1)$
- Dense phase = Macroscopic loops filling densely the surface Reached when $a \rightarrow 0$ (defines $t \rightarrow t_c$), by blowing up $x \sim ax^*$ (critical pt) $\mu = \mathfrak{g} \;, \qquad \gamma_{\mathsf{str}} = 1 - rac{\mathsf{I}}{\mathfrak{q}}$
- Dilute phases = Macroscopic loops and regions dominated by gravity simultaneously Reached when V is properly tuned while $a \rightarrow 0$, by blowing up $x \sim ax^*$ (multicritical pt) Parametrization by $(\varepsilon, p) \in \{\pm\} \times \mathbb{N}$ with $(\varepsilon, p) \neq (-1, 0)$ $\mu = \varepsilon(1 - \mathfrak{g}) + 2p + 1$, $\gamma_{str} = -\frac{2(1 - \mathfrak{g})}{\mathfrak{g} + \varepsilon(1 - \mathfrak{g}) + 2p + 1}$

Critical spectral curve $\begin{cases} x^*(z) = ch(z) \\ y^*(z) = \sum_{p'} A_{p'} sh[(\mathfrak{g} + 2p' + 1)z + 2i\pi\mathfrak{g}] \end{cases}$

 $\triangleright W_k^{(g)}[S^*]$ are the bulk correlators in $CFT_{\mathfrak{c}} \otimes gravity$ (amplitudes for FZZT branes) \triangleright Proves KPZ scaling with $a^2 \rightarrow 0$ interpreted as a cosmological constant

Def. of spectral curve data $S = (\Sigma, x, y)$, where \triangleright Σ is a Riemann surface \triangleright *x* and *y* are two meromorphic functions on Σ



7 - Conclusion

- A microscopic model which has a non algebraic spectral curve is shown to satisfy the topological recursion
- Perspective : computing all possible boundary conditions \triangleright (insertion of paths on boundaries, e.g. [8, 9, 10]) as done in the 2-hermitian matrix model Generalization to β -ensembles coupled to an $\mathcal{O}(\mathfrak{n})$ model ? \triangleright

Bibliography

[3]

[5]

[7]

[10]

- M. Gaudin, I. Kostov, $\mathcal{O}(\mathfrak{n})$ on a fluctuating planar lattice. Some exact results, Phys. Lett. **B220**, 200 (1989)
- I. Kostov, M. Staudacher, *Multicritical phases of the* $\mathcal{O}(\mathfrak{n})$ *model on a random lattice*, Nucl.Phys. **B384**, p459-483, arXiv:hep-th/9203030 (1992)
- B. Eynard, C. Kristjansen, More on the exact solution of the $\mathcal{O}(\mathfrak{n})$ model ..., Nucl.Phys. B466, p463-487, arXiv:hep-th/9512052 (1996)
- GB, B. Eynard, Enumeration of maps with self avoiding loops and the O(n) model on random lattices of all topologies, arXiv:math-ph/0910.5896 (2009) Topological recursion and properties
- B. Eynard, N. Orantin, *Invariants of algebraic curves and topological expansion*, arXiv:math-ph/0702045 (2007) Matrix models techniques for combinatorics
- E. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber, *Planar diagrams*, Comm. in Math. Phys. 59, 35 (1978)
- B. Eynard, Formal matrix integrals and combinatorics of maps, arXiv:math-ph/0611087 (1996) Other works on the continuum limit of the $\mathcal{O}(\mathfrak{n})$ model
- I. Kostov, Boundary loop models and 2D quantum gravity, J. Stat. Mech. 07-08 : P08023, arXiv:hep-th/0703221 (2007)
- J. L. Jacobsen, H. Saleur, Conformal boundary loop models, Nucl. Phys. B788, p137-166 (2008), arXiv:math-ph/0611078 (2007)
- J.-E. Bourgine, K. Hosomichi, Boundary operators in the O(n) and RSOS matrix models, JHEP, arXiv:hep-th/08113252 (2009)