# Universality in the two matrix model with one quartic potential

Maurice Duits Caltech

December 18, 2010

VI Brunel Workshop on Random Matrix Theory

#### Two matrix model

We consider a pair of  $(M_1, M_2)$  of  $n \times n$  Hermitian matrices taken randomly with respect to

$$\frac{1}{Z_n} \mathrm{e}^{-n \, \mathsf{Tr}(\, V(\, M_1) \, + \, W(\, M_2) \, - \, \tau \, M_1 M_2)} \mathrm{d} M_1 \mathrm{d} M_2$$

#### where

- $dM = \prod_{i} dM_{ii} \prod_{i>i} d \operatorname{Re} M_{ij} d \operatorname{Im} M_{ij}$
- V and W are two polynomials
- $ightharpoonup Z_n$  is the normalization constant
- $\triangleright$   $\tau$  is a constant (coupling constant)

In this talk we are interested in the asymptotic behavior of the eigenvalues as  $n \to \infty$ .

#### Two matrix model

- There is strong evidence that the two matrix model generates a bigger class of critical cases when compared to the one matrix models (e.g. (p,q) conformal minimal models)
- ▶ In this talk I will discuss recent results that show how to get the asymptotic behavior of the eigenvalues of  $M_1$  in case

$$W(y) = \frac{1}{4}y^4 + \frac{t}{2}y^2 \qquad \text{and } V \text{ even.}$$

Based on the recent work
 D-Kuijlaars, CPAM '09, Mo, CMP '09,
 D-Kuijlaars-Mo, arXiv '10, D-Geudens-Kuijlaars, arXiv '10 and D-Geudens '11. See poster!

# Eigenvalue density

▶ Denote the eigenvalues of  $M_1$  by  $x_1, ..., x_n$  and the eigenvalues of  $M_2$  by  $y_1, ..., y_n$ .

Then the joint probability distribution for the eigenvalues of  $M_1$  and  $M_2$  is given by

$$\frac{1}{\widetilde{Z}_n}\mathrm{e}^{-n\sum_{j=1}^n\left(V(x_j)+W(y_j)\right)}\det\exp\left(n\tau x_iy_j\right)\prod_{j>i}(x_j-x_i)\prod_{j>i}(y_j-y_i)\mathrm{d}^nx\mathrm{d}^ny.$$

where  $\widetilde{Z}_n$  is a new normalization constant.

# $Biorthogonal\ polynomials$

Consider two families of polynomials  $\{p_{k,n}\}_k$  and  $\{q_{j,n}\}_j$ , where  $p_{k,n}$  and  $q_{j,n}$  are monic polynomials of degree k and j respectively and satisfy

$$\iint p_{k,n}(x)q_{j,n}(y)\mathrm{e}^{-n(V(x)+W(y)-\tau xy)}\;\mathrm{d}x\mathrm{d}y=0,\qquad j\neq k$$

- ► The polynomials are well-defined and have real and simple zeros Ercolani-McLaughlin '01.
- ▶ The zeros of  $p_{k+1,n}$  and  $p_{k,n}$  interlace D-Geudens-Kuijlaars '10.

#### Relation with two matrix model

▶ The biorthogonal polynomials are the average characteristic polynomials

$$p_{n,n}(x) = \mathbb{E}(\det(x - M_1))$$

$$q_{n,n}(y) = \mathbb{E}(\det(y - M_2)).$$

The eigenvalue form a determinantal process with kernel that is constructed out of these biorthogonal polynomials Mehta-Shukla '94, Eynard-Mehta '98.

# The tansformed functions $Q_{j,n}$ and $P_{k,n}$

▶ Introduce the transformed funtions

$$\begin{split} Q_{j,n}(x) &= \mathrm{e}^{-nV(x)} \int q_{j,n}(y) \mathrm{e}^{-n\left(W(y) - \tau x y\right)} \mathrm{d}y \\ P_{k,n}(y) &= \mathrm{e}^{-nW(y)} \int p_{k,n}(x) \mathrm{e}^{-n\left(V(x) - \tau x y\right)} \mathrm{d}x \end{split}$$

▶ Note that we have the orthogonality relations

$$\int p_{k,n}(x)Q_{j,n}(x) dx = 0, \qquad j \neq k$$

$$\int P_{k,n}(y)q_{j,n}(y) dy = 0, \qquad j \neq k$$

▶ Let

$$h_{k,n}^2 = \left\{ \int p_{k,n}(x) q_{k,n}(y) \mathrm{e}^{-n \left(V(x) + W(y) - \tau xy\right)} \ \mathrm{d}x \mathrm{d}y \right.$$

#### Four kernels

#### Define kernels by

$$\begin{split} & \mathcal{K}_{11}(x_1, x_2) = \sum_{k=0}^{n-1} \frac{1}{h_{k,n}^2} p_{k,n}(x_1) Q_{k,n}(x_2), \\ & \mathcal{K}_{22}(y_1, y_2) = \sum_{k=0}^{n-1} \frac{1}{h_{k,n}^2} P_{k,n}(y_1) q_{k,n}(y_2) \\ & \mathcal{K}_{12}(x, y) = \sum_{k=0}^{n-1} \frac{1}{h_{k,n}^2} p_{k,n}(x) q_{k,n}(y) \\ & \mathcal{K}_{21}(y, x) = \sum_{k=0}^{n-1} \frac{1}{h_{k,n}^2} P_{k,n}(y) Q_{k,n}(x) - e^{-n\left(V(x) + W(y) - \tau xy\right)} \end{split}$$

# Eynard-Metha Theorem

▶ Denote the eigenvalues of  $M_1$  by  $x_1, ..., x_n$  and of  $M_2$  by  $y_1, ..., y_n$ . The probability density function can be written as

$$\mathcal{P}(x_1,\dots,x_n,y_1,\dots,y_n) = \frac{1}{n!^2} \det \begin{pmatrix} \left(K_{11}(x_i,x_j)\right)_{i,j=1}^n & \left(K_{12}(x_i,y_j)\right)_{i,j=1}^n \\ \left(K_{21}(y_i,x_j)\right)_{i,j=1}^n & \left(K_{22}(y_i,y_j)\right)_{i,j=1}^n \end{pmatrix}$$

and the marginal densities are given by

$$\int_{n-k+n-l \text{ times}} \mathcal{P}(x_1, \dots, x_n, y_1, \dots, y_n) dx_{k+1} \cdots dx_n dy_{l+1} \cdots dy_n$$

$$= \frac{(n-l)!(n-k)!}{n!^2} \det \begin{pmatrix} (K_{11}(x_i, x_j))_{i,j=1}^k & (K_{12}(x_i, y_j))_{i,j=1}^{k,l} \\ (K_{21}(y_i, x_j))_{i,j=1}^{l,k} & (K_{22}(y_i, y_j))_{i,j=1}^{l} \end{pmatrix}$$

▶ Concluding, the k-point correlation functions are determinants of a matrix involving the kernels  $K_{ij}$ 

# Averaging over M<sub>2</sub>

When averaged over M<sub>2</sub> we see that the eigenvalues of M<sub>1</sub> describe a determinantal point process with kernel K<sub>11</sub>.

$$\underbrace{\int \cdots \int}_{n-k \text{ times}} \mathcal{P}(x_1, \dots, x_n) dx_{k+1} \cdots dx_n = \frac{(n-k)!}{n!} \det \left( \mathcal{K}_{11}(x_i, x_j) \right)_{i,j=1}^k$$

▶ This is a particular example of a so-called biorthogonal ensemble.

# $A symptotic\ analysis$

<u>Question</u>: Find a full asymptotic description of the biorthogonal polynomials and the associated kernels.

- ► There exist several Riemann-Hilbert characterizations of the biorthogonal polynomials
  - Ercolani-Mclaughlin '01, Kapaev '03, Bertola-Eynard-Harnad '03, Kuijlaars-McLaughlin '05
- ► Except for the special in which both *V* and *W* are quadratic Ercolani-McLaughlin '01, a steepest descent analysis turns out to be complicated.

# Multiple Orthogonality

- The main idea in Kuijlaars-McLaughlin '05 is to interpret the polynomials as multiple orthogonal polynomials.
- ▶ Define the weight function w<sub>i</sub> by

$$w_j(x) = e^{-nV(x)} \int_{\mathbb{R}} y^j e^{-n(W(y) - \tau x y)} dy, \quad j = 0, 1, \dots d - 2.$$

where d = degree(W).

▶ The polynomials  $p_{k,n}$  are multiple orthogonal polynomials of type II with respect to the weights  $w_j$  on  $\mathbb{R}$ . For  $p_{n,n}$  this means that

$$\int_{\mathbb{R}} p_{n,n}(x) x^{l} w_{j}(x) dx = 0, \quad l = 0, \dots, n_{j} - 1, \quad j = 0, 1, \dots, d - 2,$$

where  $n_i$  is the integer part of (n+d-2-j)/(d-1).

#### The Riemann-Hilbert problem

- For multiple orthogonal polynomials a Riemann-Hilbert characterization is known Van Assche-Geronimo-Kuijlaars '01.
- $\blacktriangleright$  We seek for a  $d \times d$  matrix valued function Y such that

$$\left\{ \begin{array}{l} Y \text{ is analytic in } \mathbb{C} \setminus \mathbb{R} \\ \\ Y_+(x) = Y_-(x) \begin{pmatrix} 1 & w_0(x) & \dots & w_2(x) \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}, \qquad x \in \mathbb{R} \\ \\ Y(z) = (I + \mathcal{O}(1/z)) \operatorname{diag}(z^n, z^{-n_0}, \dots, z^{-n_{d-2}}), \quad z \to \infty \end{array} \right.$$

where  $n_j$  is the integer part of (n+d-2-j)/(d-1).

## The solution of the Riemann-Hilbert problem

The solution exists and is unique. Moreover

$$Y_{11}(z) = p_{n,n}(z)$$

#### Van Assche-Geronimo-Kuijlaars '01

▶ Also the kernel  $K_{11}^{(n)}$  can be expressed in Y

$$K_{11}^{(n)}(x,y) = \frac{1}{2\pi i(x-y)} \begin{pmatrix} 0 & w_0(y) & \cdots & w_2(y) \end{pmatrix} Y_+(y)^{-1} Y_+(x) \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

#### Daems-Kuijlaars '04

A steepest descent analysis for the RH problem in the general situation is still an important open problem!

## Equilibrium problem

- One of the obstacles is the lack of an equilibrium problem characterizing the limiting zero distribution.
- ▶ Recall that the one matrix unitary ensembles are given by

$$\frac{1}{Z_n} e^{-n \operatorname{Tr} V(M)} dM,$$

The limiting eigenvalue distribution of converges now to the equilibrium measure μ that minimizes the energy functional

$$\iint_{\mathbb{R}^2} \frac{1}{\log |x-y|} \mathrm{d}\mu(x) \mathrm{d}\mu(y) + \int_{\mathbb{R}} V(x) \mathrm{d}\mu(x).$$

This equilibrium measure is a key ingredient in the asymptotic analysis of the orthogonal polynomials.

# Quartic potential

From now we consider the two matrix model for the special case

$$W(y) = \frac{y^4}{4} + t \frac{y^2}{2}$$
 and  $V$  even

and consider the asymptotics of the polynomials  $p_{n,n}$  and the kernel  $K_{11}$  as  $n \to \infty$ .

We found an equilibrium problem in the cases

- t = 0. D-Kuijlaars '09 for the one-cut case and Mo '09 for the multicut case.
- $t \neq 0$  and  $V(x) = \frac{x^2}{2}$  D-Geudens-Kuijlaars '10.
- $t \neq 0$  and general even V D-Mo-Kuijlaars '10

Using the equilibrium problem we are able to perform a steepest descent analysis on the RH problem and prove asymptotic results.

# $\underline{t=0}$

# The equilibrium problem for t = 0

We seek to minimize the energy functional

$$\begin{split} I(\nu_1,\nu_2,\nu_3) &= \sum_{j=1}^3 \iint \log |\mathbf{x}-\mathbf{y}|^{-1} \ \mathrm{d}\nu_j(\mathbf{x}) \mathrm{d}\nu_j(\mathbf{y}) \\ &- \sum_{j=1}^2 \iint \log |\mathbf{x}-\mathbf{y}|^{-1} \ \mathrm{d}\nu_j(\mathbf{x}) \mathrm{d}\nu_{j+1}(\mathbf{y}) \\ &+ \int \left(V(\mathbf{x}) - \frac{3}{4} \tau^{4/3} |\mathbf{x}|^{4/3}\right) \ \mathrm{d}\nu_1(\mathbf{x}) \end{split}$$

among all measures  $(\nu_1, \nu_2, \nu_3)$  satisfying

- $oldsymbol{0}$   $u_1$  is a measure on  $\mathbb R$  with  $u_1(\mathbb R)=1$
- ${\color{red} {\mathfrak G}} \ {\color{blue} {\mathfrak V}_3}$  is a measure on  ${\mathbb R}$  with  ${\color{blue} {\mathfrak V}_3}({\mathbb R}) = 1/3$
- $\emptyset$   $v_2 \leq \sigma$  with

$$d\sigma(z) = \frac{\sqrt{3}\tau^{4/3}|z|^{1/3}}{2\pi} |dz|$$

## The minimizer

# Theorem (D-Kuijlaars, '09)

There is unique minimizer  $(\mu_1, \mu_2, \mu_3)$  of the energy functional I. Moreover, the measure  $\mu_1$  is the weak limit of the normalized zero distribution of the polynomial  $p_{n,n}$ ,

$$\frac{1}{n}\sum_{x:\ p_{n,n}(x)=0}\delta_x\to \mu_1$$

as  $n \to \infty$ .

#### The minimizer

## Theorem (D-Kuijlaars '09)

The minimizer  $(\mu_1, \mu_2, \mu_3)$  has the following properties

**1**  $\mu_1$  is supported on finitely many intervals  $\cup_{j=1}^r [a_j, b_j]$  and there exists real analytic  $h_j$  such that

$$\frac{\mathrm{d}\mu_1(x)}{\mathrm{d}x} = h_j(x)\sqrt{(b_j - x)(x - a_j)}, \quad x \in [a_j, b_j]$$

⊗  $μ_2$  is supported on iℝ and  $μ_2 = σ$  on i[-c,c]. Moreover, there exists an analytic function  $ψ_2$  such that

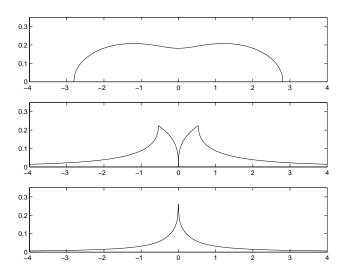
$$\mathrm{d}(\sigma-\mu_2)(y)=\rho_2(y)|\mathrm{d}y|$$

and  $\rho_2$  vanishes as as square root near  $y=\pm ic$ .

§  $\mu_3$  is supported on  $\mathbb R$  and there exists a function  $\rho_3$  which is real analytic in  $\mathbb R\setminus\{0\}$  and such that

$$d\mu_3(x) = \rho_3(x)dx$$

# Example: $V(x) = x^2/2$ and $\tau = 1$



#### Theorem

Let  $W(y)=y^4/4$  and V even. Let  $\mu_1$  be the first component of the minimizer of I. Then

The measure μ<sub>1</sub> also describes the limiting mean eigenvalues density for the matrix M<sub>1</sub>, i.e.

$$\lim_{n\to\infty}\frac{1}{n}K_{11}^{(n)}(x,x)=\frac{\mathrm{d}\mu_1(x)}{\mathrm{d}x}$$

Universality:
For x\* in the bulk:

$$\lim_{n\to\infty}\frac{1}{cn}K_{11}\left(x^*+\frac{u}{cn},x^*+\frac{v}{cn}\right)=\frac{\sin\pi(u-v)}{\pi(u-v)}$$

For  $x^*$  at the endpoints: Airy kernel.

▶ All critical cases from the one-matrix case can occur, but no other.

The one-cut case is D-Kuijlaars '09 and the multicut case is Mo '09

# $t \neq 0$ and V even

# The equilibrium problem for $t \neq 0$ and V even

We seek to minimize the energy functional

$$\begin{split} I(\nu_1, \nu_2, \nu_3) &= \sum_{j=1}^3 \iint \log |x-y|^{-1} \ \mathrm{d}\nu_j(x) \mathrm{d}\nu_j(y) \\ &- \sum_{j=1}^2 \iint \log |x-y|^{-1} \ \mathrm{d}\nu_j(x) \mathrm{d}\nu_{j+1}(y) \\ &+ \int V_1(x) \ \mathrm{d}\nu_1(x) + \int V_3(x) \ \mathrm{d}\nu_3(x) \end{split}$$

among all measures  $(\nu_1, \nu_2, \nu_3)$  satisfying

- $oldsymbol{0}$   $u_1$  is a measure on  $\mathbb R$  with  $u_1(\mathbb R)=1$

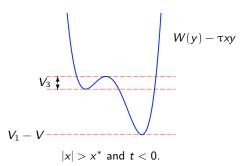
- $\emptyset$   $v_2 \leq \sigma$

# Definition of $V_1$

▶ The external field  $V_1$  is defined by

$$V_1(x) = V(x) + \min_{y \in \mathbb{R}} (W(y) - \tau xy), \quad x \in \mathbb{R}$$

▶ The external field  $V_3$  is the difference between the other two extreme values of  $W(y) - \tau xy$  (viewed as a function in y).



# Definition of $\sigma$

Again we consider

$$W'(\omega) - \tau z = \omega^3 + t\omega - \tau z = 0,$$

but now for  $z \in i\mathbb{R}$ . Then

$$\frac{\mathrm{d}\sigma(z)}{|\mathrm{d}z|} = \frac{\tau}{\pi} \operatorname{Re} \omega_1(z),$$

where  $\omega_1$  is the solution of the cubic equation with biggest real part.

$$\mathsf{supp}(\sigma) = (-\mathrm{i}\infty, -\mathrm{i} y^*] \cup [\mathrm{i} y^*, \mathrm{i}\infty)$$

where

$$y^* = \left\{ \begin{array}{ll} 0, & t < 0 \\ \frac{2t^{3/2}}{3\sqrt{3}\tau}, & t \ge 0 \end{array} \right.$$

#### The minimizer

## Theorem (D-Geudens-Kuijlaars '10, D-Kuijlaars-Mo '10)

There is unique minimizer  $(\mu_1, \mu_2, \mu_3)$  of the energy functional I. Moreover, the measure  $\mu_1$  is the weak limit of the normalized zero distribution of the polynomial  $p_{n,n}$ ,

$$\frac{1}{n}\sum_{x \;:\; p_{n,n}(x)=0} \delta_x \to \mu_1$$

as  $n \to \infty$ .

# $Supports\ of\ the\ measure$

#### Theorem (D-Kuijlaars-Mo '10)

The minimizer  $(\mu_1, \mu_2, \mu_3)$  has the following properties

•  $\mu_1$  is supported on finitely many intervals  $\cup_{j=1}^r [a_j, b_j]$  and there exists real analytic  $h_j$  such that

$$\frac{\mathrm{d}\mu_1(x)}{\mathrm{d}x} = h_j(x)\sqrt{(b_j - x)(x - a_j)}, \quad x \in [a_j, b_j]$$

0  $\mu_2 - \sigma$  on  $i\mathbb{R} \setminus i[-c_2, c_2]$  and there exsist exists an analytic function  $\psi_2$  such that

$$\mathrm{d}(\sigma-\mu_2)(y)=\rho_2(y)|\mathrm{d}y|.$$

and if  $c_2 > 0$  then  $\rho_2$  vanishes as a square root at  $\pm i c_2$ .

 $\mathfrak{S}$   $\mu_3$  is supported on  $\mathbb{R} \setminus (-c_3, c_3)$  and there exists a function  $\rho_3$  which is real analytic in  $\mathbb{R} \setminus [-c_3, c_3]$  and such that

$$d\mu_3(x) = \rho_3(x)dx$$

and if  $c_3 > 0$  then  $\rho_3$  vanishes as a square root at  $\pm c_3$ .



## Theorem (D-Kuijlaars-Mo '10)

Let  $W(y) = y^4/4 + ty^2/2$  and V even. Let  $\mu_1$  be the first component of the minimizer of I. Then

► The measure  $\mu_1$  also describes the limiting mean eigenvalues density for the matrix  $M_1$ , i.e.

$$\lim_{n\to\infty}\,\frac{1}{n}K_{11}^{(n)}(x,x)=\frac{\mathrm{d}\mu_1(x)}{\mathrm{d}x}$$

Universality:
For x\* in the bulk:

$$\lim_{n\to\infty}\frac{1}{cn}K_{11}\left(x^*+\frac{u}{cn},x^*+\frac{v}{cn}\right)=\frac{\sin\pi(u-v)}{\pi(u-v)}$$

For  $x^*$  at regular endpoints: Airy kernel.

# Supports of the measure

#### In the analysis we distinguish the cases

Case I: 
$$0 \in S(\mu_1)$$
,  $0 \notin S(\sigma - \mu_2)$  and  $0 \in S(\mu_3)$ 

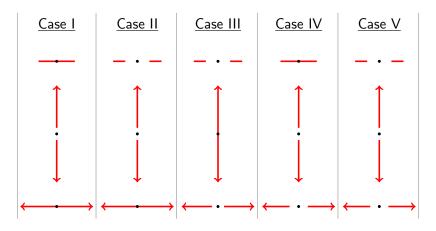
Case II: 
$$0 \notin S(\mu_1)$$
,  $0 \notin S(\sigma - \mu_2)$  and  $0 \in S(\mu_3)$ 

Case III:0 
$$\notin S(\mu_1),\ 0 \in S(\sigma-\mu_2)$$
 and  $0 \notin S(\mu_3)$ 

Case IV:
$$0 \in S(\mu_1)$$
,  $0 \notin S(\sigma - \mu_2)$  and  $0 \notin S(\mu_3)$ 

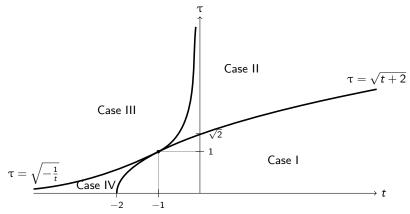
Case V: 
$$0 \notin S(\mu_1)$$
,  $0 \notin S(\sigma - \mu_2)$  and  $0 \notin S(\mu_3)$ 

Critical phenomena occur when going from one case to the other.



On top of each the supports  $S(\mu_1)$ ,  $S(\sigma - \mu_2)$  and  $S(\mu_3)$  (also the cuts of the corresponding Riemann surface)

# Phase diagram for $V(x) = x^2/2$



- ▶ Case I  $\rightarrow$  Case II: Merging in  $S(\mu_1) \rightarrow$  Painlevé II
- ▶ Case IV  $\rightarrow$  Case III:  $S(\mu_1)$  splits and  $S(\sigma \mu_2)$  merges  $\rightarrow$  Pearcey
- ▶ Intersection point: simulataneous transition in all three measures. A new kernel appears D-Geudens '11?.

# Derivation of the equilibrium problem

- ▶ In D-Kuijlaars, D-Kuijlaars-Mo we use the equilibrium problem as an anzats and prove the results as a consequence of the RH analaysis.
- In D-Geudens-Kuijlaars we give a constructive approach how to obtain the equilibrium problem for  $V(x) = x^2/2$  and  $W(y) = y^4/4 + ty^2$ .

# Derivation of the equilibrium problem

- ▶ If  $V(x) = x^2/2$  then  $q_{k,n}$  are orthogonal polynomials on the real line. The asymptotics of these polynomials is well-known. In particular the asymptotics for the recurrence coefficients
- ▶ The polynomials  $p_{k,n}$  satisfy a five term recurrence and the coefficients can be expressed in terms of the recurrence coefficients of the other family. So we know the asymptotic behavior of the recurrence coefficients.
- ► The zeros of the polynomials are the eigenvalues of the 'Jacobi' matrix. Which in the limit, locally has a banded Toeplitz structure.
- ▶ In D-Kuijlaars '08 we formulated an equilibrium problem for the eigenvalue distribution of banded Toeplitz matrices. The equilibrium problem for the biorthogonal family follows by integrating these equilibrium problems.

# $Banded\ Toeplitz\ matrices$

Let  $T_n(a)$  be a Toeplitz matrix

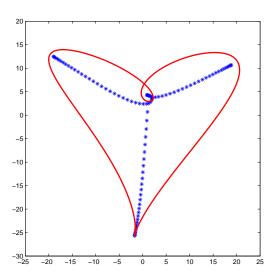
$$(T_n(a))_{jk} = a_{j-k}, \qquad j, k = 1, \ldots, n$$

for which the symbol a has only finitely many Fourier coefficients

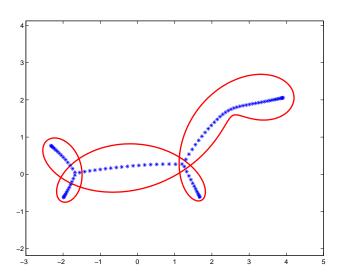
$$a(z) = \sum_{j=-q}^{p} a_j z^j, \qquad p, q > 0, \quad a_{-p}, a_q \neq 0$$

What is the limiting behavior of the spectrum  $\sigma(T_n(a))$  as  $n \to \infty$ ?

# Example



# Example



### An associated Riemann surface

The central object to study is the algebraic equation

$$a(z) - \lambda = \sum_{j=-q}^{p} a_q z^j - \lambda = 0.$$

For each  $\lambda$  this equation has p+q solutions which we order according to magnitude

$$0<|z_1(\lambda)|\leq\ldots\leq|z_{\rho+\mathfrak{q}}(\lambda)|$$

Define

$$\Gamma_k = \{\lambda \mid |z_{q+k}(\lambda)| = |z_{q+k+1}(\lambda)|\},\,$$

for 
$$k = -q + 1, \dots, p - 1$$
.

(Assumption: 
$$gcd\{k \mid a_k \neq 0\} = 1$$
)

### The contours $\Gamma_k$ and the measures $\mu_k$

The contour Γ<sub>0</sub> is bounded, the other are unbounded. All consist of finitely many analytic arcs



▶ Define the measure  $\mu_k$  on  $\Gamma_k$  by

$$\mathrm{d}\mu_{\textbf{k}}(\lambda) = \frac{1}{2\pi \mathrm{i}} \sum_{j=1}^{q+k} \left( \frac{z_{j_+}'(\lambda)}{z_{j_+}(\lambda)} - \frac{z_{j_-}'(\lambda)}{z_{j_-}(\lambda)} \right) \; \mathrm{d}\lambda,$$

**Each** measure  $\mu_k$  is positive measure on  $\Gamma_k$  with finite total mass given by

$$\mu_k(\Gamma_k) = \left\{ egin{array}{ll} rac{q+k}{q} & -q+1 \leq k \leq 0 \ rac{p-k}{p} & 0 \leq k \leq p-1 \end{array} 
ight.$$

### Two result on the asymptotic behavior

#### Theorem (Schmidt-Spitzer '60)

The eigenvalues of  $T_n(a)$  accumulate on the contour  $\Gamma_0$ 

$$\sigma(T_n(a)) \to \Gamma_0$$

as  $n \to \infty$ .

### Theorem (Hirschman '67)

The measure  $\mu_0$  describes the limiting distribution of the eigenvalues along  $\Gamma_0,$ 

$$\frac{1}{n}\sum_{\lambda\in\sigma(T_n(a))}\delta_\lambda\to\mu_0$$

as  $n \to \infty$ .

### Equilibrium problem for banded Toeplitz matrices

#### Theorem (D-Kuijlaars '08)

The vector of measures  $(\mu_{-q+1},\ldots,\mu_{p-1})$  is the unique minimizer of the energy functional E defined by

$$E(\nu_{-q+1}, \dots \nu_{p-1}) = \sum_{k=-q+1}^{p-1} \iint \log \frac{1}{|x-y|} d\nu_k(x) d\nu_k(y)$$
$$-\sum_{k=-q+1}^{p-2} \iint \log \frac{1}{|x-y|} d\nu_k(x) d\nu_{k+1}(y)$$

where each measure  $v_k$  is a measure on  $\Gamma_k$  with total mass

$$u_k(\Gamma_k) = \left\{ \begin{array}{ll} \frac{q+k}{q}, & k \leq 0 \\ \frac{p-k}{p}, & k \geq 0 \end{array} \right.$$

### Equilibrium problem for banded Toeplitz matrices

#### Theorem (D-Kuijlaars '08)

The vector of measures  $(\mu_{-q+1}, \dots, \mu_{p-1})$  is the unique minimizer of the energy functional E defined by

$$E(\nu_{-q+1}, \dots \nu_{p-1}) = \sum_{k=-q+1}^{p-1} \iint \log \frac{1}{|x-y|} d\nu_k(x) d\nu_k(y)$$
$$-\sum_{k=-q+1}^{p-2} \iint \log \frac{1}{|x-y|} d\nu_k(x) d\nu_{k+1}(y)$$

where each measure  $v_k$  is a measure on  $\Gamma_k$  with total mass

$$u_k(\Gamma_k) = \begin{cases} \frac{q+k}{q}, & k \leq 0\\ \frac{p-k}{p}, & k \geq 0 \end{cases}$$

Generalization to Toeplitz matrices with rational symbols (Delvaux-D '10)

### Back to the biorthogonal polynomials

The biorthogonal polynomials were defined by the relation

$$\iint p_{k,n}(x)q_{j,n}(y)\mathrm{e}^{-n(V(x)+W(y)-\tau xy)}\;\,\mathrm{d}x\mathrm{d}y=0,\qquad j\neq k$$

and we were interested in the case

$$W(y) = \frac{1}{4}y^4 + \frac{1}{2}tx^2$$
 and  $V(x) = \frac{1}{2}x^2$ 

and asymptotics for  $p_{n,n}$  and  $K_{11}$ .

## $V(x) = x^2/2$ implies $q_{k,n}$ are OP's

#### Theorem

If  $V(x) = x^2/2$  then  $q_{k,n}$  is the monic orthogonal polynomial of degree k wrt the weight

$$e^{-n(y^4/4-\tau^2y^2/2)}dy.$$

Proof Recall that

$$P_{k,n}(y) = e^{-nW(y)} \int p_{k,n}(x) e^{-n(V(x) - \tau xy)} dx$$

and

$$\int P_{k,n}(y)q_{j,n}(y) dy = 0, \quad j \neq k.$$

Since  $V(x) = x^2/2$  it follows that  $P_{k,n}$  is a polynomial of degree k multiplied with a Gaussian and the statement follows.

### Recurrence coefficients (1)

► The orthogonal polynomials  $q_{k,n}$  for  $e^{-n\left(y^4/4-\tau^2y^2/2\right)}$  satisfy a recurrence relation

$$yq_{k,n}(y) = q_{k+1,n}(y) + a_{k,n}q_{k-1,n}(y)$$

▶ Bleher and Its proved that in the limit  $k, n \to \infty$  and  $k/n \to \xi$  we have

$$\lim_{n\to\infty,\ k/n\to\xi}a_{k,n}=\frac{\tau^2+\sqrt{\tau^4+12\xi}}{6},\qquad \xi>\tau^4/4$$

and

$$\lim_{n\to\infty,\ k/n\to\xi}a_{k,n}=\begin{cases} \frac{\tau^2-\sqrt{\tau^4-4\xi}}{2}, & k \text{ even}\\ \frac{\tau^2+\sqrt{\tau^4-4\xi}}{2}, & k \text{ odd} \end{cases}, \qquad \xi<\tau^4/4$$

# Recurrence coefficients (2)

▶ Using integration by parts and the recurrence for  $q_{k,n}$ , we find that the polynomials  $p_{k,n}$  satisfy a longer recursion

$$xp_{k,n}(x) = p_{k+1,n}(x) + b_{k,n}p_{k-1,n}(x) + c_{k,n}p_{k-3,n}(x)$$

▶ The recurrence coefficients  $b_{k,n}$  and  $c_{k,n}$  can be expressed in terms of the recurrence coefficients  $a_{k,n}$ 

$$b_{k,n} = (a_{k+1,n} + a_{k,n} + a_{k-1,n})a_{k,n}$$
  
 $c_{k,n} = \tau^2 a_{k,n} a_{k-1,n} a_{k-2,n}$ 

▶ Since we know the asymptotic behavior of  $a_{k,n}$  we also know the asymptotic behavior of  $b_{k,n}$  and  $c_{k,n}$ .

### Recurrence coefficients (3)

 $\triangleright$  Put the recurrence coefficients in a matrix  $R_n$ 

Then the zeros of  $p_{n,n}$  coincide with the eigenvalues of  $R_n$ 

**b** By the asymptotic behavior of the recurrence coefficients it follows that  $R_n$  locally has a banded Toeplitz structure

### Recurrence coefficients (4)

▶ If we zoom in around the *kk*-entry, with

$$\frac{k}{n} \approx \xi$$

then  $R_n$  locally looks like a Toeplitz matrix with a certain symbol

- ▶ For each  $\xi \in (0,1]$  we obtain three measures  $\mu_{0,\xi}$ ,  $\mu_{1,\xi}$  and  $\mu_{2,\xi}$  defined on the contours  $\Gamma_{0,\xi}$ ,  $\Gamma_{1,\xi}$  and  $\Gamma_{2,\xi}$ .
- ▶ The limiting zero distribution  $\mu_0$  is now given by

$$\mu_0=\int_0^1\mu_{0,\xi}~\mathrm{d}\xi$$

We can also integrate the other measures,

$$\mu_j = \int_0^1 \mu_{j,\xi} \, d\xi$$

and the energy problem to obtain the energy function for  $(\mu_0, \mu_1, \mu_2)$ .