The cavity approach to the localization transition in random matrices

Fernando L. Metz Katholieke Universiteit Leuven

December 18, 2010
VI BRUNEL Workshop on Random Matrix Theory

Outline

Introduction

- The cavity method
- 3 Laplacian random matrices

4 Lévy random matrices

Part I

Introduction

Examples of localization

- Anderson transition:
 - \Rightarrow particle can hop between sites with random energies E_1, \dots, E_N ;
 - \Rightarrow strong disorder \rightarrow localization of $\psi_i(t)$.
- Gene coexpression networks:
 - \Rightarrow nodes \rightarrow genes; connectivity matrix \rightarrow correlation between genes;
 - \Rightarrow localized eigenvectors \rightarrow important or influential genes of the network.
 - S Jalan et al, PRE 81, 2010.
- Diffusion on random graphs
 J-Y Fortin, JPA 38, 2005.
- Dynamics of glasses → spherical model
 G Semerjian and LF Cugliandolo, EL 61, 2003.

The inverse participation ratio (IPR)

Ensemble of N × N real symmetric matrices:

$$J\psi_{\mu} = \lambda_{\mu}\psi_{\mu}, \quad \mu = 1, \dots, N$$

$$\lambda_{\mu} \in \mathbb{R}, \quad \sum_{i=1}^{N} |\psi_{\mu}^{i}|^{2} = 1.$$

The inverse participation ratio (IPR)

• Ensemble of $N \times N$ real symmetric matrices:

$$J\psi_{\mu} = \lambda_{\mu}\psi_{\mu}, \quad \mu = 1, \dots, N$$

$$\lambda_{\mu} \in \mathbb{R}, \quad \sum_{i=1}^{N} |\psi_{\mu}^{i}|^{2} = 1.$$

• The IPR corresponding to a given state μ : $Y_{\mu}^{N} = \sum_{i=1}^{N} |\psi_{\mu}^{i}|^{4}$.

The inverse participation ratio (IPR)

• Ensemble of $N \times N$ real symmetric matrices:

$$J\psi_{\mu} = \lambda_{\mu}\psi_{\mu}, \quad \mu = 1, \dots, N$$

$$\lambda_{\mu} \in \mathbb{R}, \quad \sum_{i=1}^{N} |\psi_{\mu}^{i}|^{2} = 1.$$

- The IPR corresponding to a given state μ : $Y_{\mu}^{N} = \sum_{i=1}^{N} |\psi_{\mu}^{i}|^{4}$.
- If $|\psi_{\mu}^{i}|^{2} = |\psi_{\mu}|^{2} \neq 0$ for d sites and zero otherwise:

$$|\psi_{\mu}|^2 = O(1/d) \Rightarrow Y_{\mu}^N = O(1/d)$$
.

- Extended states: $d = O(N) \Rightarrow \lim_{N \to \infty} Y_u^N = 0$.
- Localized states: d is finite $\Rightarrow \lim_{N\to\infty} Y_{\mu}^N = O(1/d)$.
- IPR ⇒ distinction between localized and extended states.

The average density of states (DOS):

$$\rho(\lambda) = \frac{1}{N} \left\langle \sum_{\mu=1}^{N} \delta(\lambda - \lambda_{\mu}) \right\rangle_{\boldsymbol{J}}$$

The average density of states (DOS):

$$\rho(\lambda) = \frac{1}{N} \left\langle \sum_{\mu=1}^{N} \delta(\lambda - \lambda_{\mu}) \right\rangle_{\boldsymbol{J}}$$

 $N\rho(\lambda)d\lambda \Rightarrow$ average number of states between λ and $\lambda + d\lambda$

The average density of states (DOS):

$$\rho(\lambda) = \frac{1}{N} \left\langle \sum_{\mu=1}^{N} \delta(\lambda - \lambda_{\mu}) \right\rangle_{\boldsymbol{J}}$$

 $N\rho(\lambda)d\lambda \Rightarrow$ average number of states between λ and $\lambda + d\lambda$

$$\left[\sum_{\mu=1}^{N}Y_{\mu}^{N}\delta(\lambda-\lambda_{\mu})\right]d\lambda\Rightarrow\text{ sum of the IPR's of all the states lying between }\lambda\text{ and }\lambda+d\lambda.$$

The average density of states (DOS):

$$\rho(\lambda) = \frac{1}{N} \left\langle \sum_{\mu=1}^{N} \delta(\lambda - \lambda_{\mu}) \right\rangle_{\boldsymbol{J}}$$

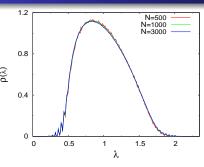
 $N\rho(\lambda)d\lambda \Rightarrow$ average number of states between λ and $\lambda+d\lambda$

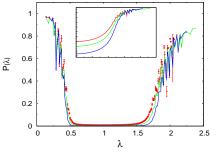
$$\left[\sum_{\mu=1}^{N} Y_{\mu}^{N} \delta(\lambda - \lambda_{\mu})\right] d\lambda \Rightarrow \text{sum of the IPR's of all the states lying}$$
 between λ and $\lambda + d\lambda$.

The average inverse participation ratio:

$$P(\lambda) = \frac{1}{N\rho(\lambda)} \left\langle \sum_{\mu=1}^{N} Y_{\mu}^{N} \delta(\lambda - \lambda_{\mu}) \right\rangle_{\boldsymbol{J}}.$$

Diagonalization results





Laplacian matrix of a sparse graph:

$$\begin{split} J_{ij} &= c_{ij} K_{ij} - \delta_{ij} \sum_{k=1}^N c_{ik} K_{ik} \;, \\ p_c(c_{ij}) &= (1 - \frac{c}{N}) \delta_{c_{ij},0} + \frac{c}{N} \delta_{c_{ij},1} \;, \\ K_{ij} &= -1/c \;. \end{split}$$

$$\Rightarrow 500 \text{ matrices with } c = 20.$$

- Eigenvectors undergo a localization transition.
- $\bullet \ \ \, \text{Tails of the spectrum} \rightarrow \text{fluctuations}.$
- Localization threshold \rightarrow one needs large values of N.
- Diagonalization is computationally expensive.

Aim of this work

Study the localization transition by calculating $P(\lambda)$ for $N \to \infty$.

- This work:
 - ⇒ Cavity method: P Cizeau and JP Bouchaud, PRE 50, 1994, T Rogers and IP Castillo, PRE 79, 2009.
 - \Rightarrow Obtain results for the localization threshold λ_c .
 - ⇒ Ensembles: Laplacian matrices of sparse random graphs and fully-connected Lévy matrices.

Part II

The cavity method

The Green function

• The Green function of a single instance *J*:

$$G_{ij}(z) = (z\boldsymbol{I} - \boldsymbol{J})_{ij}^{-1} = \sum_{\mu=1}^{N} \frac{\psi_{\mu}^{i}(\psi_{\mu}^{j})^{*}}{z - \lambda_{\mu}}, \ z = \lambda - i\epsilon.$$

The Green function

The Green function of a single instance J:

$$G_{ij}(z) = (z\boldsymbol{I} - \boldsymbol{J})_{ij}^{-1} = \sum_{\mu=1}^{N} \frac{\psi_{\mu}^{i}(\psi_{\mu}^{j})^{*}}{z - \lambda_{\mu}}, \ z = \lambda - i\epsilon.$$

• The DOS and the IPR in terms of $G_{ii}(z)$:

$$\rho(\lambda) = \lim_{\epsilon \to 0^+} \frac{1}{\pi N} \left\langle \sum_{i=1}^{N} \operatorname{Im} G_{ii}(\lambda - i\epsilon) \right\rangle_{\boldsymbol{J}}$$

$$P(\lambda) = \lim_{\epsilon \to 0^+} \frac{\epsilon}{\pi N \rho(\lambda)} \left\langle \sum_{i=1}^{N} \left| G_{ii}(\lambda - i\epsilon) \right|^2 \right\rangle_{\boldsymbol{J}}$$

The Green function

• The Green function of a single instance *J*:

$$G_{ij}(z) = (z\boldsymbol{I} - \boldsymbol{J})_{ij}^{-1} = \sum_{\mu=1}^{N} \frac{\psi_{\mu}^{i}(\psi_{\mu}^{j})^{*}}{z - \lambda_{\mu}}, \ z = \lambda - i\epsilon.$$

• The DOS and the IPR in terms of $G_{ii}(z)$:

$$\rho(\lambda) = \lim_{\epsilon \to 0^{+}} \frac{1}{\pi N} \left\langle \sum_{i=1}^{N} \operatorname{Im} G_{ii}(\lambda - i\epsilon) \right\rangle_{\boldsymbol{J}} = \frac{1}{\pi} \lim_{\epsilon \to 0^{+}} \left\langle \operatorname{Im} \omega \right\rangle_{\epsilon, \lambda} ,$$

$$P(\lambda) = \lim_{\epsilon \to 0^{+}} \frac{\epsilon}{\pi N \rho(\lambda)} \left\langle \sum_{i=1}^{N} \left| G_{ii}(\lambda - i\epsilon) \right|^{2} \right\rangle_{\boldsymbol{J}} = \frac{1}{\pi \rho(\lambda)} \lim_{\epsilon \to 0^{+}} \epsilon \left\langle |\omega|^{2} \right\rangle_{\epsilon, \lambda} ,$$

where

$$\langle f(\omega) \rangle_{\epsilon,\lambda} = \int d\omega W_{\epsilon,\lambda}(\omega) f(\omega) , \quad W_{\epsilon,\lambda}(\omega) = \frac{1}{N} \left\langle \sum_{i=1}^{N} \delta \left[\omega - G_{ii}(\lambda - i\epsilon) \right] \right\rangle_{\mathbf{J}}.$$

• $W_{\epsilon,\lambda}(\omega) \Rightarrow$ distribution of the real and imaginary parts of $G_{ii}(\lambda - i\epsilon)$.

Models defined on random graphs

• We can represent $G_{ii}(z)$ as a Gaussian integral:

$$G_{ii}(z) = i \int d\mathbf{x} \, x_i^2 \mathcal{P}_z(\mathbf{x}) , \ x_i \in \mathbb{R},$$

where

$$\mathcal{P}_z(x) = \frac{\exp{[-H_z(x)]}}{\int dx \exp{[-H_z(x)]}}, \ H_z(x) = \frac{i}{2} \sum_{ij=1}^N x_i (z - J)_{ij} x_j.$$

Analogy with models defined on random graphs:

 $\Rightarrow x_1, \dots, x_N \to \text{state variables of } N \text{ interacting nodes;}$

 $\Rightarrow J_{ij} \rightarrow$ interaction strength between nodes *i* and *j*;

 $\Rightarrow H_z(x) \rightarrow \mathsf{Hamiltonian};$

 $\Rightarrow \mathcal{P}_z(x_i) \to \text{single-site marginals.}$

• Calculation of $\mathcal{P}_z(x_i) \Rightarrow$ cavity method.

Equations for the single-site functions

Cavity graph ⇒ graph without a node and its connections;

 $\Rightarrow \mathcal{P}_z^{(l)}(x_k) \to \text{local marginal in a graph without node } l.$

Equations for the single-site functions

- Cavity graph \Rightarrow graph without a node and its connections; $\Rightarrow \mathcal{P}_z^{(l)}(x_k) \to \text{local marginal in a graph without node } l.$
- Local marginals in the original graph $(J_{ii} = 0)$:

$$\mathcal{P}_z(x_k) \sim \int \left[\prod_{j \in \partial_k} dx_j\right] \mathcal{P}_z^{(k)}(\boldsymbol{x}_{\partial_k}) \exp\left(-\frac{i}{2}zx_k^2 + ix_k \sum_{j \in \partial_k}^N J_{kj}x_j\right),$$

 $\partial_k o$ set of nodes connected to node k

 $oldsymbol{x}_{\partial_k}
ightarrow$ state variables of the nodes belonging to ∂_k

Equations for the single-site functions

- Cavity graph \Rightarrow graph without a node and its connections; $\Rightarrow \mathcal{P}_z^{(l)}(x_k) \to \text{local marginal in a graph without node } l.$
- Local marginals in the original graph $(J_{ii} = 0)$:

$$\mathcal{P}_z(x_k) \sim \int \left[\prod_{j \in \partial_k} dx_j \right] \mathcal{P}_z^{(k)}(\boldsymbol{x}_{\partial_k}) \exp \left(-\frac{i}{2} z x_k^2 + i x_k \sum_{j \in \partial_k}^N J_{kj} x_j \right),$$

 $\partial_k o$ set of nodes connected to node k

 $oldsymbol{x}_{\partial_k}
ightarrow$ state variables of the nodes belonging to ∂_k

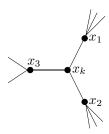
For $l \in \partial_k$:

$$\mathcal{P}_z^{(l)}(x_k) \sim \int \left[\prod_{j \in \partial_k \setminus l} dx_j \right] \mathcal{P}_z^{(k)}(\boldsymbol{x}_{\partial_k \setminus l}) \exp\left(-\frac{i}{2} z x_k^2 + i x_k \sum_{j \in \partial_k \setminus l}^N J_{kj} x_j \right).$$

$$\mathcal{P}_z^{(k)}(\boldsymbol{x}_{\partial_k}) = \prod_{j \in \partial_k} \mathcal{P}_z^{(k)}(x_j)$$

$$\mathcal{P}_z^{(k)}(\boldsymbol{x}_{\partial_k}) = \prod_{j \in \partial_k} \mathcal{P}_z^{(k)}(x_j)$$

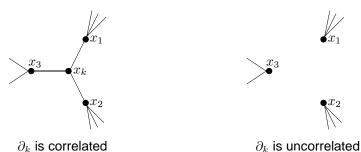
⇒ Sparse random matrices:



 ∂_k is correlated

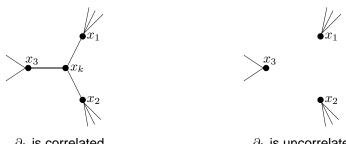
$$\mathcal{P}_z^{(k)}(\boldsymbol{x}_{\partial_k}) = \prod_{j \in \partial_k} \mathcal{P}_z^{(k)}(x_j)$$

⇒ Sparse random matrices:



$$\mathcal{P}_z^{(k)}(\boldsymbol{x}_{\partial_k}) = \prod_{j \in \partial_k} \mathcal{P}_z^{(k)}(x_j)$$

⇒ Sparse random matrices:



 ∂_k is correlated

 ∂_k is uncorrelated

- ⇒ Fully-connected random matrices:
- \rightarrow each node interacts with all the other N-1 nodes;
- \rightarrow fully-connected spin systems \rightarrow factorization holds on the cavity graph.

Equations for the Green function

• Gaussian ansatz: $\mathcal{P}_z(x_i) \sim \exp\left[-\frac{ix_i^2}{2G_{ii}(z)}\right], \quad \mathcal{P}_z^{(k)}(x_i) \sim \exp\left[-\frac{ix_i^2}{2G_{ii}^{(k)}(z)}\right].$

 $G_{ii}^{(k)}(z) \Rightarrow$ Green function of J where node $k \in \partial_i$ has been removed.

Equations for the Green function

 $G_{ii}^{(k)}(z) \Rightarrow$ Green function of J where node $k \in \partial_i$ has been removed.

• The diagonal elements of G(z) are obtained from:

$$G_{ii}(z) = \frac{1}{z - \sum_{j \in \partial_i} H[J_{ij}, G_{jj}^{(i)}(z)]}, \quad G_{ii}^{(k)}(z) = \frac{1}{z - \sum_{j \in \partial_i \setminus k} H[J_{ij}, G_{jj}^{(i)}(z)]}.$$

$$H[J,\omega]=J^2\omega$$

These equations determine {Gii(z)} for a single instance of J.

Part III

Laplacian random matrices

$$J_{ij} = c_{ij}K_{ij} - \delta_{ij}\sum_{k=1}^{N} c_{ik}K_{ik}$$
, $\sum_{j=1}^{N} J_{ij} = 0$.

$$J_{ij} = c_{ij}K_{ij} - \delta_{ij}\sum_{k=1}^{N} c_{ik}K_{ik}$$
, $\sum_{j=1}^{N} J_{ij} = 0$.

• Elements of the connectivity matrix ($c_{ii} = 0$):

$$p_c(c_{ij}) = (1 - \frac{c}{N})\delta_{c_{ij},0} + \frac{c}{N}\delta_{c_{ij},1} \longrightarrow p(k) = \frac{c^k \exp(-c)}{k!}$$

- $\Rightarrow c$ is the average number of connections per node.
- \Rightarrow J has a sparse structure for $N \to \infty$.

$$J_{ij} = c_{ij}K_{ij} - \delta_{ij}\sum_{k=1}^{N} c_{ik}K_{ik}$$
, $\sum_{j=1}^{N} J_{ij} = 0$.

• Elements of the connectivity matrix ($c_{ii} = 0$):

$$p_c(c_{ij}) = (1 - \frac{c}{N})\delta_{c_{ij},0} + \frac{c}{N}\delta_{c_{ij},1} \longrightarrow p(k) = \frac{c^k \exp(-c)}{k!}$$

- $\Rightarrow c$ is the average number of connections per node.
- \Rightarrow **J** has a sparse structure for $N \to \infty$.
- Nonzero edges of the graph:

Fixed values
$$\Rightarrow p_K(K_{ij}) = \delta(K_{ij} + 1/c)$$
.

Gaussian disorder $\Rightarrow p_K(K_{ij}) \sim \exp\left[-\frac{c}{2}K_{ij}^2\right]$.

$$J_{ij} = c_{ij}K_{ij} - \delta_{ij}\sum_{k=1}^{N} c_{ik}K_{ik}$$
, $\sum_{j=1}^{N} J_{ij} = 0$.

• Elements of the connectivity matrix ($c_{ii} = 0$):

$$p_c(c_{ij}) = (1 - \frac{c}{N})\delta_{c_{ij},0} + \frac{c}{N}\delta_{c_{ij},1} \longrightarrow p(k) = \frac{c^k \exp(-c)}{k!}$$

- $\Rightarrow c$ is the average number of connections per node.
- \Rightarrow J has a sparse structure for $N \to \infty$.
- Nonzero edges of the graph:

Fixed values
$$\Rightarrow p_K(K_{ij}) = \delta(K_{ij} + 1/c)$$
.
Gaussian disorder $\Rightarrow p_K(K_{ij}) \sim \exp\left[-\frac{c}{2}K_{ij}^2\right]$.

• Cavity method: $H(K,\omega) = \frac{K^2 \omega}{1+K\omega} - K$.

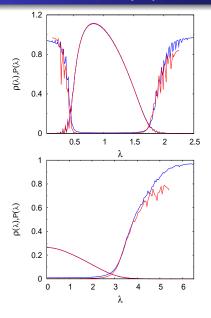
Distribution of the Green function

$$W_{\epsilon,\lambda}(\omega) = \sum_{k=0}^{\infty} p(k) \int \left[\prod_{l=1}^{k} d\omega_l dK_l W_{\epsilon,\lambda}(\omega_l) p_K(K_l) \right] \delta\left(\omega - \frac{1}{z - \sum_{l=1}^{k} H(K_l,\omega_l)}\right)$$

- Population dynamics:
 - 1) Numerical solution for $W_z(\omega) \to {\sf very\ small\ } \epsilon$ (R Kühn, JPA **41**, 2008).
 - 2) Calculate $\rho(\lambda)$ and $P(\lambda)$ by using:

$$P(\lambda) = \frac{1}{\pi \rho(\lambda)} \lim_{\epsilon \to 0^+} \epsilon \langle |\omega|^2 \rangle_{\epsilon,\lambda} ,$$
$$\rho(\lambda) = \frac{1}{\pi} \lim_{\epsilon \to 0^+} \langle \text{Im}\omega \rangle_{\epsilon,\lambda} .$$

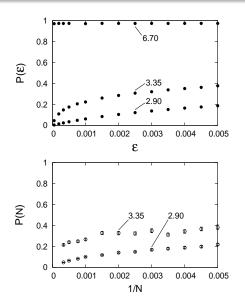
Results from population dynamics - c=20



- Upper graph ⇒ fixed edges
 Lower graph ⇒ Gaussian disorder
- Pop. dynamics (blue lines): $N_s = 5 \times 10^6$, $\epsilon = 0.001$.
- Diagonalization (red lines): 500 samples of N = 3000.

- \Rightarrow Fixed edges \rightarrow regular peaks.
- $\Rightarrow P(\lambda) \to 1 \text{ for } \lambda \gg 1.$

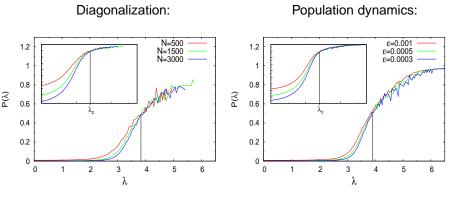
The ϵ dependence



- Effect of ϵ and N in the case of Gaussian disorder.
- Localization transition becomes sharper for $N \to \infty$.
- We use the ϵ independence as a criterion to estimate λ_c .

The mobility edge λ_c

Gaussian disorder: c = 20



Part IV

Lévy random matrices

• The elements J_{ij} ($J_{ii} = 0$) are drawn from:

$$P_{\alpha}(J) = \int \frac{dq}{2\pi} \exp(-iqJ) L_{\alpha}(q) , \qquad \ln L_{\alpha}(q) = -\left|\frac{q}{\sqrt{2}N^{1/\alpha}}\right|^{\alpha} .$$

• The elements J_{ij} ($J_{ii} = 0$) are drawn from:

$$P_{\alpha}(J) = \int \frac{dq}{2\pi} \exp(-iqJ) L_{\alpha}(q) , \qquad \ln L_{\alpha}(q) = -\left|\frac{q}{\sqrt{2}N^{1/\alpha}}\right|^{\alpha} .$$

• $\alpha = 2 \Rightarrow$ Gaussian distribution with variance 1/N.

• The elements J_{ij} ($J_{ii} = 0$) are drawn from:

$$P_{\alpha}(J) = \int \frac{dq}{2\pi} \exp(-iqJ) L_{\alpha}(q)$$
, $\ln L_{\alpha}(q) = -\left|\frac{q}{\sqrt{2}N^{1/\alpha}}\right|^{\alpha}$.

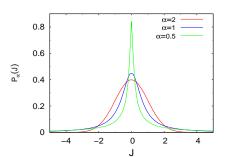
- $\alpha = 2 \Rightarrow$ Gaussian distribution with variance 1/N.
- $\alpha < 2 \Rightarrow \lim_{|J| \to \infty} P_{\alpha}(J) = \frac{C_{\alpha}}{N|J|^{\alpha+1}}$

 \Rightarrow Second and higher moments of $P_{\alpha}(J)$ diverge.

• The elements J_{ij} ($J_{ii} = 0$) are drawn from:

$$P_{\alpha}(J) = \int \frac{dq}{2\pi} \exp(-iqJ) L_{\alpha}(q)$$
, $\ln L_{\alpha}(q) = -\left|\frac{q}{\sqrt{2}N^{1/\alpha}}\right|^{\alpha}$.

- $\alpha = 2 \Rightarrow$ Gaussian distribution with variance 1/N.
- $\alpha < 2 \Rightarrow \overline{\lim_{|J| \to \infty} P_{\alpha}(J) = \frac{C_{\alpha}}{N|J|^{\alpha+1}}}$
 - \Rightarrow Second and higher moments of $P_{\alpha}(J)$ diverge.



$$N \to \infty$$
:

- \Rightarrow extensive number of elements of order $O(1/N^{1/\alpha})$
- \Rightarrow finite number of elements of order O(1).

• Cutoff: $\gamma \ll 1 \Rightarrow J_{ij} > \gamma$: strong matrix elements $\Rightarrow J_{ij} < \gamma$: weak matrix elements

• Cutoff: $\gamma \ll 1 \Rightarrow J_{ij} > \gamma$: strong matrix elements $\Rightarrow J_{ij} < \gamma$: weak matrix elements

$$\sum_{j \neq i} J_{ij}^2 G_{jj}^{(i)}(z) = \sum_{\{j \mid J_{ij} > \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z) + \underbrace{\sum_{\{j \mid J_{ij} < \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z)}_{\sigma_{c}^2 \langle \omega \rangle}.$$

I. Neri, FLM and D. Bollé, JSM, 2010.

• Cutoff: $\gamma \ll 1 \Rightarrow J_{ij} > \gamma$: strong matrix elements $\Rightarrow J_{ij} < \gamma$: weak matrix elements

$$\sum_{j \neq i} J_{ij}^2 G_{jj}^{(i)}(z) = \sum_{\{j | J_{ij} > \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z) + \underbrace{\sum_{\{j | J_{ij} < \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z)}_{\sigma^2 \langle \omega \rangle}.$$

- I. Neri, FLM and D. Bollé, JSM, 2010.
- Variance of the weak matrix elements in a given row:

$$\sigma_{\gamma}^2 = N \int_{-\gamma}^{\gamma} dJ P_{\alpha}(J) J^2 = \frac{2\gamma^{2-\alpha} C_{\alpha}}{2-\alpha}.$$

• Cutoff: $\gamma \ll 1 \Rightarrow J_{ij} > \gamma$: strong matrix elements $\Rightarrow J_{ij} < \gamma$: weak matrix elements

$$\sum_{j \neq i} J_{ij}^2 G_{jj}^{(i)}(z) = \sum_{\{j | J_{ij} > \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z) + \underbrace{\sum_{\{j | J_{ij} < \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z)}_{\sigma^2 \langle \omega \rangle}.$$

- I. Neri, FLM and D. Bollé, JSM, 2010.
- Variance of the weak matrix elements in a given row:

$$\sigma_{\gamma}^2 = N \int_{-\gamma}^{\gamma} dJ P_{\alpha}(J) J^2 = \frac{2\gamma^{2-\alpha} C_{\alpha}}{2-\alpha}.$$

Average number of strong matrix elements per row:

$$c_{\gamma} = N \int_{|J| > \gamma} dJ P_{\alpha}(J) = \frac{2C_{\alpha}}{\alpha \gamma^{\alpha}}.$$

• Cutoff: $\gamma \ll 1 \Rightarrow J_{ij} > \gamma$: strong matrix elements $\Rightarrow J_{ij} < \gamma$: weak matrix elements

$$\sum_{j \neq i} J_{ij}^2 G_{jj}^{(i)}(z) = \sum_{\{j | J_{ij} > \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z) + \underbrace{\sum_{\{j | J_{ij} < \gamma\}} J_{ij}^2 G_{jj}^{(i)}(z)}_{\sigma^2/\langle \cdot \rangle}.$$

- I. Neri, FLM and D. Bollé, JSM, 2010.
- Variance of the weak matrix elements in a given row:

$$\sigma_{\gamma}^2 = N \int_{-\gamma}^{\gamma} dJ P_{\alpha}(J) J^2 = \frac{2\gamma^{2-\alpha} C_{\alpha}}{2-\alpha}.$$

Average number of strong matrix elements per row:

$$c_{\gamma} = N \int_{|J| > \gamma} dJ P_{\alpha}(J) = \frac{2C_{\alpha}}{\alpha \gamma^{\alpha}}.$$

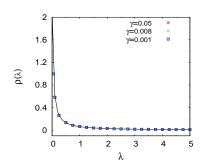
The distribution of the Green function

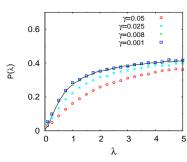
$$W_{\epsilon,\lambda,\gamma}(\omega) = \sum_{k=0}^{\infty} \frac{c_{\gamma}^{k} \exp(-c_{\gamma})}{k!} \left[\int \prod_{l=1}^{k} d\omega_{l} W_{\epsilon,\lambda,\gamma}(\omega_{l}) \right] \times \left[\int \prod_{l=1}^{k} dJ_{l} \ p_{J}(J_{l};\gamma) \right] \delta\left(\omega - \frac{1}{z - \sum_{l=1}^{k} J_{l}^{2} \omega_{l} - \sigma_{\gamma}^{2} \langle \omega \rangle}\right)$$

The distribution of the Green function

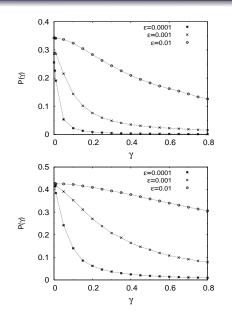
$$W_{\epsilon,\lambda,\gamma}(\omega) = \sum_{k=0}^{\infty} \frac{c_{\gamma}^{k} \exp(-c_{\gamma})}{k!} \left[\int \prod_{l=1}^{k} d\omega_{l} W_{\epsilon,\lambda,\gamma}(\omega_{l}) \right] \times \left[\int \prod_{l=1}^{k} dJ_{l} \ p_{J}(J_{l};\gamma) \right] \delta\left(\omega - \frac{1}{z - \sum_{l=1}^{k} J_{l}^{2} \omega_{l} - \sigma_{\gamma}^{2} \langle \omega \rangle}\right)$$

- ullet $\alpha o 2$: $W_{\epsilon,\lambda,\gamma}(\omega) = \delta\left(\omega \frac{1}{z \langle \omega \rangle}\right) \Rightarrow$ Wigner semi-circle law.
- ullet $\alpha=0.5, N=3000$ and $\epsilon=0.0005$.





Localized and extended states

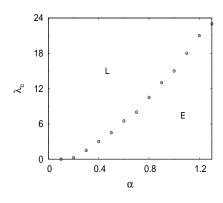


Pop. dynamics results:

$$N_s = 5 \times 10^6$$
 and $\alpha = 0.5$.

- Upper graph ($\lambda = 1$):
 - \Rightarrow Extended states: the IPR depends on ϵ for $\gamma \to 0$.
- Lower graph ($\lambda = 5$):
 - \Rightarrow Localized states: the IPR is independent of ϵ for $\gamma \to 0$.

The phase diagram



 $N_s=10^6$ and $\gamma=0.008$.

FLM, I Neri and D Bollé, PRE **82**, 2010.

• Small α :

 \Rightarrow the sparse character is highlighted \rightarrow localized states.

• Large α :

 \Rightarrow the fully-connected character is highlighted \rightarrow extended states

 \Rightarrow large $\lambda_c o$ inaccurate results

• $P(\lambda) \to 1/2$ for $\lambda \gg 1$.

Final remarks

- We have shown how an equation for the distribution of Green functions $W(\omega)$ can be obtained in the limit $N \to \infty$ with the cavity method.
 - \Rightarrow Numerical solution for $W(\omega)$: average IPR and mobility edge.
- Laplacian matrices:
 - $\Rightarrow \lambda \gg 1$: states localized on a single node with very high connectivity.
- Lévy matrices:
 - $\Rightarrow \lambda \gg 1$: states localized on pairs of very strongly interacting nodes.
- Localization in asymmetric matrices ⇒ fluctuations in the symmetry of the related graph?
- Calculation of the distribution of $|\psi_{\mu}^{i}|^{2}$ over the sites \Rightarrow cavity method?

Acknowledgements

- ⇒ Izaak Neri University of Montpellier 2 (UM2) Laboratoire des colloides, verres et nanomatériaux.
- ⇒ Désiré Bollé Katholieke Universiteit Leuven Group of Disordered Systems.