Higher Order Analogues of the Tracy Widom Distribution and Integrable Hierarchies.

Max R. Atkin - University of Bielefeld RMT Workshop - Brunel University

Based on work with Gernot Akemann in math-ph/1208.3645

Outline

- Introduction
 - Motivation
- Higher Order TW distributions
 - Painlevé II Hierarchy
 - TW Using Orthogonal Polynomials
- Main Result
 - Proof of Main Result
 - Computing $Z_N(y; \alpha, \{g_l\})$ at finite N
 - ullet Flow Equation finite N
 - ullet String Equation finite N
 - Double Scaling Limit
- Bäcklund Transformation
 - Shift Identity
- Summary

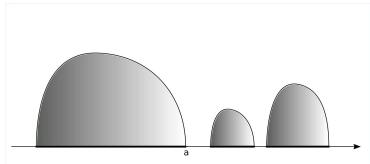
Introduction

•000000

Consider the partition function for a $N \times N$ random hermitian matrix,

$$Z = \int [dM]e^{-N\text{Tr}V(M)} = \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\lambda_i \Delta(\lambda)^2 e^{-NV(\lambda_i)}$$

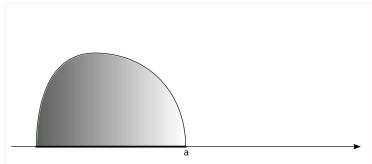
The eigenvalues lie on disjoint intervals of the real line.



Consider the partition function for a $N \times N$ random hermitian matrix,

$$Z = \int [dM]e^{-N\text{Tr}V(M)} = \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\lambda_i \Delta(\lambda)^2 e^{-NV(\lambda_i)}$$

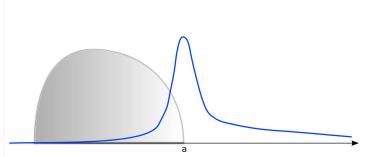
Consider the case of a connected support.



Consider the partition function for a $N \times N$ random hermitian matrix,

$$Z = \int [dM]e^{-N\text{Tr}V(M)} = \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\lambda_i \Delta(\lambda)^2 e^{-NV(\lambda_i)}$$

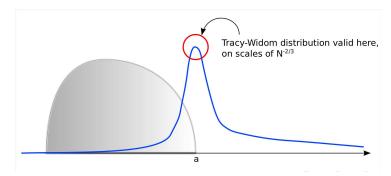
The value of the maximum eigenvalue will be described by some distribution.



For small fluctuations about the mean, the distribution is given by the Tracy-Widom distribution.

$$\lim_{N \to \infty} \mathbb{P}\left(cN^{2/3}(\lambda_{\max} - a) < s\right) = \exp\left(-\int_{s}^{+\infty} (y - s)q_0^2(y)dy\right)$$

in terms of the Hastings-McLeod solution q_0 of the Painlevé II equation.

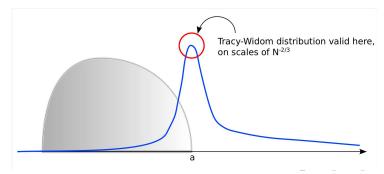


This is a solution to the Painlevé II equation,

$$q_{xx} = xq + 2q^3$$

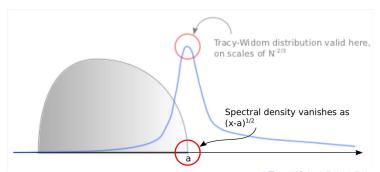
which is defined by the asymptotic behaviour,

$$q_0(x) \sim \operatorname{Ai}(x)$$
, as $x \to +\infty$,



Higher Order TW distributions

The appearance of Tracy-Widom is a universal property because the spectral density generically ends with square root behaviour.



For particular potentials the spectral density at its edge falls as,

$$\rho(x) \propto (a-x)^{\frac{2k+1}{2}}$$

For particular potentials the spectral density at its edge falls as,

$$\rho(x) \propto (a-x)^{\frac{2k+1}{2}}$$

Such behaviour is relevant to quantum gravity. The double scaling limit of these points describes a (2,2k+1) CFT coupled to quantum gravity.

For particular potentials the spectral density at its edge falls as,

$$\rho(x) \propto (a-x)^{\frac{2k+1}{2}}$$

Such behaviour is relevant to quantum gravity. The double scaling limit of these points describes a (2,2k+1) CFT coupled to quantum gravity.

The Tracy-Widom distribution will not hold in these cases.

For particular potentials the spectral density at its edge falls as,

$$\rho(x) \propto (a-x)^{\frac{2k+1}{2}}$$

Such behaviour is relevant to quantum gravity. The double scaling limit of these points describes a (2,2k+1) CFT coupled to quantum gravity.

The Tracy-Widom distribution will not hold in these cases.

$$\mathsf{TW} \Rightarrow k\text{-}\mathsf{TW}$$

Painlevé II Hierarchy

$$\left(\frac{d}{dx} + 2q\right) \mathcal{L}_n[q_x - q^2] + \sum_{l=1}^{n-1} \tau_l \left(\frac{d}{dx} + 2q\right) \mathcal{L}_l[q_x - q^2] = xq - \alpha,$$

Painlevé II Hierarchy

Painlevé II hierarchy

$$\left(\frac{d}{dx} + 2q\right) \mathcal{L}_n[q_x - q^2] + \sum_{l=1}^{n-1} \tau_l \left(\frac{d}{dx} + 2q\right) \mathcal{L}_l[q_x - q^2] = xq - \alpha,$$

Lenard recursion relation

$$\frac{d}{dx}\mathcal{L}_{j+1}f = \left(\frac{d^3}{dx^3} + 4f\frac{d}{dx} + 2f_x\right)\mathcal{L}_j f, \quad \mathcal{L}_0 f = \frac{1}{2}, \quad \mathcal{L}_j 0 = 0,$$

Higher Order TW distributions

The k-TW distribution has been computed by RH methods.

Theorem [Claeys, Its, Krasovsky

The 2k + 1-TW takes the form,

$$\frac{d}{ds}\log \mathbb{P}^{(2k+1)}(\lambda_{\max} < s) = \int_{-\infty}^{x(s)} u(\xi; \tau_1(s), \dots, \tau_{2k}(s))^2 d\xi,$$

with $u(x) = u(x; \tau_1, \dots, \tau_{2k})$ satisfying

$$u''(x) = [q_x(x) + q(x)^2]u(x),$$

Theorem [Claeys, Its, Krasovsky] (cont.)

 $q(x; au_1, \dots, au_{2k})$ is a solution of the Painlevé II Hierarchy with

$$x(s) = -2^{\frac{4k+1}{4k+3}}b_0(s), \qquad \tau_j(s) = (2j+1)2^{\frac{4(k-j)+1}{4k+3}}b_j(s)$$

where,

$$b_j(s) = \frac{\Gamma(2k + \frac{3}{2})}{\Gamma(j + \frac{3}{2})\Gamma(2k + 2 - j)} s^{2k + 1 - j}$$

Asymptotics [Claeys, Its, Krasovsky

For $x \to \infty$ and $x \to -\infty$ we have respectively,

$$q(x) = \frac{1}{2x} + O(x^{-\frac{4n+1}{2n}}), \quad q(x) = \left(\frac{n!^2}{(2n)!}|x|\right)^{\frac{1}{2n}} + O(|x|^{-1}),$$

$$u(x) = 2^{-\frac{4k+1}{4k+3}}\sqrt{\frac{x}{2}}(1+o(1)), \quad u(x) = o(1),$$

Recently a simpler derivation of TW was given by [Nadal, Majumdar] using,

$$\mathbb{P}_N(\lambda_{\max} < y; \alpha, \{g_l\}) = \frac{Z_N(y; \alpha, \{g_l\})}{Z_N(\infty; \alpha, \{g_l\})},$$

where,

$$Z_N(y;\alpha,\{g_l\}) \equiv \frac{1}{N!} \int_{-\infty}^y \prod_{i=1}^N d\lambda_i e^{-N\alpha V(\lambda_i)} \prod_{k>j}^N (\lambda_k - \lambda_j)^2$$

$$V(\lambda) \equiv \sum_{l=1}^{\infty} \frac{1}{l} g_l \lambda^l$$

Compute $Z_N(y; \alpha, \{g_l\})$ using orthogonal polynomials.

Compute $Z_N(y; \alpha, \{g_l\})$ using orthogonal polynomials.

Introduce polynomials $\{\pi_n\}$ with $\pi_n(\lambda) = \frac{1}{h_n^{1/2}}\lambda^n + \dots$ and orthonormal with respect to the inner product,

$$\langle \pi_n | \pi_m \rangle \equiv \int_{-\infty}^{g} d\lambda \ e^{-NV(\lambda)} \pi_n(\lambda) \pi_m(\lambda) = \delta_{nm}.$$

Compute $Z_N(y; \alpha, \{g_l\})$ using orthogonal polynomials.

Introduce polynomials $\{\pi_n\}$ with $\pi_n(\lambda) = \frac{1}{h_n^{1/2}}\lambda^n + \dots$ and orthonormal with respect to the inner product,

$$\langle \pi_n | \pi_m \rangle \equiv \int_{-\infty}^y d\lambda \ e^{-NV(\lambda)} \pi_n(\lambda) \pi_m(\lambda) = \delta_{nm}.$$

It is then easy to rewrite,

$$Z_N(y; \alpha, \{g_l\}) = \prod_{i=0}^{N-1} h_i = h_0^N \prod_{i=1}^{N-1} r_i^{N-i}.$$

Here we have defined the ratios

$$r_n = \frac{h_n}{h_{n-1}}.$$

The inner product has the simple property,

$$\langle \lambda \pi_n | \pi_m \rangle = \langle \pi_n | \lambda \pi_m \rangle,$$

which leads to the standard 3-term recurrence,

$$\lambda \pi_n = \sqrt{r_{n+1}} \pi_{n+1} + s_n \pi_n + \sqrt{r_n} \pi_{n-1}$$

The derivation of [Nadal, Majumdar] proceeds from here and derives recursion relations between r_n and s_n .

Main Result

In recent work we extended the orthogonal polynomial analysis to the $k\text{-}\mathsf{TWs}$ and found more compact expressions,

Theorem [Akemann, MA]

$$\log \mathbb{P}^{(k)}(s) = -\int_{-\infty}^{0} dx \frac{x}{2} \left(u(x,s) - u(x,\infty) \right)$$

u(x,s) satisfies,

$$\mathcal{L}'_{k+1}[u] - 4s\mathcal{L}'_{k}[u] = xu'(x) + 2u(x) - 2s ,$$

This is Painlevé 34.

- Introduce operators B, A and C, acting on the vector $\pi=(\pi_1,\ldots,\pi_n)$, which have the effects $B\pi=\lambda\pi$, $A\pi=\partial_\lambda\pi$ and $C\pi=\partial_y\pi$.
- Construct local operators P and H, from A,B and C which are anti-symmetric and find their commutation relations. This gives recursion relations for computing $Z_N(y;\alpha,\{g_l\})$ at finite N.
- Using the technique of pseudo-differential operators take the scaling limit of these commutation relations.
- Compute the scaling limit of $Z_N(y; \alpha, \{g_l\})$.

Proof of the Main result: The Plan

- Introduce operators B, A and C, acting on the vector $\pi=(\pi_1,\ldots,\pi_n)$, which have the effects $B\pi=\lambda\pi$, $A\pi=\partial_\lambda\pi$ and $C\pi=\partial_y\pi$.
- Construct local operators P and H, from A,B and C which are anti-symmetric and find their commutation relations. This gives recursion relations for computing $Z_N(y;\alpha,\{g_l\})$ at finite N.
- Using the technique of pseudo-differential operators take the scaling limit of these commutation relations.
- Compute the scaling limit of $Z_N(y; \alpha, \{g_l\})$.

• Introduce operators B, A and C, acting on the vector $\pi=(\pi_1,\ldots,\pi_n)$, which have the effects $B\pi=\lambda\pi$, $A\pi=\partial_\lambda\pi$ and $C\pi=\partial_u\pi$.

- Construct local operators P and H, from A,B and C which are anti-symmetric and find their commutation relations. This gives recursion relations for computing $Z_N(y;\alpha,\{g_l\})$ at finite N.
- Using the technique of pseudo-differential operators take the scaling limit of these commutation relations.
- Compute the scaling limit of $Z_N(y; \alpha, \{g_l\})$.

Proof of the Main result: The Plan

- Introduce operators B, A and C, acting on the vector $\pi=(\pi_1,\ldots,\pi_n)$, which have the effects $B\pi=\lambda\pi$, $A\pi=\partial_\lambda\pi$ and $C\pi=\partial_y\pi$.
- Construct local operators P and H, from A,B and C which are anti-symmetric and find their commutation relations. This gives recursion relations for computing $Z_N(y;\alpha,\{g_l\})$ at finite N.
- Using the technique of pseudo-differential operators take the scaling limit of these commutation relations.
- Compute the scaling limit of $Z_N(y; \alpha, \{g_l\})$.

Introduce operators B, A and C

In the following a "local" operator will mean a matrix with a finite number of non-zero diagonals,

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \partial$$

- Due to the three term recurrence relation B is local.
- A and C are not local.
- ullet However, they have the commutations relations with B of,

$$[B, A] = 1$$
 $[B, C] = -\partial_y B$

Flow Equation - finite N

We want to redefine the operators A and C so that they are local.

We mimic the derivation of the usual string equations. Introduce

$$P_{nm} \equiv A_{nm} + C_{nm} - \frac{N}{2}V'(B)_{nm}$$

It can be shown by integration by parts that ${\cal P}$ is local and anti-symmetric. Hence,

$$P = -\frac{N}{2}(V'(B)_{+} - V'(B)_{-})$$

It also satisfies,

Flow Equation

$$[P, y - B] = \partial_y (y - B) = 1 - \partial_y B$$

String Equation - finite N

A second local operator can be constructed by noting,

$$\int_{-\infty}^{y} d\lambda \partial_{\lambda} \left[(\lambda - y) e^{-NV(\lambda)} \pi_{n}(\lambda) \pi_{m}(\lambda) \right] = 0$$

and expressing the action of the derivative in terms of A, B and C.

This leads to the local anti-symmetric operator,

$$H = -\frac{N}{2} \Big((V'(B)(B-y))_{+} - (V'(B)(B-y))_{-} \Big)$$

which satisfies,

String Equation

$$[B - y, H] = B - y \tag{1}$$

Large N limit

As $N \to \infty$, $n/N \to \xi$ and in the **one-cut** case,

$$\pi_n \to \pi(\xi, y), \qquad r_n \to r(\xi, y), \qquad s_n \to s(\xi, y)$$

which are smooth functions.

The operators, B, P and H can be expanded in powers of N, with each order a differential operator in ξ .

Large N limit

As $N \to \infty$, $n/N \to \xi$ and in the **one-cut** case,

$$\pi_n \to \pi(\xi, y), \qquad r_n \to r(\xi, y), \qquad s_n \to s(\xi, y)$$

which are smooth functions.

The operators, B, P and H can be expanded in powers of N, with each order a differential operator in ξ .

The partition function can then be written as,

$$\log[Z_N(y;\alpha,\{g_l\})] = N^2 \int_0^1 d\xi \, (1-\xi) \log[r(\xi,y)] + O(1/N)$$

We want to double scale about the point when \boldsymbol{y} collides with the spectral density, set;

$$y = y_c + \epsilon c_1 s \qquad N = \epsilon^{-(2k+1)/2} \tag{2}$$

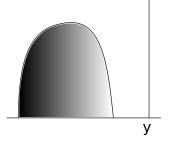
and let $\epsilon \to 0$.

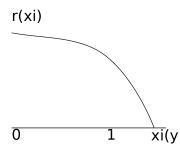
We want to double scale about the point when y collides with the spectral density, set;

$$y = y_c + \epsilon c_1 s \qquad N = \epsilon^{-(2k+1)/2} \tag{2}$$

and let $\epsilon \to 0$.

One can think of y colliding with the eigenvalues as a phase transition.



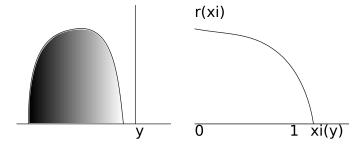


We want to double scale about the point when y collides with the spectral density, set;

$$y = y_c + \epsilon c_1 s \qquad N = \epsilon^{-(2k+1)/2} \tag{3}$$

and let $\epsilon \to 0$.

One can think of y colliding with the eigenvalues as a phase transition.

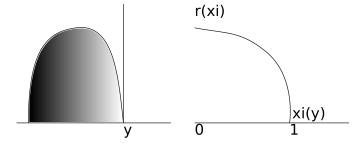


We want to double scale about the point when y collides with the spectral density, set;

$$y = y_c + \epsilon c_1 s \qquad N = \epsilon^{-(2k+1)/2} \tag{4}$$

and let $\epsilon \to 0$.

One can think of y colliding with the eigenvalues as a phase transition.



We know that $\xi_c(y_c) = 1$, hence set,

$$\xi = 1 - \epsilon^k x \tag{5}$$

Double Scaling limit

We know that $\xi_c(y_c) = 1$, hence set,

$$\xi = 1 - \epsilon^k x \tag{5}$$

The functions r and s will also scale with ϵ .

$$r(\xi, y) = r_c(1 + \epsilon \rho(x, s) + O(\epsilon^{3/2})),$$

$$s(\xi, y) = \sqrt{r_c}(s_c + \epsilon \sigma(x, s) + O(\epsilon^{3/2}))$$

It will also be useful to introduce the functions,

$$u \equiv \rho + \sigma$$
, $v \equiv \rho - \sigma$.

Double Scaling Limit of [B, P]

As $\epsilon \to 0$,

d.s.l for E

$$B \to \left(B_c + \epsilon \sqrt{r_c} \mathcal{B} + O(\epsilon^2) \right)$$

independent of k with $\mathcal{B}\equiv d_x^2+u(x)$. This is because $N^{-1}\partial_{\xi}\to -\epsilon^{(2k+1)/2}\epsilon^{-k}d_x=-\epsilon^{1/2}d_x$.

Double Scaling Limit of [B, P]

As $\epsilon \to 0$,

d.s.l for E

$$B \to \left(B_c + \epsilon \sqrt{r_c} \mathcal{B} + O(\epsilon^2) \right)$$

independent of k with $\mathcal{B}\equiv d_x^2+u(x).$ This is because $N^{-1}\partial_\xi\to -\epsilon^{(2k+1)/2}\epsilon^{-k}d_x=-\epsilon^{1/2}d_x.$

d.s.l for P

From,

$$P = -\frac{N}{2}(V'(B)_{+} - V'(B)_{-})$$

we see $P \to \epsilon^{m/2-(2k+1)/2} \times (d^m + \ldots)$.

How do we fix m?

How do we fix m?

Use the flow equations,

$$[P, y - B] = \partial_y (y - B) = 1 - \partial_y B$$

In order for scaling dimension of both sides of the flow equation to match, P must scale scale as $P \to \epsilon^{-1} \mathcal{P} + \dots$ Hence,

$$m = 2k - 1 \tag{6}$$

Now what?...

How do we fix m?

Use the flow equations,

$$[P, y - B] = \partial_y (y - B) = 1 - \partial_y B$$

In order for scaling dimension of both sides of the flow equation to match, P must scale scale as $P \to \epsilon^{-1} \mathcal{P} + \dots$ Hence,

$$m = 2k - 1 \tag{6}$$

Now what?...

Reduction of Commutators

The equation, $[\mathcal{B},\mathcal{P}]=f(x)$ can be reduced to an ODE by using pseudo-differential operators.

Pseudo-differential Operators

A pseudo-differential operator is a Laurent series in ∂ , where ∂^{-1} acts as an anti-derivative.

Useful Properties

- ▶ It can be shown that $[\mathcal{B}, \mathcal{P}] = f(x)$ is solved by $\mathcal{P} = (\mathcal{B}^{l/2})_+$ for any l.
- $|\mathcal{B}, (\mathcal{B}^{(2m-1)/2})_{+}| = -4^{1-m} \mathcal{L}'_{m}[u]$

We now can study the double scaling limit of both the flow and string equations.

Lets see how this works for the flow equation,

d.s.l of flow equation

$$[P, y - B] = 1 - \partial_y B \rightarrow \partial_s u(x, s) = \partial_x (x - 2\mathcal{L}_k[u])$$

and crucially v satisfies an equation independent of s.

Lets see how this works for the flow equation,

d.s.l of flow equation

$$[P, y - B] = 1 - \partial_y B \rightarrow \partial_s u(x, s) = \partial_x (x - 2\mathcal{L}_k[u])$$

and crucially v satisfies an equation independent of s.

For the string equation,

$$\epsilon(\epsilon^{(m-2k-1)/2}[\mathcal{B},\mathcal{H}] + O(\epsilon^{(m-2k-1)/2+1})) = \epsilon(d^2 + u - s) + O(\epsilon^2),$$

Having both sides of the string equation scale with the same dimension fixes the scaling dimension of $\cal H.$

This fixes ${\cal H}$ to be a differential operator of order 2k+1 We have,

$$[\mathcal{B}, \mathcal{H}] = (d^2 + u - s)$$

To reduce the scaled string equation we must modify $\mathcal H$ slightly since the RHS is a differential operator. Let $\mathcal H\equiv \bar{\mathcal H}+\frac{1}{4}\{x,d\}$, then,

$$[\mathcal{B}, \bar{\mathcal{H}}] = \frac{1}{2}xu'(x) + u(x) - s$$

which can be reduced by pseudo-differential operators. We have,

$$\bar{\mathcal{H}} = \left((\mathcal{B}^{(2k+1)/2})_+ - s(\mathcal{B}^{(2k-1)/2})_+ \right).$$

Which after rescalings gives,

$$\mathcal{L}'_{k+1}[u] - 4s\mathcal{L}'_{k}[u] = xu'(x) + 2u(x) - 2s.$$

Finally we double scale the expression for Z_N when N is large,

$$\log[Z_N(y;\alpha,\{g_l\})] = N^2 \int_0^1 d\xi \, (1-\xi) \log[r(\xi,y)] + O(1/N) .$$

it takes the form,

$$\log Z^{(k)}(s) = -\int_{-\infty}^{0} dx \frac{x}{2} (u(x,s) + v(x,s)) ,$$

where we have introduced the scaled partition function $\log Z^{(k)}(s)$. We have for the double scaling limit of the gap probability,

$$\log \mathbb{P}^{(k)}(s) = -\int_{-\infty}^{0} dx \frac{x}{2} \left(u(x,s) - u(x,\infty) \right)$$

Main Result

$$\log \mathbb{P}^{(k)}(s) = -\int_{-\infty}^{0} dx \frac{x}{2} \left(u(x,s) - u(x,\infty) \right)$$

u(x,s) satisfies,

$$\mathcal{L}'_{k+1}[u] - 4s\mathcal{L}'_{k}[u] = xu'(x) + 2u(x) - 2s ,$$

Bäcklund Transformation

How does our result relate to the earlier result of Claeys et. al?

Bäcklund Transformation

How does our result relate to the earlier result of Claeys et. al?

We can relate these two formulation using a BT found in [Clarkson, Joshi, Pickering].

$$2\mathcal{L}_k[u] - x = 2\psi(x)^2$$
 and $\psi''(x) + (u - s)\psi(x) = 0$

and

$$2\mathcal{L}_k[W' - W^2 + s] - x = 2\psi(x)^2$$
 and $\psi'(x) + W\psi(x) = 0$

$$2\mathcal{L}_k[u] - x = 2\psi(x)^2$$
 and $\psi''(x) + (u - s)\psi(x) = 0$

Eliminating ψ gives,

$$\mathcal{L}'_{k+1}[u] - 4s\mathcal{L}'_{k}[u] = xu'(x) + 2u(x) - 2s$$
,

On the other hand eliminating u gives,

$$2\mathcal{L}_k \left[s - \frac{\psi''}{\psi} \right] - x = 2\psi^2(x) .$$

$$2\mathcal{L}_k[W' - W^2 + s] - x = 2\psi(x)^2$$
 and $\psi'(x) + W\psi(x) = 0$

Eliminating W gives again,

$$2\mathcal{L}_k \left[s - \frac{\psi''}{\psi} \right] - x = 2\psi^2(x)$$

On the other hand eliminating ψ gives,

$$(d+2W)\mathcal{L}_k[W'-W^2+s] = xW + \frac{1}{2}$$

which looks a lot like the Painlevé II hierarchy.

Shift Identity

We can make this more explicit by proving a lemma,

For a constant z, we have,

$$\mathcal{L}_{k}[u(x) + z] = \sum_{j=0}^{k} (4z)^{k-j} \frac{\Gamma(k+1/2)}{\Gamma(k-j+1)\Gamma(j+1/2)} \mathcal{L}_{j}[u(x)]$$

This allows us to rewrite our result in precisely the manner of Claeys et. al!

- Reviewed the higher-order analogues of TW that arises when the behaviour of the spectral density changes at the support edge.
- Shown that by extending the method introduced by Nadal and Madjumdar we can significantly simplify the results of Claeys et al.
- Gave a relation between the results of Claeys and ours via a Backlund transformation
- Future; can we find examples of where such distributions arise? Can a similar analysis be done for other models?