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Disorder-generated multifractals:

Disorder-generated multifractal patterns display high variability over a wide range
of space or time scales, associated with huge fluctuations in intensity which can
be visually detected. Another common feature is presence of certain long-ranged
powerlaw-type correlations in data values.

Intensity of a multifractal wavefunction at the point of Integer Quantum Hall Effect.

Courtesy of F. Evers, A. Mirlin and A. Mildenberger.



Multifractal Ansatz:

Consider a certain (e.g. hypercubic) lattice of linear extent L and lattice spacing a in d−dimensional

space, withM ∼ (L/a)d � 1 being the total number of sites in the lattice. The multifractal patterns

are then usually associated with a set of non-negative "heights" hi ≥ 0 attributed to every lattice site

i = 1, 2, . . . ,M such that the heights scale in the limit M →∞ differently at different sites:

t hi ≥ 0, hi ∼Mxi

with exponents xi forming a dense set such that

ρM(x) =
∑M
i=1 δ

(
lnhi
lnM − x

)
≈ cM(x)

√
lnMMf(x)

We will refer below to the above form of the density as the
multifractal Ansatz.
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The major effort in the last decades was directed towards determining the shape and properties of the

singularity spectrum function f(x). In contrast, our main object of interest will be understanding the

sample-to-sample fluctuations of the prefactor cM(x) in disorder-generated multifractal patterns like

those in the field of Anderson localization. Such fluctuations are reflected in statistics of the number

of lattice points i satisfying hi > Mx which is given by the counting function

NM(x) =
∑

i θ (hi −Mx) =
∫∞
x
ρM(y) dy.



From disorder-generated multifractals to log-correlated fields:

Disorder-generated multifractal patterns of intensities h(r) are typically self-similar

E {hq(r1)hs(r2)} ∝
(
L
a

)yq,s (|r1−r2|
a

)−zq,s
, q, s ≥ 0, a� |r1 − r2| � L

and spatially homogeneous

E {hq(r1)} = 1
M

∑
r h

q(r) ∝
(
L
a

)d(ζq−1)

where ζq and f(x) are related by the Legendre transform:

f ′(y∗) = −q and ζq = f(y∗) + q y∗.

The consistency of the two conditions for |r1 − r2| ∼ a and |r1 − r2| ∼ L implies:

yq,s = d(ζq+s − 1), zq,s = d(ζq+s − ζq − ζs + 1)

If we now introduce the field V (r) = lnh(r)− E {lnh(r)} and exploit the identities
d
dsh

s|s=0 = lnh and ζ0 = 1 we arrive at the relation:

E {V (r1)V (r2)} = −g2 ln
|r1−r2|
L , g2 = d ∂2

∂s∂qζq+s|s=q=0

Conclusion: logarithm of a multifractal intensity is a log-correlated random field.
To understand statistics of high values and extremes of general logarithmically correlated
random fields we consider the simplest 1D case of such process: the Gaussian 1/f noise.



Ideal Gaussian periodic 1/f noise:

We will use a (regularized) model for ideal Gaussian periodic 1/f noise defined as

V (t) =
∑∞
n=1

1√
n

[
vne

int + vne
−int] , t ∈ [0, 2π)

where vn, vn are complex standard Gaussian i.i.d. with E{vnvn} = 1. It implies
the formal covariance structure:

E {V (t1)V (t2)} = −2 ln |2 sin t1−t2
2 |, t1 6= t2

Regularization procedure (YVF & Bouchaud 2008): subdivide the interval [0, 2π)
by a finite number M of observation points tk = 2π

M k where k = 1, . . . ,M , and
replace the function V (t), t ∈ [0, 2π) with a sequence of M random mean-zero
Gaussian variables Vk correlated according to the M ×M covariance matrix
Ckm = E {VkVm} such that the off-diagonal entries are given by

Ck 6=m = −2 ln |2 sin π
M (k −m)|, Ckk = E

{
V 2
k

}
> 2 lnM, ∀k = 1, . . . ,M

The model is well defined, and we will actually take Ckk = 2 lnM + ε, ∀k with
ε� 1. We expect that the statistical properties of the sequence Vk generated in this
way reflect for M →∞ correctly the universal features of the 1/f noise.

The multifractal pattern of heights is then generated by setting hi = eVi for each
i = 1, . . . ,M .



Circular-logarithmic model (YF & Bouchaud 2008):

An example of the 1/f signal sequence generated for M = 4096 according to the
above prescription is given in the figure.
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The upper line marks the typical value of the extreme value threshold Vm = 2 lnM − 3
2 ln lnM .

The lower line is the level 1√
2
Vm and blue dots mark points supporting Vi > 1√

2
Vm.

Questions we would like to answer: How many points are typically above a given level of

the noise? How strongly does this number fluctuate for M → ∞ from one realization to the other?

How to understand the typical position Vm and statistics of the extreme values (maxima or minima),

etc. And, after all, what parts of the answers are universal and what is the universality class?



Characteristic polynomial of random CUE matrix and periodic 1/f noise:

Let UN be aN×N unitary matrix, chosen at random from the unitary group U(N).
Introduce its characteristic polynomial pN(θ) = det

(
1− UN e−iθ

)
and further

consider VN(θ) = −2 log |pN(θ)|. Following Hughes, Keating & O’Connell 2001
one can employ the following representation

V
(U)
N (θ) = −2 log |pN(θ)| =

∑∞
n=1

1√
n

[
e−inθv

(N)
n + comp. conj.

]
where v

(N)
n = 1√

n
Tr
(
U−nN

)
.

According to Diaconis & Shahshahani 1994 the coefficients v(N)
n for any fixed n

tend in the limit N → ∞ to i.i.d. complex gaussian variables with zero mean and
variance E{|ζn|2} = 1. We conclude that for finite N Log-Mod of the characteristic
polynomial of CUE matrices is just a certain regularization of the stationary random
Gaussian Fourier series of the form

V (t) =
∑∞
n=1

1√
n

[
vne

int + vne
−int] , t ∈ [0, 2π)

where vn, vn are complex standard Gaussian i.i.d. with E{vnvn} = 1.

Random characteristic polynomials provide natural models for 1/f noise!



Statistics of the counting function NM(x) and threshold of extreme values:

By relating moments of the counting function NM(x) =
∫∞
x
ρM(y) dy for log-

correlated 1/f noise to Selberg integrals we are able to show that the probability
density for the (scaled) counting function n = NM(x)/Nt(x) is given by:

Px(n) = 4
x2 e
−n
− 4
x2
n
−
(

1+ 4
x2

)
, n� nc(x), 0 < x < 2 .

with nc →∞ for M →∞ and the characteristic scale Nt(x) given by

Nt(x) = M1−x2/4

x
√
π lnM

1
Γ(1−x2/4)

= E {NM(x)} 1
Γ(1−x2/4)

Note: For x → 2 the typical value Nt(x) of the counting function is parametrically
smaller than the mean value E {NM(x)}. In particular, the position xm of the typical
threshold of extreme values determined from the condition Nt(x) ∼ 1 is given by

xm = 2− c ln lnM
lnM +O(1/ lnM) with c = 3/2.

In contrast, for short-ranged random sequences mean=typical. Had we instead
decided to use the condition E {NM(x)} ∼ 1 that would give

xm = 2− c ln lnM
lnM +O(1/ lnM) with c = 1/2.



From 1/f noise to Riemann ζ(1/2 + it):

One can argue that log-mod of the Riemann zeta-function ζ(1/2 + it) locally
resembles a (non-periodic) version of the 1/f noise. One can exploit this fact to
predict statistics of moments and high values of the Riemann zeta along the critical
line using the previously exposed theory (YVF, Hiary, Keating 2012).

Our approach to statistics of ζ(1/2 + it):

We expect a single unitary matrix of size NT = log (T/2π) � 1 to model the
Riemann zeta ζ(1/2 + it), statistically, over a range of T ≤ t ≤ T + 2π. We thus
suggest splitting the critical line into ranges of length 2π, and making the statistics
of ζ(1/2 + it) over the many ranges.

There are roughly NT zeros in each range of length 2π. At each height T we use a
sample that spans ≈ 107 zeros yielding ≈ 107/NT sample points.

Note: Developing the statistical mechanics analogy further we conjecture the
distribution of the absolute maximum of the 1/f noises which turns out to be
different from the double-exponential Gumbel distribution Φ(x) = exp{−ex}
universally valid for short-range correlated random variables.



Our predictions for ζ(1/2 + it) and CUE characteristic polynomials:
For the maximum value: ζmax(T ) = maxT≤t≤T+2π |ζ(1/2 + it)|) we expect

log ζmax(T ) ≈ logNT − c
2 log logNT + γ + [rand. noiseO(1)],

with NT = log (T/2π) and γ = 0.57721 . . . .

The first numerical test concerns the value of the constant c. We expect the logarithmic correlations
to lead to c = 3

2, rather than c = 1
2, as would be the case if the zeta correlations were short-range.

Below we give numerical estimation of c for CUE matrices of size N .

N 20 30 40 50 60 70

c 1.43570 1.46107 1.48018 1.49072 1.49890 1.50756

The mean of ζmax(T ) suggested by the model is δ = eγNT/(logNT )
c
2 . We give below the

numerical values of the ratio of data mean δ̃ to model mean δ with c = 3/2

T NT

(
δ̃/δ
)
c=3/2

1022 51 1.001343

1019 44 0.992672

1015 35 0.976830

3.6× 107 17 0.930533



Our predictions for ζ(1/2 + it) and CUE characteristic polynomials:

We further expect

log ζmax(T ) ≈ logNT − 3
4 log logNT − 1

2 x, NT = log (T/2π)

where x is distributed with a probability density behaving in the tail as ρ(x→ −∞) ≈ |x| ex.
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Figure 1: Statistics of maxima for CUE polynomials (left: N = 50, 106samples ) and |ζ(1/2 + it)| (right:

NT = 65, 105 samples ) compared to periodic 1/f noise prediction p(x) = 2exK0(2ex/2).



Threshold of extreme values for self-similar multifractal fields:

The value c = 3
2 is a universal feature of systems with logarithmic correlations.

Apart from 1/f noise and its incarnations (characteristic polynomials of random
matrices & zeta-function along the critical line) the new universality class is believed
to include the 2D Gaussian free field, branching random walks & polymers on
disordered trees, some models in turbulence and financial mathematics and, with
due modifications the disorder-generated multifractals.

Namely, consider a multifractal random probability measure pi ∼ M−αi, i =
1, . . . ,M such that

∑M
i=1 pi = 1 characterized by a general non-parabolic

singularity spectrum f(α) with the left endpoint at α = α− > 0. Then very similar
consideration based on insights from Mirlin & Evers 2000 suggests that the extreme
value threshold should be given by pm = M−αm, where αm

αm ≈ α− + 3
2

1
f ′(α−)

ln lnM
lnM ⇒ − ln pm ≈ α− lnM + 3

2
1

f ′(α−) ln lnM



Threshold of extreme values for self-similar multifractal fields:

Work in progress: testing such a prediction for multifractal eigenvectors of a N ×
N random matrix ensemble introduced by E. Bogomolny & O. Giraud, Phys. Rev.
Lett. 106 044101 (2011) based on Rujsenaars-Schneider model of N interacting
particles. Preliminary numerics is supportive of the theory.

Figure 2: Statistics of maxima for eigenvectors of RS model for sample sizes M = 2n with n = 8, . . . , 12.

left: raw data right: each curve is shifted by α− lnM + 3
2

1
f ′(α−)

ln lnM ; data by Olivier Giraud


