Fluctuations and Extreme Values in Multifractal Patterns¹

Yan V Fyodorov

School of Mathematical Sciences

Queen Mary

Project supported by the EPSRC grant EP/J002763/1

VIII Brunel-Bielefeld Workshop on Random Matrix Theory, 14th of December 2012

¹Based on: **YVF**, **P Le Doussal** and **A Rosso** J Stat Phys: **149** (2012), 898-920 **YVF**, **G Hiary**, **J Keating** Phys. Rev. Lett. 108 , 170601 (2012) & arXiv:1211.6063

Disorder-generated multifractals:

Disorder-generated multifractal patterns display high variability over a wide range of space or time scales, associated with huge fluctuations in intensity which can be visually detected. Another common feature is presence of certain long-ranged **powerlaw-type correlations** in data values.

Intensity of a multifractal wavefunction at the point of Integer Quantum Hall Effect. Courtesy of F. Evers, A. Mirlin and A. Mildenberger.

Multifractal Ansatz:

Consider a certain (e.g. hypercubic) lattice of linear extent L and lattice spacing a in d-dimensional space, with $M \sim (L/a)^d \gg 1$ being the total number of sites in the lattice. The multifractal patterns are then usually associated with a set of non-negative "heights" $h_i \ge 0$ attributed to every lattice site $i = 1, 2, \ldots, M$ such that the heights scale in the limit $M \to \infty$ differently at different sites:

$$h_i \ge 0, \quad h_i \sim M^{x_i}$$

with exponents x_i forming a dense set such that

$$\rho_M(x) = \sum_{i=1}^M \delta\left(\frac{\ln h_i}{\ln M} - x\right) \approx c_M(x)\sqrt{\ln M} M^{f(x)}$$

We will refer below to the above form of the density as the **multifractal Ansatz**.

The major effort in the last decades was directed towards determining the shape and properties of the **singularity spectrum** function f(x). In contrast, our main object of interest will be understanding the sample-to-sample fluctuations of the prefactor $c_M(x)$ in disorder-generated multifractal patterns like those in the field of **Anderson localization**. Such fluctuations are reflected in statistics of the number of lattice points *i* satisfying $h_i > M^x$ which is given by the **counting function**

$$\mathcal{N}_M(x) = \sum_i \theta \left(h_i - M^x \right) = \int_x^\infty \rho_M(y) \, dy.$$

From disorder-generated multifractals to log-correlated fields:

Disorder-generated multifractal patterns of intensities $h(\mathbf{r})$ are typically self-similar

$$\mathbb{E}\left\{h^{q}(\mathbf{r_{1}})h^{s}(\mathbf{r_{2}})\right\} \propto \left(\frac{L}{a}\right)^{y_{q,s}} \left(\frac{|\mathbf{r_{1}}-\mathbf{r_{2}}|}{a}\right)^{-z_{q,s}}, \quad q,s \ge 0, \quad a \ll |\mathbf{r_{1}}-\mathbf{r_{2}}| \ll L$$

and spatially homogeneous

$$\mathbb{E}\left\{h^q(\mathbf{r_1})\right\} = \frac{1}{M} \sum_{\mathbf{r}} h^q(\mathbf{r}) \propto \left(\frac{L}{a}\right)^{d(\zeta_q - 1)}$$

where ζ_q and f(x) are related by the Legendre transform:

$$f'(y_*) = -q \text{ and } \zeta_q = f(y_*) + q y_*.$$

The consistency of the two conditions for $|{f r}_1-{f r}_2|\sim a$ and $|{f r}_1-{f r}_2|\sim L$ implies:

$$y_{q,s} = d(\zeta_{q+s} - 1), \quad z_{q,s} = d(\zeta_{q+s} - \zeta_q - \zeta_s + 1)$$

If we now introduce the field $V(\mathbf{r}) = \ln h(\mathbf{r}) - \mathbb{E} \{ \ln h(\mathbf{r}) \}$ and exploit the identities $\frac{d}{ds}h^s|_{s=0} = \ln h$ and $\zeta_0 = 1$ we arrive at the relation:

$$\mathbb{E}\left\{V(\mathbf{r_1})V(\mathbf{r_2})\right\} = -g^2 \ln \frac{|\mathbf{r_1} - \mathbf{r_2}|}{L}, \quad g^2 = d\frac{\partial^2}{\partial s \partial q} \zeta_{q+s}|_{s=q=0}$$

Conclusion: logarithm of a multifractal intensity is a log-correlated random field. To understand statistics of high values and extremes of general logarithmically correlated random fields we consider the simplest 1D case of such process: the Gaussian 1/f noise.

Ideal Gaussian periodic 1/f noise:

We will use a (regularized) model for ideal Gaussian periodic 1/f noise defined as

$$V(t) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left[v_n e^{int} + \overline{v}_n e^{-int} \right], \quad t \in [0, 2\pi)$$

where v_n, \overline{v}_n are complex standard Gaussian i.i.d. with $\mathbb{E}\{v_n\overline{v}_n\} = 1$. It implies the formal covariance structure:

$$\mathbb{E}\left\{V(t_1)V(t_2)\right\} = -2\ln|2\sin\frac{t_1-t_2}{2}|, \quad t_1 \neq t_2$$

Regularization procedure (YVF & Bouchaud 2008): subdivide the interval $[0, 2\pi)$ by a finite number M of observation points $t_k = \frac{2\pi}{M}k$ where $k = 1, \ldots, M$, and replace the function $V(t), t \in [0, 2\pi)$ with a sequence of M random mean-zero Gaussian variables V_k correlated according to the $M \times M$ covariance matrix $C_{km} = \mathbb{E} \{V_k V_m\}$ such that the off-diagonal entries are given by

$$C_{k\neq m} = -2\ln|2\sin\frac{\pi}{M}(k-m)|, \quad C_{kk} = \mathbb{E}\left\{V_k^2\right\} > 2\ln M, \quad \forall k = 1, \dots, M$$

The model is well defined, and we will actually take $C_{kk} = 2 \ln M + \epsilon$, $\forall k$ with $\epsilon \ll 1$. We expect that the statistical properties of the sequence V_k generated in this way reflect for $M \to \infty$ correctly the universal features of the 1/f noise.

The multifractal pattern of heights is then generated by setting $h_i = e^{V_i}$ for each i = 1, ..., M.

Circular-logarithmic model (YF & Bouchaud 2008):

An example of the 1/f signal sequence generated for M = 4096 according to the above prescription is given in the figure.

The upper line marks the typical value of the **extreme value threshold** $V_m = 2 \ln M - \frac{3}{2} \ln \ln M$. The lower line is the level $\frac{1}{\sqrt{2}}V_m$ and blue dots mark points supporting $V_i > \frac{1}{\sqrt{2}}V_m$.

Questions we would like to answer: How many points are typically above a given level of the noise? How strongly does this number fluctuate for $M \to \infty$ from one realization to the other? How to understand the typical position V_m and statistics of the extreme values (maxima or minima), etc. And, after all, what parts of the answers are universal and what is the universality class?

Characteristic polynomial of random CUE matrix and periodic 1/f noise:

Let U_N be a $N \times N$ unitary matrix, chosen at random from the unitary group $\mathcal{U}(N)$. Introduce its characteristic polynomial $p_N(\theta) = \det (1 - U_N e^{-i\theta})$ and further consider $V_N(\theta) = -2\log |p_N(\theta)|$. Following Hughes, Keating & O'Connell 2001 one can employ the following representation

$$\begin{split} V_N^{(U)}(\theta) &= -2\log|p_N(\theta)| = \sum_{n=1}^\infty \tfrac{1}{\sqrt{n}} \left[e^{-in\theta} v_n^{(N)} + \text{comp. conj.} \right] \\ \text{where} \quad v_n^{(N)} &= \tfrac{1}{\sqrt{n}} \text{Tr} \left(U_N^{-n} \right). \end{split}$$

According to **Diaconis** & **Shahshahani** 1994 the coefficients $v_n^{(N)}$ for any fixed n tend in the limit $N \to \infty$ to i.i.d. complex gaussian variables with zero mean and variance $\mathbb{E}\{|\zeta_n|^2\} = 1$. We conclude that for finite N Log-Mod of the characteristic polynomial of CUE matrices is just a **certain regularization** of the stationary random **Gaussian Fourier series** of the form

$$V(t) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left[v_n e^{int} + \overline{v}_n e^{-int} \right], \quad t \in [0, 2\pi)$$

where v_n, \overline{v}_n are complex standard Gaussian i.i.d. with $\mathbb{E}\{v_n\overline{v}_n\}=1$.

Random characteristic polynomials provide natural models for 1/f noise!

Statistics of the counting function $\mathcal{N}_M(x)$ and threshold of extreme values:

By relating moments of the counting function $\mathcal{N}_M(x) = \int_x^\infty \rho_M(y) dy$ for logcorrelated 1/f noise to Selberg integrals we are able to show that the probability density for the (scaled) counting function $n = \mathcal{N}_M(x)/\mathcal{N}_t(x)$ is given by:

$$\mathcal{P}_x(n) = \frac{4}{x^2} e^{-n^{-\frac{4}{x^2}}} n^{-\left(1 + \frac{4}{x^2}\right)}, \quad n \ll n_c(x), \quad 0 < x < 2.$$

with $n_c \to \infty$ for $M \to \infty$ and the characteristic scale $\mathcal{N}_t(x)$ given by

$$\mathcal{N}_t(x) = \frac{M^{1-x^2/4}}{x\sqrt{\pi \ln M}} \frac{1}{\Gamma(1-x^2/4)} = \mathbb{E}\left\{\mathcal{N}_M(x)\right\} \frac{1}{\Gamma(1-x^2/4)}$$

Note: For $x \to 2$ the **typical** value $\mathcal{N}_t(x)$ of the counting function is parametrically smaller than the **mean** value $\mathbb{E} \{\mathcal{N}_M(x)\}$. In particular, the position x_m of the typical threshold of **extreme values** determined from the condition $\mathcal{N}_t(x) \sim 1$ is given by

$$x_m = 2 - c \frac{\ln \ln M}{\ln M} + O(1/\ln M)$$
 with $c = 3/2$.

In contrast, for short-ranged random sequences mean=typical. Had we instead decided to use the condition $\mathbb{E} \{\mathcal{N}_M(x)\} \sim 1$ that would give

$$x_m = 2 - c \frac{\ln \ln M}{\ln M} + O(1/\ln M)$$
 with $c = 1/2$.

From 1/f noise to Riemann $\zeta(1/2 + it)$:

One can argue that **log-mod** of the Riemann zeta-function $\zeta(1/2 + it)$ **locally** resembles a (non-periodic) version of the **1/f noise**. One can exploit this fact to predict statistics of **moments** and **high values** of the Riemann zeta along the critical line using the previously exposed theory (**YVF**, **Hiary**, **Keating** 2012).

Our approach to statistics of $\zeta(1/2 + it)$:

We expect a single unitary matrix of size $N_T = \log (T/2\pi) \gg 1$ to model the Riemann zeta $\zeta(1/2 + it)$, statistically, over a range of $T \le t \le T + 2\pi$. We thus suggest splitting the critical line into ranges of length 2π , and making the statistics of $\zeta(1/2 + it)$ over the many ranges.

There are roughly N_T zeros in each range of length 2π . At each height T we use a sample that spans $\approx 10^7$ zeros yielding $\approx 10^7/N_T$ sample points.

Note: Developing the statistical mechanics analogy further we conjecture the distribution of the **absolute maximum** of the 1/f noises which turns out to be different from the double-exponential **Gumbel distribution** $\Phi(x) = \exp\{-e^x\}$ universally valid for short-range correlated random variables.

Our predictions for $\zeta(1/2 + it)$ and CUE characteristic polynomials: For the maximum value: $\zeta_{max}(T) = \max_{T \le t \le T+2\pi} |\zeta(1/2 + it)|$) we expect $\log \zeta_{max}(T) \approx \log N_T - \frac{c}{2} \log \log N_T + \gamma + [\text{rand. noise } O(1)],$ with $N_T = \log (T/2\pi)$ and $\gamma = 0.57721...$

The first numerical test concerns the value of the constant c. We expect the **logarithmic correlations** to lead to $c = \frac{3}{2}$, rather than $c = \frac{1}{2}$, as would be the case if the zeta correlations were short-range. Below we give numerical estimation of c for CUE matrices of size N.

N	20	30	40	50	60	70
С	1.43570	1.46107	1.48018	1.49072	1.49890	1.50756

The mean of $\zeta_{\max}(T)$ suggested by the model is $\delta = e^{\gamma} N_T / (\log N_T)^{\frac{c}{2}}$. We give below the numerical values of the ratio of data mean $\tilde{\delta}$ to model mean δ with c = 3/2

T	N_T	$\left(\tilde{\delta}/\delta\right)_{c=3/2}$	
10^{22}	51	1.001343	
10^{19}	44	0.992672	
10^{15}	35	0.976830	
3.6×10^7	17	0.930533	

Our predictions for $\zeta(1/2 + it)$ and CUE characteristic polynomials:

We further expect

$$\log \zeta_{max}(T) \approx \log N_T - \frac{3}{4} \log \log N_T - \frac{1}{2} x, \quad N_T = \log \left(T/2\pi \right)$$

where x is distributed with a probability density behaving in the tail as $\rho(x \to -\infty) \approx |x| e^x$.

Figure 1: Statistics of maxima for CUE polynomials (left: $N = 50, 10^6$ samples) and $|\zeta(1/2 + it)|$ (right: $N_T = 65, 10^5$ samples) compared to periodic 1/f noise prediction $p(x) = 2e^x K_0(2e^{x/2})$.

Threshold of extreme values for self-similar multifractal fields:

The value $c = \frac{3}{2}$ is a universal feature of systems with **logarithmic** correlations. Apart from 1/f noise and its incarnations (characteristic polynomials of random matrices & zeta-function along the critical line) the new universality class is believed to include the 2D Gaussian free field, branching random walks & polymers on disordered trees, some models in turbulence and financial mathematics and, with due modifications the **disorder-generated multifractals**.

Namely, consider a multifractal random probability measure $p_i \sim M^{-\alpha_i}$, $i = 1, \ldots, M$ such that $\sum_{i=1}^{M} p_i = 1$ characterized by a general non-parabolic singularity spectrum $f(\alpha)$ with the left endpoint at $\alpha = \alpha_- > 0$. Then very similar consideration based on insights from Mirlin & Evers 2000 suggests that the extreme value threshold should be given by $p_m = M^{-\alpha_m}$, where α_m

$$\alpha_m \approx \alpha_- + \frac{3}{2} \frac{1}{f'(\alpha_-)} \frac{\ln \ln M}{\ln M} \quad \Rightarrow -\ln p_m \approx \alpha_- \ln M + \frac{3}{2} \frac{1}{f'(\alpha_-)} \ln \ln M$$

Threshold of extreme values for self-similar multifractal fields:

Work in progress: testing such a prediction for multifractal eigenvectors of a $N \times N$ random matrix ensemble introduced by E. Bogomolny & O. Giraud, *Phys. Rev. Lett.* **106** 044101 (2011) based on **Rujsenaars-Schneider** model of N interacting particles. Preliminary numerics is supportive of the theory.

Figure 2: Statistics of maxima for eigenvectors of RS model for sample sizes $M = 2^n$ with n = 8, ..., 12. left: raw data right: each curve is shifted by $\alpha_{-} \ln M + \frac{3}{2} \frac{1}{f'(\alpha_{-})} \ln \ln M$; data by Olivier Giraud