Matrix Models in Causal Dynamical Triangulations

Stefan Zohren

Pontifical Catholic University of Rio de Janeiro (visiting at Bielefeld U.)

VIII Brunel-Bielefeld Workshop on Random Matrix Theory December 15, 2012

Motivation and Background

Motivation
Introduction to CDT

Random Matrix Models for CDT

Generalised CDT, String Field Theory and Matrix Model Matrix Models for discrete CDT and Combinatorial Interpretation Applications of CDT Matrix Model

Summary and Final Considerations

Motivation

- Causal Dynamical Triangulations (CDT) is a non-perturbative approach to quantum gravity
- CDT respects the Lorentzian nature of the path integral by disallowing acausal configurations in the sum over geometries
- Recent numerical simulations give evidence for interesting results in higher dimensions (emergence of de Sitter space-time, scale dependent spectral dimension)
- It is vital to extend the analytical techniques in two-dimensions by means of matrix model formulations

Stefan Zohren

Quantum Gravity via DT and CDT

Dynamical Triangulations (DT)^a and Causal Dynamical Triangulations (CDT)^b are non-perturbative approaches to define the gravitational path integral as a sum over geometries. Schematically,

$$\hat{Z} = \int_{ \mathbf{A} \in \mathcal{M}} d\mu \exp \left(-\hat{S} \left[\mathbf{A} \right] \right) \rightarrow Z = \sum_{\mathbf{A} \in \mathcal{T}} \exp \left(-S \left[\mathbf{A} \right] \right)$$

^asee Ambjørn, Durhuus, Jonsson, *Quantum Geometry*, Cambridge ^bintroduzed by Ambjørn and Loll, hep-th/9805198 Nucl.Phys. B

Quantum Gravity via DT and CDT

Dynamical Triangulations (DT)^a and Causal Dynamical Triangulations (CDT)^b are non-perturbative approaches to define the gravitational path integral as a sum over geometries. Schematically,

$$\hat{Z} = \int_{\mathbf{A} \in \mathcal{M}} d\mu \exp\left(-\hat{S}\left[\mathbf{A}\right]\right) \to Z = \sum_{\mathbf{A} \in \mathcal{T}} \exp\left(-S\left[\mathbf{A}\right]\right)$$

Once Z is calculated, one takes the continuum limit:

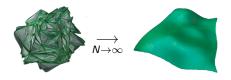
^asee Ambjørn, Durhuus, Jonsson, *Quantum Geometry*, Cambridge ^bintroduzed by Ambjørn and Loll, hep-th/9805198 Nucl.Phys. B

Quantum Gravity via DT and CDT

Dynamical Triangulations (DT)^a and Causal Dynamical Triangulations (CDT)^b are non-perturbative approaches to define the gravitational path integral as a sum over geometries. Schematically,

$$\hat{Z} = \int_{\mathbf{A} \in \mathcal{M}} d\mu \exp\left(-\hat{S}\left[\mathbf{A}\right]\right) \to Z = \sum_{\mathbf{A} \in \mathcal{T}} \exp\left(-S\left[\mathbf{A}\right]\right)$$

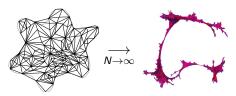
Once Z is calculated, one takes the continuum limit:



^asee Ambjørn, Durhuus, Jonsson, *Quantum Geometry*, Cambridge ^bintroduzed by Ambjørn and Loll, hep-th/9805198 Nucl.Phys. B

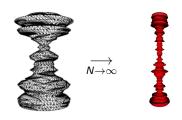
The difference between DT and CDT; Lessons from 2D

In DT the partition function sums over all planar triangulations:



$$d_h = 4$$

In CDT only triangulations with a strict time-slicing are allowed (no spatial topology changes):



Continuum Dynamics of Pure CDT

One can solve the above discretised path integral and obtain the continuum propagator

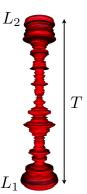
$$G_{\Lambda}^{(0)}(L_1, L_2; T) = < L_1 |e^{-H_0 T}|L_2 >$$

with Hamiltonian

$$H_0(L) = -L \frac{\partial^2}{\partial L^2} + \Lambda L$$

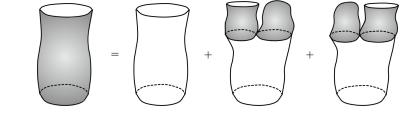
Later we will often use the Laplace transformed

$$G_{\Lambda}^{(0)}(X,Y;T) = \int \int dL_1 dL_2 e^{-L_1 X - L_2 Y} G_{\Lambda}^{(0)}(L_1,L_2;T)$$



Generalised CDT

Introduce generalised CDT^a by allowing spatial topology changes weighted by a coupling constant g_s . The Dyson-Schwinger (DS) equations for the propagator read



$$\frac{\partial}{\partial T}G_{\Lambda,g_s}(X,Y;T) = -\frac{\partial}{\partial X}\Big[\Big((X^2 - \Lambda) + 2g_s W_{\Lambda,g_s}(X)\Big)G_{\Lambda,G_s}(X,Y;T)\Big]$$

^aAmbjørn, Loll, Westra, SZ, 0709.2784 JHEP

Generalised CDT: Disc Function

Using a consistency relation, one can solve the DS equations for the disc function for all "tree-diagrams"

$$W_{\Lambda,g_s}(X) = \frac{-(X^2 - \Lambda) + (X - C)\sqrt{(X + C)^2 - 2g_s/C}}{2g_s}$$

$$C = \tilde{C}\sqrt{\Lambda}, \quad \tilde{C}^3 - \tilde{C} + g_s/\lambda^{3/2} = 0$$

Stefan Zohren Matrix Models in CDT

Matrix Model Correspondence

The results of generalised CDT can be obtained from the following $N \times N$ Hermitian matrix model^a

$$Z(\Lambda,g_s) = \int d\Phi \ e^{-rac{N}{g_s}{
m Tr}V(\Phi)}, \quad V(\Phi) = \Lambda\Phi - rac{1}{3}\Phi^3$$

The disc function is then given by the standard resolvent

$$\left\langle rac{1}{N} \operatorname{Tr} \left(rac{1}{X - \Phi}
ight)
ight
angle = W_{\Lambda,g_s}(X) + O(N^{-2})$$

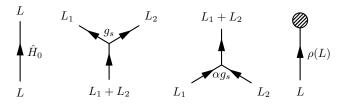
Note that this represents a matrix model for *continuum surfaces* similar to the Kontsevich model.^b

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0804.0252 Phys. Lett. B

^bKontsevich, Funk. Anal. 25 (1991) 50

String Field Theory

One can go beyond the tree diagrams by introducing a formalism of second quantisation, i.e. a string field theory (SFT)^{ab}



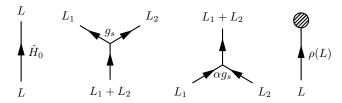
• One has a propagation, splitting, joining and tadpole term.

^bfor previous work in DT see Kawai et al. hep-th/9406207 Phys. Rev. D

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0802.0719 JHEP

String Field Theory

One can go beyond the tree diagrams by introducing a formalism of second quantisation, i.e. a string field theory (SFT)^{ab}



- One has a propagation, splitting, joining and tadpole term.
- The corresponding DS-equations give the "tree-diagrams" for $\alpha=0$ and match to the matrix model loop equations for $\alpha=1/N^2$.

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0802.0719 JHEP

^bfor previous work in DT see Kawai et al. hep-th/9406207 Phys. Rev. D

String Field Theory: Some Details

The detailed Hamiltonian reads

$$\hat{H} = \int \frac{dL}{L} \Psi^{\dagger}(L)(-L\frac{\partial^{2}}{\partial L^{2}} + \Lambda L)\Psi(L),$$

$$-g_{s} \int dL_{1} \int dL_{2}\Psi^{\dagger}(L_{1})\Psi^{\dagger}(L_{2})\Psi(L_{1} + L_{2})$$

$$-\alpha g_{s} \int dL_{1} \int dL_{2}\Psi^{\dagger}(L_{1} + L_{2})\Psi(L_{2})\Psi(L_{1}) - \int \frac{dL}{L} \delta(L)\Psi(L)$$

Stefan Zohren Matrix Models in CDT

String Field Theory: Some Details

The detailed Hamiltonian reads

$$\hat{H} = \int \frac{dL}{L} \Psi^{\dagger}(L)(-L\frac{\partial^{2}}{\partial L^{2}} + \Lambda L)\Psi(L),$$

$$-g_{s} \int dL_{1} \int dL_{2}\Psi^{\dagger}(L_{1})\Psi^{\dagger}(L_{2})\Psi(L_{1} + L_{2})$$

$$-\alpha g_{s} \int dL_{1} \int dL_{2}\Psi^{\dagger}(L_{1} + L_{2})\Psi(L_{2})\Psi(L_{1}) - \int \frac{dL}{L} \delta(L)\Psi(L)$$

Introducing the partition function with source term

$$Z(J) = \lim_{T \to \infty} \langle 0 | e^{-T\hat{H}} e^{\int dL J(L)\Psi^{\dagger}(L)} | 0 \rangle$$

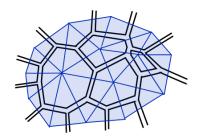
one can obtain the DS-equations by taking suitable derivatives w.r.t. J(L).

Stefan Zohren Matrix Models in CDT

Matrix models for DT: Counting planar maps

The dual fat-graphs of maps are counted by matrix models of $N \times N$ Hermitian matrices

$$Z(\{t_n\}) = \int [d\phi]e^{-N \text{Tr} V(\phi)}, \quad V(\phi) = \frac{1}{2}\phi^2 - \sum_{n \geq 3} \frac{t_n}{n}\phi^n.$$

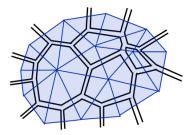


Stefan Zohren Matrix Models in CDT 12 /

Matrix models for DT: Counting planar maps

The dual fat-graphs of maps are counted by matrix models of $N \times N$ Hermitian matrices

$$Z(\{t_n\}) = \int [d\phi]e^{-N\text{Tr}V(\phi)}, \quad V(\phi) = \frac{1}{2}\phi^2 - \sum_{n\geq 3} \frac{t_n}{n}\phi^n.$$



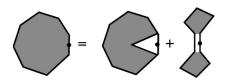
- The propagator in the potential represents double lines in the fat-graph
- Terms of order $t_n \phi^n$ correspond to vertices of order n in the fat-graph
- N → ∞ corresponds to the planar limit

Combinatorial Interpretation of Loop Equations

In the planar limit one obtains the following loop equations for the resolvent for a matrix model with potential $V(\phi) = \phi^2/2 - g\phi^3/3$:

$$w(z) = zgw(z) + \frac{1}{z}Q(z,g) + \frac{1}{z}w^2(z), \quad w(z) = \left\langle \frac{1}{N}\operatorname{Tr}\left(\frac{1}{z-\phi}\right)\right\rangle$$

Their combinatorial interpretation is given through Tutte's equation, pictorially



Matrix Models in CDT

Loop Equations for CDT

In generalised CDT we assign a coupling constant β to spatial topology changes. One can obtain the following loop equations^a

$$w(z) = zgw(z) + \frac{g}{z}w(z) + \frac{1}{z}Q(z,g) + \beta \frac{1}{z}w^2(z)$$

- The second term on the rhs is essential when $\beta \to 0$
- For $\beta \to 0$ one obtains the exact combinatorial expressions which count pure CDT.

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0810.2503 Acta Phys. Pol. B

Matrix Model for discrete CDT and continuum limit

The loop equations for discrete CDT correspond to a $N \times N$ Hermitian matrix model

$$Z(g,eta) = \int [d\phi] e^{-rac{N}{eta} {
m Tr} V(\phi)}, \quad V(\phi) = -g\phi + rac{1}{2}\phi^2 - rac{g}{3}\phi^3.$$

The linear term corresponds to the new term in the loop equation.

Stefan Zohren Matrix Models in CDT 15 /

Matrix Model for discrete CDT and continuum limit

The loop equations for discrete CDT correspond to a $N \times N$ Hermitian matrix model

$$Z(g,eta) = \int [d\phi] e^{-rac{N}{eta} \mathrm{Tr} V(\phi)}, \quad V(\phi) = -g\phi + rac{1}{2}\phi^2 - rac{g}{3}\phi^3.$$

The linear term corresponds to the new term in the loop equation.

Performing the usual CDT scaling limit on the level of the action

$$\phi = z_c + a\Phi$$
 $g = g_c - a^2 \Lambda$ $\beta = a^3 g_s$

one obtains back the matrix model for continuum CDT surfaces:

$$Z(\Lambda,g_s) = \int d\Phi \ e^{-rac{N}{g_s}{
m Tr}V(\Phi)}, \quad V(\Phi) = \Lambda\Phi - rac{1}{3}\Phi^3$$

Stefan Zohren Matrix Models in CDT

CDT as new continuum limit

One can understand the new continuum limit^a in terms of the eigenvalue distribution

$$Z(g,\beta) = \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\lambda_i \prod_{j \neq i} (\lambda_j - \lambda_i)^2 \exp \left\{ -\frac{N}{\beta} \sum_{i=1}^{N} V(\lambda_i, g) \right\}$$

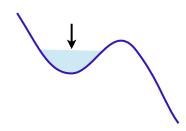
Stefan Zohren

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0810.2408 Phys. Lett. B

CDT as new continuum limit

One can understand the new continuum limit^a in terms of the eigenvalue distribution

$$Z(g,\beta) = \int_{-\infty}^{\infty} \prod_{i=1}^{N} d\lambda_{i} \prod_{j \neq i} (\lambda_{j} - \lambda_{i})^{2} \exp \left\{ -\frac{N}{\beta} \sum_{i=1}^{N} V(\lambda_{i}, g) \right\}$$



- At the critical point one has $V'(\lambda_c, g_c) = V''(\lambda_c, g_c) = 0$
- One flattens the potential while at the same time taking the eigenvalue repulsion to zero

^aAmbjørn, Loll, Watabiki, Westra, SZ, 0810.2408 Phys. Lett. B

Application: Multi-Critical Points and Mater Coupling

• One can investigate the m=3 multi-critical point of a higher order potential with ^a

$$V'(\{t_{n,cr}\}) = V''(\{t_{n,cr}\}) = V'''(\{t_{n,cr}\}) = 0$$

- It can be seen that this model corresponds to the scaling limit of hard dimers, a (2,5)-CFT, coupled to CDT b
- One can generalise this to the m-th multi-critical point which corresponds to a (2,2m-1)-CFT coupled to CDT $^{\rm c}$

Stefan Zohren Matrix

^aAmbjørn et al. 1202.4435 Phys. Lett. B

^bAtkin, SZ: 1202.4322 Phys. Lett. B

^cAtkin. SZ: 1203.5034 JHEP

Application: Sum over Topologies

One can obtain the sum over topologies from the ordinary integral $({\it N}=1)^a$

$$Z(\kappa, \Lambda) = \int dx \exp\left[-rac{1}{g_s}\left(\Lambda x - rac{1}{3}x^3
ight)
ight], \quad \kappa = rac{g_s}{\Lambda^{3/2}}$$

The disc function is then given in terms of Airy functions

$$W(L) = \frac{\operatorname{Bi}\left(\frac{\Lambda}{g_s^{2/3}} - g_s^{1/3}L\right)}{\operatorname{Bi}\left(\frac{\Lambda}{g_s^{2/3}}\right)}$$

$$= - + \kappa + \kappa^2 \left(+ \kappa^2 +$$

^aAmbjørn, Loll, Westra, SZ, 0905.2108 PLB, 0908.4224 PLB

Summary and Final Considerations

- We gave an overview of recent developments for matrix model techniques in CDT.
- Interestingly, the continuum surface model of generalised CDT is again described by a matrix model.
- We gave a combinatorial interpretation of the loop equations of the discretized model.
- We discussed several application of these techniques to describe higher multi-critical points as well as the sum over topologies.
- Interesting models such as the Ising model coupled to CDT still remain unsolved.

Summary and Final Considerations

- We gave an overview of recent developments for matrix model techniques in CDT.
- Interestingly, the continuum surface model of generalised CDT is again described by a matrix model.
- We gave a combinatorial interpretation of the loop equations of the discretized model.
- We discussed several application of these techniques to describe higher multi-critical points as well as the sum over topologies.
- Interesting models such as the Ising model coupled to CDT still remain unsolved.

Thank you very much!

