Holger Kösters

(joint work with Mario Kieburg)

Bielefeld University

XII Brunel-Bielefeld Workshop on Random Matrix Theory

10th December 2016

Overview

- Motivation
- Polynomial Ensembles of Derivative Type
- Main Results
- 4 Some Ideas from the Proofs
- 6 Complements
- 6 Summary and Outlook

Overview

- Motivation
- 2 Polynomial Ensembles of Derivative Type
- Main Results
- 4 Some Ideas from the Proofs
- 5 Complements
- 6 Summary and Outlook

Standing Assumption:

Let \mathbf{X}_n be a *bi-invariant* (*bi-unitarily invariant*) (*isotropic*) random matrix with values in $G := GL(n, \mathbb{C})$.

 \mathbf{X}_n bi-invariant : \Leftrightarrow for any $V, W \in K := \mathrm{U}(n)$, $V\mathbf{X}_n W^* \stackrel{d}{=} \mathbf{X}_n$

Standing Assumption:

Let \mathbf{X}_n be a *bi-invariant* (*bi-unitarily invariant*) (*isotropic*) random matrix with values in $G := GL(n, \mathbb{C})$.

$$\mathbf{X}_n$$
 bi-invariant : \Leftrightarrow for any $V, W \in K := \mathrm{U}(n)$, $V\mathbf{X}_n W^* \stackrel{d}{=} \mathbf{X}_n$

Associated Densities:

- (bi-invariant) matrix density: $f_G(g)$ on $GL(n, \mathbb{C})$ jpdf of the matrix entries w.r.t. Lebesgue measure on $\mathbb{C}^{n \times n}$
- (symmetric) singular value density: $f_{SV}(a) = f_{SV}(a_1, ..., a_n)$ on \mathbb{R}^n_+ jpdf of the *squared* singular values
- (symmetric) eigenvalue density: $f_{\text{EV}}(z) = f_{\text{EV}}(z_1, \dots, z_n)$ on \mathbb{C}^n_* jpdf of the eigenvalues

Basic Question:

What can we say about these densities (and the relation between them)?

Ginibre Matrix

$$f_{\text{SV}}(a) \propto |\Delta_n(a)|^2 \prod_{j=1}^n e^{-a_j}$$

 $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n e^{-|z_j|^2}$

Ginibre (1965)

Ginibre Matrix

$$f_{\mathrm{SV}}(a) \propto |\Delta_n(a)|^2 \prod_{j=1}^n e^{-a_j}$$
 Fisher (1939), Hsu (1939), Roy (1939), ... $f_{\mathrm{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n e^{-|z_j|^2}$ Ginibre (1965)

Product of *p* Ginibre Matrices

$$f_{ ext{SV}}(a) \propto \Delta_n(a) \det \left[\left(-a_k rac{\partial}{\partial a_k}
ight)^{j-1} w_{p,0}(a_k)
ight]$$
 Akemann-Kieburg-Wei (2013) $f_{ ext{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,0}(|z_j|^2)$ Akemann-Burda (2012)

where
$$w_{p,q}(x) = G_{q,p}^{p,q} {-n,...,-n \brack 0,...,0} | x = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} \Gamma^p(s) \Gamma^q(1+n-s) x^{-s} ds$$

Ginibre Matrix

$$f_{\text{SV}}(a) \propto |\Delta_n(a)|^2 \prod_{j=1}^n e^{-a_j}$$
 Fisher (1939), Hsu (1939), Roy (1939), ... $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n e^{-|z_j|^2}$ Ginibre (1965)

Product of *p* Ginibre Matrices

$$f_{ ext{SV}}(a) \propto \Delta_n(a) \det \left[\left(-a_k rac{\partial}{\partial a_k}
ight)^{j-1} w_{p,0}(a_k)
ight]$$
 Akemann-Kieburg-Wei (2013)
 $f_{ ext{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,0}(|z_j|^2)$ Akemann-Burda (2012)

Product of p Ginibre Matrices and q Inverse Ginibre Matrices

$$f_{ ext{SV}}(a) \propto \Delta_n(a) \det \left[\left(-a_k rac{\partial}{\partial a_k}
ight)^{j-1} w_{p,q}(a_k)
ight]$$
 Forrester (2014) $f_{ ext{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,q}(|z_j|^2)$ Adhikari–Reddy–Reddy–Saha (2013)

where
$$w_{p,q}(x) = G_{q,p}^{p,q} \left(\begin{smallmatrix} -n, \dots, -n \\ 0, \dots, 0 \end{smallmatrix} \middle| x \right) = \frac{1}{2\pi \mathrm{i}} \int_{1-\mathrm{i}\infty}^{1+\mathrm{i}\infty} \Gamma^p(s) \Gamma^q(1+n-s) x^{-s} \, ds$$

Common Structure:

$$f_{\text{SV}}(a) \propto \Delta_n(a) \det \left[\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w(a_k) \right]$$

 $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w(|z_j|^2)$

Common Structure:

$$f_{\text{SV}}(a) \propto \Delta_n(a) \det \left[(-a_k \frac{\partial}{\partial a_k})^{j-1} w(a_k) \right]$$

 $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w(|z_j|^2)$

Several Examples:

- products of independent [inverse] Ginibre matrices
- products of independent [inverse] truncated unitary matrices
- mixed products

Akemann-Burda (2012), Akemann-Strahov (2013), Akemann-Kieburg-Wei (2013), Akemann-Ipsen-Kieburg (2013), Adhikari-Reddy-Reddy-Saha (2013), Ipsen-Kieburg (2014), Akemann-Burda-Kieburg-Nagao (2014), Forrester (2014), Akemann-Ipsen-Strahov (2014), Kuijlaars-Zhang (2014), Kuijlaars-Stivigny (2014), Kieburg-Kuijlaars-Stivigny (2015), Kuijlaars (2015), Akemann-Ipsen (2015), Claeys-Kuijlaars-Wang (2015), . . .

Common Structure:

$$f_{\text{SV}}(a) \propto \Delta_n(a) \det \left[(-a_k \frac{\partial}{\partial a_k})^{j-1} w(a_k) \right]$$

 $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w(|z_j|^2)$

Several Examples:

- products of independent [inverse] Ginibre matrices
- products of independent [inverse] truncated unitary matrices
- mixed products

Akemann-Burda (2012), Akemann-Strahov (2013), Akemann-Kieburg-Wei (2013), Akemann-Ipsen-Kieburg (2013), Adhikari-Reddy-Reddy-Saha (2013), Ipsen-Kieburg (2014), Akemann-Burda-Kieburg-Nagao (2014), Forrester (2014), Akemann-Ipsen-Strahov (2014), Kuijlaars-Zhang (2014), Kuijlaars-Stivigny (2014), Kieburg-Kuijlaars-Stivigny (2015), Kuijlaars (2015), Akemann-Ipsen (2015), Claeys-Kuijlaars-Wang (2015), . . .

Main Questions:

- Can we find more examples with this structure?
- Can we show that this structure is preserved under multiplication?
- Can we give a unifying proof?

Overview

- Motivation
- 2 Polynomial Ensembles of Derivative Type
- Main Results
- 4 Some Ideas from the Proofs
- Complements
- 6 Summary and Outlook

Polynomial Ensemble Kuijlaars-Stivigny (2014)

 X_n is from a *polynomial ensemble* if it is bi-invariant and

$$f_{\mathsf{SV}}(a) \propto \Delta_n(a) \, \det \left(w_j(a_k) \right)_{j,k=1,\ldots,n}$$

for some weight functions w_1, \ldots, w_n (with suitable properties).

Abbreviation: $\mathbf{X}_n \sim PE(w_1, \dots, w_n)$.

Polynomial Ensemble Kuijlaars-Stivigny (2014)

 \mathbf{X}_n is from a *polynomial ensemble* if it is bi-invariant and

$$f_{\mathsf{SV}}(a) \propto \Delta_n(a) \, \det \left(w_j(a_k) \right)_{j,k=1,\ldots,n}$$

for some weight functions w_1, \ldots, w_n (with suitable properties).

Abbreviation: $\mathbf{X}_n \sim PE(w_1, \dots, w_n)$.

Theorem (Transfer Law) Kuijlaars-Stivigny (2014)

If $\mathbf{X}_n \sim PE(w_1, \dots, w_n)$ and $\mathbf{Y}_n \sim$ Ginibre are independent,

then $\mathbf{X}_n\mathbf{Y}_n \sim PE(w_1 \circledast w_{Gin}, \dots, w_n \circledast w_{Gin})$, where $w_{Gin}(x) := e^{-x}$.

 $Kuijlaars-Stivigny~(2014),~Kieburg-Kuijlaars-Stivigny~(2015),~Kuijlaars~(2015),~Claeys-Kuijlaars-Wang~(2015),~\dots~(2015),~Xiijlaars-Stivigny~(2015),~Xiijlaa$

Polynomial Ensemble Kuijlaars-Stivigny (2014)

 \mathbf{X}_n is from a *polynomial ensemble* if it is bi-invariant and

$$f_{\mathsf{SV}}(a) \propto \Delta_n(a) \det \left(w_j(a_k) \right)_{j,k=1,...,n}$$

for some weight functions w_1, \ldots, w_n (with suitable properties).

Abbreviation: $\mathbf{X}_n \sim PE(w_1, \dots, w_n)$.

Theorem (Transfer Law) Kuijlaars-Stivigny (2014)

If $\mathbf{X}_n \sim PE(w_1, \dots, w_n)$ and $\mathbf{Y}_n \sim$ Ginibre are independent,

then $\mathbf{X}_n\mathbf{Y}_n \sim PE(w_1 \circledast w_{Gin}, \dots, w_n \circledast w_{Gin})$, where $w_{Gin}(x) := e^{-x}$.

Kuijlaars–Stivigny (2014), Kieburg–Kuijlaars–Stivigny (2015), Kuijlaars (2015), Claeys–Kuijlaars–Wang (2015), . . .

Polynomial Ensemble of Derivative Type Kieburg-K. (2016)

 \mathbf{X}_n is from a polynomial ensemble of derivative type if it is bi-invariant and

$$f_{\mathsf{SV}}(a) \propto \Delta_n(a) \, \det \left((-a_k rac{\partial}{\partial a_k})^{j-1} w_0(a_k)
ight)_{j,k=1,\ldots,n}$$

for some weight function w_0 (with suitable properties).

Abbreviation: $\mathbf{X}_n \sim DPE(w_0)$.

4 D > 4 B > 4 E > 4 E > 9 Q C

Polynomial Ensemble of Derivative Type Kieburg-K. (2016)

 \mathbf{X}_n is from a polynomial ensemble of derivative type if it is bi-invariant and

$$f_{\mathsf{SV}}(a) \propto \Delta_n(a) \, \det ig((-a_k rac{\partial}{\partial a_k})^{j-1} w_0(a_k) ig)_{j,k=1,\dots,n}$$

for some weight function w_0 (with suitable properties).

Abbreviation: $\mathbf{X}_n \sim DPE(w_0)$.

Examples from RMT

• induced Wishart–Laguerre ensemble:

$$w_0(a)=a^{\nu}e^{-a}$$

induced Jacobi ensemble:

$$w_0(a) = a^{\nu}(1-a)^{\mu-1}\mathbf{1}_{(0,1)}(a)$$

 $w_0(a) = a^{\nu}(1+a)^{-\nu-\mu-1}$

induced Cauchy–Lorentz ensemble:
 products of such random matrices:

$$w_0(a) = Meijer-G-function$$

Muttalib–Borodin ensemble (of Wishart–Laguerre type)

Muttalib (1995), Borodin (1999), Cheliotis (2014), Forrester-Liu (2014), Forrester-Wang (2015), Zhang (2015), . . .

(a)
$$f_{SV}(a) \propto \Delta_n(a) \Delta_n(a^{\theta}) (\det a)^{\nu} e^{-\operatorname{tr} a^{\theta}}$$

$$w_0(a) = a^{\nu} e^{-\alpha a^{\theta}}$$

(b)
$$f_{\text{SV}}(a) \propto \Delta_n(a) \Delta_n(\ln a) (\det a)^{\nu} e^{-\operatorname{tr}(\ln a)^2}$$

$$w_0(a) = a^{\nu} e^{-\alpha(\ln a)^2}$$

Overview

- Motivation
- 2 Polynomial Ensembles of Derivative Type
- Main Results
- 4 Some Ideas from the Proofs
- 5 Complements
- Summary and Outlook

If $\mathbf{X}_n \sim DPE(w_0)$, then $f_{\text{SV}}(a) \propto \Delta_n(a) \det \left((-a_k \frac{\partial}{\partial a_k})^{j-1} w_0(a_k) \right)_{j,k=1,\ldots,n}$.

Theorem (Eigenvalue Density) Kieburg-K. (2016)

If $\mathbf{X}_n \sim DPE(w_0)$, then $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_0(|z_j|^2)$.

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $f_{SV}(a) \propto \Delta_n(a) \det \left(\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w_0(a_k) \right)_{j,k=1,\ldots,n}$.

Theorem (Eigenvalue Density) Kieburg-K. (2016)

If $\mathbf{X}_n \sim DPE(w_0)$, then $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{i=1}^n w_0(|z_i|^2)$.

Theorem (Transfer Law) Kieburg-K. (2016)

Let $\mathbf{X}_n \sim DPE(w_0)$ and $\mathbf{Y}_n \sim DPE(v_0)$ be independent.

Then $\mathbf{X}_n \mathbf{Y}_n \sim DPE_n(w_0 \circledast v_0)$, where

$$(w_0 \circledast v_0)(x) = \int_0^\infty w_0(xy^{-1})v_0(y) \frac{dy}{y}, \quad x > 0.$$

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $f_{SV}(a) \propto \Delta_n(a) \det \left(\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w_0(a_k) \right)_{j,k=1,\ldots,n}$.

Theorem (Eigenvalue Density) Kieburg-K. (2016)

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_0(|z_j|^2)$.

Theorem (Transfer Law) Kieburg-K. (2016)

Let $\mathbf{X}_n \sim DPE(w_0)$ and $\mathbf{Y}_n \sim DPE(v_0)$ be independent.

Then $\mathbf{X}_n \mathbf{Y}_n \sim DPE_n(w_0 \circledast v_0)$, where

$$(w_0 \circledast v_0)(x) = \int_0^\infty w_0(xy^{-1})v_0(y) \frac{dy}{y}, \quad x > 0.$$

More generally, let $\mathbf{X}_n \sim PE(w_1,...,w_n)$ and $\mathbf{Y}_n \sim DPE(v_0)$ be independent. Then $\mathbf{X}_n \mathbf{Y}_n \sim PE(w_1 \circledast v_0, \dots, w_n \circledast v_0)$.

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $f_{SV}(a) \propto \Delta_n(a) \det \left(\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w_0(a_k) \right)_{j,k=1,\ldots,n}$.

Theorem (Eigenvalue Density) Kieburg-K. (2016)

If $\mathbf{X}_n \sim DPE(w_0)$, then $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{i=1}^n w_0(|z_i|^2)$.

Theorem (Transfer Law) Kieburg-K. (2016)

Let $\mathbf{X}_n \sim DPE(w_0)$ and $\mathbf{Y}_n \sim DPE(v_0)$ be independent.

Then $\mathbf{X}_n \mathbf{Y}_n \sim DPE_n(w_0 \circledast v_0)$, where

$$(w_0 \circledast v_0)(x) = \int_0^\infty w_0(xy^{-1})v_0(y)\frac{dy}{y}, \quad x > 0.$$

More generally, let $\mathbf{X}_n \sim PE(w_1,...,w_n)$ and $\mathbf{Y}_n \sim DPE(v_0)$ be independent. Then $\mathbf{X}_n \mathbf{Y}_n \sim PE(w_1 \circledast v_0, \dots, w_n \circledast v_0)$.

Theorem (Transfer Law) Kieburg-K. (2016)

Let $\mathbf{X}_n \sim DPE(w_0)$. Then $\mathbf{X}_n^{-1} \sim DPE(\widetilde{w}_0)$, where $\widetilde{w}_0(x) = w_0(x^{-1}) x^{-n-1}$.

Overview

- Motivation
- 2 Polynomial Ensembles of Derivative Type
- Main Results
- 4 Some Ideas from the Proofs
- 5 Complements
- 6 Summary and Outlook

Univariate Situation

X : r.v. with values in $\mathbb C$

and a rotation-invariant density f_X

dist. of $X \longleftrightarrow \operatorname{dist.}$ of $|X|^2$

 $|X|^2$: r.v. with values in \mathbb{R}_+

and a density $f_{|X|^2}$

Mellin Transform

$$\mathcal{M}_X(s) = \int_{\mathbb{R}_+} f_{|X|^2}(y) y^s \frac{dy}{y}$$
$$= \int_{\mathbb{C}} f_X(x) |x|^{2s} \frac{dx}{|x|^2}$$

for suitable $s \in \mathbb{C}$

Uniqueness Theorem $\mathcal{M}_{X_1} = \mathcal{M}_{X_2} \Rightarrow X_1 \stackrel{d}{=} X_2$

Multiplication Theorem

 $X_1, X_2 \text{ ind.} \Rightarrow \mathcal{M}_{X_1 X_2} = \mathcal{M}_{X_1} \cdot \mathcal{M}_{X_2}$

Univariate Situation

X: r.v. with values in $\mathbb C$ and a rotation-invariant density f_X

dist. of $X \longleftrightarrow \text{dist. of } |X|^2$

 $|X|^2$: r.v. with values in \mathbb{R}_+ and a density $f_{|X|^2}$

Mellin Transform

$$\mathcal{M}_X(s) = \int_{\mathbb{R}_+} f_{|X|^2}(y) y^s \frac{dy}{y}$$
$$= \int_{\mathbb{C}} f_X(x) |x|^{2s} \frac{dx}{|x|^2}$$

for suitable $s \in \mathbb{C}$

Uniqueness Theorem $\mathcal{M}_{X_1} = \mathcal{M}_{X_2} \Rightarrow X_1 \stackrel{d}{=} X_2$

Multiplication Theorem

 $X_1, X_2 \text{ ind.} \Rightarrow \mathcal{M}_{X_1 X_2} = \mathcal{M}_{X_1} \cdot \mathcal{M}_{X_2}$

Multivariate Situation

X: r.v. with values in $\mathrm{GL}(n,\mathbb{C})$ and a bi-invariant density f_X

dist. of $X \longleftrightarrow dist.$ of X^*X

 $\mathbf{X}^*\mathbf{X}$: r.v. with values in $\operatorname{Pos}(n,\mathbb{C})$ and a conjugation-invariant density $f_{\mathbf{X}^*\mathbf{X}}$

Spherical Transform

$$S_{\mathbf{X}}(s) = \int_{\operatorname{Pos}(n,\mathbb{C})} f_{\mathbf{X}^*\mathbf{X}}(y) \, \varphi_s(y) \, \frac{dy}{(\det y)^n}$$
$$= \int_{\operatorname{GL}(n,\mathbb{C})} f_{\mathbf{X}}(x) \, \varphi_s(x^*x) \, \frac{dx}{|\det x|^{2n}}$$

for suitable $s \in \mathbb{C}^n$

Uniqueness Theorem $S_{\mathbf{X}_1} = S_{\mathbf{X}_2} \Rightarrow \mathbf{X}_1 \stackrel{d}{=} \mathbf{X}_2$

Multiplication Theorem

 $\textbf{X}_1,\textbf{X}_2 \text{ ind.} \underset{^{\ast}}{\Rightarrow} \mathcal{S}_{\textbf{X}_{\overline{1}}\textbf{X}_2} \underset{^{\ast}}{=} \mathcal{S}_{\textbf{X}_{\overline{1}}} \cdot \mathcal{S}_{\textbf{X}_{\overline{2}}}$

Spherical Transform

$$S_{\mathbf{X}}(s) = \int_{\mathrm{GL}(n,\mathbb{C})} f_{\mathbf{X}}(x) \, \varphi_s(x^*x) \, \frac{dx}{|\det x|^{2n}} \qquad (s \in \mathbb{C}^n)$$

Spherical Transform

$$S_{\mathbf{X}}(s) = \int_{\mathrm{GL}(n,\mathbb{C})} f_{\mathbf{X}}(x) \, \varphi_s(x^* x) \, \frac{dx}{|\det x|^{2n}} \qquad (s \in \mathbb{C}^n)$$

Spherical Function

Let $x \in GL(n,\mathbb{C})$, let $\mathbf{X}_n \in GL(n,\mathbb{C})$ be a bi-invariant random matrix with the same singular values as x, and let $\mathbf{X}_n = \mathbf{Q}_n \mathbf{R}_n$ be its QR decomposition.

$$arphi_{s}(x^{*}x) := \mathbb{E}\Big(\prod_{i=1}^{n} \mathsf{R}_{jj}^{2(s_{j}+arrho_{j}-1)}\Big) \qquad (\mathsf{where} \,\,\, arrho_{j} := j - rac{n+1}{2})$$

Spherical Transform

$$S_{\mathbf{X}}(s) = \int_{\mathrm{GL}(n,\mathbb{C})} f_{\mathbf{X}}(x) \, \varphi_s(x^*x) \, \frac{dx}{|\det x|^{2n}} \qquad (s \in \mathbb{C}^n)$$

Spherical Function

Let $x \in GL(n, \mathbb{C})$, let $\mathbf{X}_n \in GL(n, \mathbb{C})$ be a bi-invariant random matrix with the same singular values as x, and let $\mathbf{X}_n = \mathbf{Q}_n \mathbf{R}_n$ be its QR decomposition.

$$arphi_{s}(x^{*}x) := \mathbb{E}\Big(\prod_{j=1}^{n}\mathsf{R}_{jj}^{2(s_{j}+arrho_{j}-1)}\Big) \qquad (\mathsf{where}\,\,\,arrho_{j} := j - rac{n+1}{2})$$

Spherical Function for $\mathrm{GL}(n,\mathbb{C})$ Gelfand-Naimark (1950)

$$\varphi_{s}(x^{*}x) = C_{n} \frac{\det[(\lambda_{j}(x^{*}x))^{s_{k}+(n-1)/2}]_{j,k=1,\dots,n}}{\Delta_{n}(s)\Delta_{n}(\lambda(x^{*}x))} \qquad (x \in GL(n,\mathbb{C}))$$

where $\lambda(x^*x)$ is the vector consisting of the eigenvalues of x^*x

Proposition (Spherical Transform)
$$\kappa_{\text{ieburg-K. (2016)}}$$

If $\mathbf{X}_n \sim DPE(w_0)$, then $\mathcal{S}_{\mathbf{X}_n}(s) \propto \prod_{k=1}^n (\mathcal{M}w_0)(s_k - \frac{n-1}{2})$.

Kieburg-K. (2016)

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $\mathcal{S}_{\mathbf{X}_n}(s) \propto \prod_{k=1} (\mathcal{M}w_0)(s_k - rac{n-1}{2})$.

Proof:

Set
$$Df(x) := (-x)f'(x)$$
 and note that $\mathcal{M}(Df)(s) = s \mathcal{M}f(s)$.

$$\begin{split} \mathcal{S}_{\mathbf{X}}(s) &= \int_{\mathrm{GL}(n,\mathbb{C})} f_{\mathbf{X}}(x) \, \varphi_s(x^*x) \, \frac{dx}{|\det x|^{2n}} = \int_{(0,\infty)^n} f_{\mathsf{SV}}(\lambda) \, \varphi_s(\lambda) \, \frac{d\lambda}{(\det \lambda)^n} \\ &\propto \int_{(0,\infty)^n} \Delta_n(\lambda) \, \det \left(D^{j-1} w_0(\lambda_k) \right) \, \frac{\det \left((\lambda_j)^{s_k + (n-1)/2} \right)}{\Delta_n(s) \, \Delta_n(\lambda)} \, \frac{d\lambda}{(\det \lambda)^n} \\ &\propto \frac{1}{\Delta_n(s)} \det \left(\int_0^\infty D^{j-1} w_0(\lambda) \lambda^{s_k - (n+1)/2} \, d\lambda \right) \\ &= \frac{\det \left((s_k - \frac{n-1}{2})^{j-1} \, (\mathcal{M} w_0)(s_k - \frac{n-1}{2}) \right)}{\Delta_n(s)} = \prod_{k=1}^n (\mathcal{M} w_0)(s_k - \frac{n-1}{2}) \, . \end{split}$$

Theorem (Transfer Law for the Product) Kieburg-K. (2016)

Let $\mathbf{X}_n \sim DPE(w_0)$ and $\mathbf{Y}_n \sim DPE(v_0)$ be independent.

Then
$$\mathbf{X}_n \mathbf{Y}_n \sim DPE_n(w_0 \circledast v_0)$$
, where $(w_0 \circledast v_0)(x) = \int_0^\infty w_0(xy^{-1})v_0(y) \frac{dy}{y}$.

Proof:

$$\begin{split} & \mathbf{X}_n \sim DPE(w_0) \,, \ \mathbf{Y}_n \sim DPE(v_0) \\ \Rightarrow & \mathcal{S}_{\mathbf{X}_n}(s) \propto \prod_{k=1}^n \mathcal{M}w_0(s_k - \frac{n-1}{2}) \,, \ \mathcal{S}_{\mathbf{Y}_n}(s) \propto \prod_{k=1}^n \mathcal{M}v_0(s_k - \frac{n-1}{2}) \\ \Rightarrow & \mathcal{S}_{\mathbf{X}_n\mathbf{Y}_n}(s) \propto \prod_{k=1}^n \mathcal{M}(w_0 \circledast v_0)(s_k - \frac{n-1}{2}) \\ \Rightarrow & \mathbf{X}_n\mathbf{Y}_n \sim DPE(w_0 \circledast v_0) \end{split}$$

Theorem (Eigenvalue Density)
$$_{\text{Kieburg-K. (2016)}}$$
 If $\mathbf{X}_n \sim DPE(w_0)$, then $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{i=1}^n w_0(|z_i|^2)$.

Theorem (Eigenvalue Density) Kieburg-K. (2016)

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_0(|z_j|^2)$.

Proof:

$$f_{\mathsf{EV}}(z) \propto |\Delta_n(z)|^2 \left(\prod_{j=1}^n |z_j|^{2n-2j} \right) \int_{\mathcal{T}} f_G(zt) \, dt$$

Theorem (Eigenvalue Density) Kieburg-K. (2016)

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $f_{\mathsf{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1} w_0(|z_j|^2)$.

Proof:

$$f_{\mathsf{EV}}(z) \propto |\Delta_n(z)|^2 \left(\prod_{j=1}^n |z_j|^{2n-2j}\right) \int_{\mathcal{T}} f_G(zt) dt$$

$$f_{(\mathbf{R}_{11},\ldots,\mathbf{R}_{nn})}(r_1,\ldots,r_n) \propto \left(\prod_{j=1}^n |z_j|^{2n-2j}\right) \int_T f_G(rt) dt$$

Theorem (Eigenvalue Density) Kieburg-K. (2016)

If
$$\mathbf{X}_n \sim DPE(w_0)$$
, then $f_{\mathsf{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1} w_0(|z_j|^2)$.

Proof:

$$f_{\text{EV}}(z) \propto |\Delta_n(z)|^2 \left(\prod_{j=1}^n |z_j|^{2n-2j}\right) \int_T f_G(zt) dt$$

$$f_{(\mathbf{R}_{11},\ldots,\mathbf{R}_{nn})}(r_1,\ldots,r_n) \propto \left(\prod_{j=1}^n |z_j|^{2n-2j}\right) \int_T f_G(rt) dt$$

Thus, since $S_{\mathbf{X}}$ is essentially the (componentwise) Mellin transform of $f_{(\mathbf{R}_{11},\ldots,\mathbf{R}_{nn})}$, we get $f_{(\mathbf{R}_{11},\ldots,\mathbf{R}_{nn})}$, and hence $f_{\mathbf{EV}}$, from $S_{\mathbf{X}}$ by (componentwise) Mellin inversion:

$$\mathcal{S}_{\mathbf{X}_n}(s) \propto \prod_{j=1}^n \mathcal{M} w_0(s_j - rac{n-1}{2}) \quad \Rightarrow \quad f_{\mathsf{EV}}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_0(|z_j|^2)$$

Overview

- Motivation
- 2 Polynomial Ensembles of Derivative Type
- Main Results
- 4 Some Ideas from the Proofs
- 6 Complements
- 6 Summary and Outlook

Relation between Singular Value and Eigenvalue Densities

 $L^{1,K}_{\mathsf{prob}}$: set of all *bi-invariant* probability densities on $G = \mathrm{GL}(n,\mathbb{C})$

 $L_{\text{prob}}^{1,SV}$: set of all *induced* singular value densities

 $L_{\text{prob}}^{1,EV}$: set of all *induced* eigenvalue densities

Theorem Kieburg-K. (2016)

The map $f_{SV} \longmapsto f_{EV}$ establishes a bijection between $L_{prob}^{1,SV}$ and $L_{prob}^{1,EV}$.

$$\begin{split} \frac{f_{\text{EV}}(z)}{|\Delta_n(z)|^2} &= C_n' \int_{\mathbb{R}^n} \int_{(0,\infty)^n} \frac{f_{\text{SV}}(a)}{\Delta_n(a)} \frac{\det[a_j^{k+\imath s_k}]}{\Delta_n(\varrho + \imath s)} \, \frac{da}{a} \, \operatorname{perm}\big[|z_j|^{-2(k+\imath s_k)}\big] \, ds \\ \frac{f_{\text{SV}}(a)}{\Delta_n(a)} &= C_n'' \int_{\mathbb{R}^n} \int_{(0,\infty)^n} \frac{f_{\text{EV}}(\sqrt{r})}{|\Delta_n(\sqrt{r})|^2} \, \operatorname{perm}\big[r_j^{k+\imath s_k}\big] \, \frac{dr}{r} \, \Delta_n(\varrho + \imath s) \, \det[a_j^{-(k+\imath s_k)}] \, ds \end{split}$$

Related Work Fyodorov-Khoruzhenko (2007), Wei-Fyodorov (2008), ... description of the map $g_{SV} \mapsto g_{EV}$ between the one-point densities for deterministic singular value configurations

Interpolation between Product Ensembles I

Product of *p* Ginibre Matrices and *q* Inverse Ginibre Matrices

$$f_{\text{SV}}^{(p,q)}(a) \propto \Delta_n(a) \det \left[\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w_{p,q}(a_k) \right]$$

$$f_{\text{EV}}^{(p,q)}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,q}(|z_j|^2)$$
where $w_{p,q}(x) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} \Gamma^p(s) \Gamma^q(1+n-s) x^{-s} ds$

Interpolation between Product Ensembles I

Product of *p* Ginibre Matrices and *q* Inverse Ginibre Matrices

$$f_{\text{SV}}^{(p,q)}(a) \propto \Delta_n(a) \det \left[\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w_{p,q}(a_k) \right]$$

$$f_{\text{EV}}^{(p,q)}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,q}(|z_j|^2)$$
where $w_{p,q}(x) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} \Gamma^p(s) \Gamma^q(1+n-s) x^{-s} ds$

Problem: Is it possible to interpolate between these "product ensembles"?

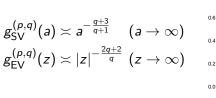
Interpolation between Product Ensembles I

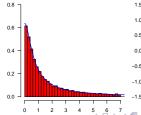
Product of *p* Ginibre Matrices and *q* Inverse Ginibre Matrices

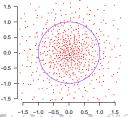
$$\begin{split} f_{\text{SV}}^{(p,q)}(a) &\propto \Delta_n(a) \det \left[(-a_k \frac{\partial}{\partial a_k})^{j-1} w_{p,q}(a_k) \right] \\ f_{\text{EV}}^{(p,q)}(z) &\propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,q}(|z_j|^2) \end{split}$$
 where $w_{p,q}(x) = \frac{1}{2\pi \mathrm{i}} \int_{1-\mathrm{i}\infty}^{1+\mathrm{i}\infty} \Gamma^p(s) \Gamma^q(1+n-s) \, x^{-s} \, ds$

Problem: Is it possible to interpolate between these "product ensembles"?

Motivation: *heavy-tailed* one-point densities (in the limit as $n \to \infty$)







Interpolation between Product Ensembles II

Product of p Ginibre Matrices and q Inverse Ginibre Matrices

$$f_{\text{SV}}^{(p,q)}(a) \propto \Delta_n(a) \det \left[\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w_{p,q}(a_k) \right]$$

$$f_{\text{EV}}^{(p,q)}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,q}(|z_j|^2)$$
where $w_{p,q}(x) = \frac{1}{2\pi i} \int_{1}^{1+i\infty} \Gamma^p(s) \Gamma^q(1+n-s) x^{-s} ds$

Problem: Is it possible to interpolate between these "product ensembles"?

Solution: Formally define $w_{p,q}$, $f_{SV}^{(p,q)}$, $f_{EV}^{(p,q)}$ as above, for any $p,q \ge 0$.

- $f_{SV}^{(p,q)}$ is a probability density if and only if $(p \in \mathbb{N}_0 \text{ or } p > n-1)$ and $(q \in \mathbb{N}_0 \text{ or } q > n-1)$.
- $f_{\text{EV}}^{(p,q)}$ is a probability density for any $p, q \ge 0$.

Interpolation between Product Ensembles II

Product of *p* Ginibre Matrices and *q* Inverse Ginibre Matrices

$$f_{\text{SV}}^{(p,q)}(a) \propto \Delta_n(a) \det \left[\left(-a_k \frac{\partial}{\partial a_k} \right)^{j-1} w_{p,q}(a_k) \right]$$

$$f_{\text{EV}}^{(p,q)}(z) \propto |\Delta_n(z)|^2 \prod_{j=1}^n w_{p,q}(|z_j|^2)$$
where $w_{p,q}(x) = \frac{1}{2\pi i} \int_{1}^{1+i\infty} \Gamma^p(s) \Gamma^q(1+n-s) x^{-s} ds$

Problem: Is it possible to interpolate between these "product ensembles"?

Solution: Formally define $w_{p,q}$, $f_{SV}^{(p,q)}$, $f_{EV}^{(p,q)}$ as above, for any $p,q \ge 0$.

- $f_{\mathsf{SV}}^{(p,q)}$ is a probability density if and only if $(p \in \mathbb{N}_0 \text{ or } p > n-1) \quad \mathsf{and} \quad (q \in \mathbb{N}_0 \text{ or } q > n-1) \,.$
- $f_{\text{FV}}^{(p,q)}$ is a probability density for any $p, q \ge 0$.

Consequently, in general, one may not let $n \to \infty$ for fixed $p, q \ge 0$.

Connection to Pólya Frequency Functions

Pólya Frequency Function

A function $f: \mathbb{R} \to \mathbb{R}$ is called *Pólya frequency function* of order n (PF_n) if

$$\det(f(x_j-y_k))_{j,k=1,\ldots,m}\geq 0$$

for any $m = 1, \ldots, n$ and any $x_1 < \ldots < x_m, y_1 < \ldots < y_m$.

Connection to Pólya Frequency Functions

Pólya Frequency Function

A function $f : \mathbb{R} \to \mathbb{R}$ is called *Pólya frequency function* of order n (PF_n) if

$$\det(f(x_j-y_k))_{j,k=1,\ldots,m}\geq 0$$

for any $m = 1, \ldots, n$ and any $x_1 < \ldots < x_m$, $y_1 < \ldots < y_m$.

Proposition Kieburg-K. (2016)

If $f \in \mathsf{PF}_n$ (with suitable differentiability and integrability properties), then $w_0 := f \circ \log$ gives rise to a random matrix $\mathbf{X}_n \sim DPE(w_0)$.

Connection to Pólya Frequency Functions

Pólya Frequency Function

A function $f : \mathbb{R} \to \mathbb{R}$ is called *Pólya frequency function* of order n (PF_n) if

$$\det(f(x_j-y_k))_{j,k=1,\ldots,m}\geq 0$$

for any $m = 1, \ldots, n$ and any $x_1 < \ldots < x_m$, $y_1 < \ldots < y_m$.

Proposition Kieburg-K. (2016)

If $f \in \mathsf{PF}_n$ (with suitable differentiability and integrability properties), then $w_0 := f \circ \log$ gives rise to a random matrix $\mathbf{X}_n \sim DPE(w_0)$.

Related Work

- Pólya frequency functions are also connected to several classical distributions in *Hermitian* random matrix theory (GUE, LUE).
 - Karlin (1968), Pickrell (1990), Olshanski-Vershik (1994), Faraut (2002), . . .
- The theory of DPE's may also be developed for *Hermitian* random matrices endowed with additive convolution.

Kuijlaars-Román (2016), ...

Overview

- Motivation
- 2 Polynomial Ensembles of Derivative Type
- Main Results
- 4 Some Ideas from the Proofs
- 5 Complements
- 6 Summary and Outlook

Summary and Outlook

Polynomial Ensembles of Derivative Type

- singular value and eigenvalue densities with special determinantal structure
- key tool: spherical transform
- many examples (from RMT and via Pólya frequency functions)

Summary and Outlook

Polynomial Ensembles of Derivative Type

- singular value and eigenvalue densities with special determinantal structure
- special structure is preserved under independent products (→ transfer laws)
- key tool: spherical transform
- many examples (from RMT and via Pólya frequency functions)

Open Problems (partly work in progress)

- which functions w_0 define polynomial ensembles of derivative type?
- limiting spectral distributions at the global and local level?
- closer connection to free probability (refined convergence results?)
- power-law decay: new applications of random matrix theory?
- extension to real and quaternionic matrices?

Summary and Outlook

Polynomial Ensembles of Derivative Type

- singular value and eigenvalue densities with special determinantal structure
- special structure is preserved under independent products (→ transfer laws)
- key tool: spherical transform
- many examples (from RMT and via Pólya frequency functions)

Open Problems (partly work in progress)

- which functions w_0 define polynomial ensembles of derivative type?
- limiting spectral distributions at the global and local level?
- closer connection to free probability (refined convergence results?)
- power-law decay: new applications of random matrix theory?
- extension to real and quaternionic matrices?

Thank you very much for your attention!