Random Fermionic Systems

Fabio Cunden Anna Maltsev Francesco Mezzadri

University of Bristol

December 9, 2016

Background

- First introduced to study magnetic properties of matter
- Toy model for quantum information study of entanglement
- Random matrix aspect

Background

- First introduced to study magnetic properties of matter
- Toy model for quantum information study of entanglement
- Random matrix aspect

Three papers that inspired this work:

- Lieb-Schultz-Mattis "Two soluble models of an Antiferromagnetic chain"
- Doctoral thesis of Huw Wells supervised by Jon Keating and Noah Linden, and subsequent work of Erdös and Schröder
- Keating-Mezzadri "Random Matrix Theory and Entanglement in Quantum Spin Chains"

Our object of study: the Hamiltonian

• Self-adjoint operator acting on \mathbb{C}^{2^n}

•

$$\mathcal{H} = rac{1}{2} \sum_{i,j=1}^n A_{ij} (c_i{}^\dagger c_j - c_i c_j{}^\dagger) + B_{ij} (c_i c_j - c_i{}^\dagger c_j{}^\dagger)$$

with $A_{ij} = A_{ji}$, $B_{ij} = -B_{ij}$, i.e. $A = A^t$ and $B = -B^t$.

• c_j 's are fermionic i.e. $\{c_i,c_j\}=0,\{c_i,c_j^\dagger\}=\delta_{ij},$

Our object of study: the Hamiltonian

• Self-adjoint operator acting on \mathbb{C}^{2^n}

$$\mathcal{H} = \frac{1}{2} \sum_{i,j=1}^{n} A_{ij} (c_i^{\dagger} c_j - c_i c_j^{\dagger}) + B_{ij} (c_i c_j - c_i^{\dagger} c_j^{\dagger})$$

with $A_{ij} = A_{ji}$, $B_{ij} = -B_{ij}$, i.e. $A = A^t$ and $B = -B^t$.

• c_j 's are fermionic i.e. $\{c_i, c_j\} = 0, \{c_i, c_j^{\dagger}\} = \delta_{ij}$

We take A_{ij} , B_{ij} iid real. Our conclusions:

•

Our object of study: the Hamiltonian

• Self-adjoint operator acting on \mathbb{C}^{2^n}

 $\mathcal{H} = rac{1}{2} \sum_{i,j=1}^{n} A_{ij} (c_i{}^{\dagger}c_j - c_ic_j{}^{\dagger}) + B_{ij} (c_ic_j - c_i{}^{\dagger}c_j{}^{\dagger})$

with $A_{ij} = A_{ji}$, $B_{ij} = -B_{ij}$, i.e. $A = A^t$ and $B = -B^t$.

• c_j 's are fermionic i.e. $\{c_i, c_j\} = 0, \{c_i, c_j^{\dagger}\} = \delta_{ij}$,

We take A_{ij} , B_{ij} iid real. Our conclusions:

- ullet Ground state energy gap O(1/n) with explicit formula if Gaussian entries
- DOS Gaussian universally, also for A, B band
- No repulsion numerics

•

Alternative notation:

 ${\cal H}$ is a quadratic form, so write

$$\mathcal{H} = ((\underline{c}^{\dagger})^t \ \underline{c}) \cdot M \cdot \begin{pmatrix} \underline{c}^t \\ \underline{c}^{\dagger} \end{pmatrix},$$

where M is the $2n \times 2n$ real symmetric matrix $M = \frac{1}{2} \begin{pmatrix} A & -B \\ B & -A \end{pmatrix}$.

Universality

• Gaussian DOS vastly universal

Universality

- Gaussian DOS vastly universal
- Subset sums: given a set $\{\lambda_1,...,\lambda_n\}$ and $S_j\subset\{1,...,n\}$, eigenvalues of $\mathcal H$ are closely related to $\sum_{k\in S_i}\lambda_k$.
- A lot of information
 - Gaussian DOS
 - Groundstate energy gap

Universality

- Gaussian DOS vastly universal
- Subset sums: given a set $\{\lambda_1,...,\lambda_n\}$ and $S_j \subset \{1,...,n\}$, eigenvalues of \mathcal{H} are closely related to $\sum_{k \in S_i} \lambda_k$.
- A lot of information
 - Gaussian DOS
 - Groundstate energy gap
- Relation to sums of weighted binomial random variables
 - can take Fourier transform explicitly!

Fermionic systems: how they arise?

- n sites with spins that are linear combinations of σ^x and σ^y (no σ^z)
- nearest neighbor interaction the XY model

Fermionic systems: how they arise?

- n sites with spins that are linear combinations of σ^x and σ^y (no σ^z)
- nearest neighbor interaction the XY model
- the corresponding Hamiltonian is

$$\sum_{k=1}^{n} \sum_{a \in \{x,y\}} \sum_{b \in \{x,y\}} \alpha_{k,a,b} \sigma_k^a \sigma_{k+1}^b$$

• Here $\sigma_j^{(a)} = \mathit{I}_2^{\otimes (j-1)} \otimes \sigma^{(a)} \otimes \mathit{I}_2^{\otimes (n-j)}$

Fermionic systems: how they arise?

- n sites with spins that are linear combinations of σ^x and σ^y (no σ^z)
- nearest neighbor interaction the XY model
- the corresponding Hamiltonian is

$$\sum_{k=1}^{n} \sum_{a \in \{x,y\}} \sum_{b \in \{x,y\}} \alpha_{k,a,b} \sigma_k^a \sigma_{k+1}^b$$

- ullet Here $\sigma_j^{(a)} = \mathit{I}_2^{\otimes (j-1)} \otimes \sigma^{(a)} \otimes \mathit{I}_2^{\otimes (n-j)}$
- via Jordan-Wigner transformation, the Hamiltonian is equivalent to a quadratic form in fermionic variables

Jordan-Wigner transformation

- Maps a spin chain to a quadratic form in fermionic operators: allows for an exact solution
- In reverse: model a system of interacting fermions on a quantum computer

Jordan-Wigner details

- Raising and lowering operators $a_i^{\dagger} = \sigma_i^{x} + i\sigma_i^{y}$ and $a_i = \sigma_i^{x} i\sigma_i^{y}$
- Can recover Pauli spin operators by $\sigma_j^x = (a_j^{\dagger} + a_j)/2$, $\sigma_i^y = (a_i^{\dagger} a_i)/2$, $\sigma_i^z = (a_i^{\dagger} a_i 1/2)$

Jordan-Wigner details

- Raising and lowering operators $a_i^\dagger = \sigma_i^{\rm x} + i\sigma_i^{\rm y}$ and $a_i = \sigma_i^{\rm x} i\sigma_i^{\rm y}$
- Can recover Pauli spin operators by $\sigma_j^x = (a_j^{\dagger} + a_j)/2$, $\sigma_i^y = (a_i^{\dagger} a_j)/2$, $\sigma_i^z = (a_i^{\dagger} a_j 1/2)$
- Not fermionic

Jordan-Wigner details

- Raising and lowering operators $a_i^{\dagger} = \sigma_i^{x} + i\sigma_i^{y}$ and $a_i = \sigma_i^{x} i\sigma_i^{y}$
- Can recover Pauli spin operators by $\sigma_j^x = (a_j^{\dagger} + a_j)/2$, $\sigma_i^y = (a_i^{\dagger} a_j)/2$, $\sigma_i^z = (a_i^{\dagger} a_j 1/2)$
- Not fermionic
 - Partly fermionic: $\{a_j, a_j^{\dagger}\} = 1, a_j^2 = (a_j^{\dagger})^2 = 0$
 - Partly bosonic: $[a_i^{\dagger}, a_k^{\dagger}] = [a_i^{\dagger}, a_k^{\dagger}] = [a_j, a_k] = 0$
- For fermionic let

$$c_j = \exp\left(\pi i \sum_{k=1}^{j-1} a_k^{\dagger} a_k\right) a_j$$
 $c_j^{\dagger} = a_j^{\dagger} \exp\left(-\pi i \sum_{k=1}^{j-1} a_k^{\dagger} a_k\right).$

 c_i 's and c_i^{\dagger} 's are fermionic: $\{c_i, c_k^{\dagger}\} = \delta_{ki}, \{c_i, c_k\} = \{c_i^{\dagger}, c_k^{\dagger}\} = 0$

Lieb-Schultz-Mattis Antiferromagnetic Chain '61

- $H_{\gamma} = \sum_{j} (1+\gamma)\sigma_{j}^{x}\sigma_{j+1}^{x} + (1-\gamma)\sigma_{j}^{y}\sigma_{j+1}^{y}$
- Hamiltonian is a quadratic form in Fermi operators and can be explicitly diagonialized

Lieb-Schultz-Mattis Antiferromagnetic Chain '61

- $H_{\gamma} = \sum_{j} (1+\gamma)\sigma_{j}^{x}\sigma_{j+1}^{x} + (1-\gamma)\sigma_{j}^{y}\sigma_{j+1}^{y}$
- Hamiltonian is a quadratic form in Fermi operators and can be explicitly diagonialized
- For free ends:

$$H_{\gamma} = \frac{1}{2} \sum_{j=1}^{n-1} c_{j}^{\dagger} c_{j+1} + \gamma c_{j}^{\dagger} c_{j+1}^{\dagger} + \text{hc}$$

• study long-range order in ground state

Lieb-Schultz-Mattis

If
$$\mathcal{H} = (\underline{c}^{\dagger} \ \underline{c}) \cdot M \cdot \begin{pmatrix} \underline{c} \\ \underline{c}^{\dagger} \end{pmatrix}$$
, with $M = \frac{1}{2} \begin{pmatrix} A & -B \\ B & -A \end{pmatrix}$ for XY model as before

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & -1 \\ -1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & -1 & 0 \end{pmatrix}$$

and A, B can be explicitly diagonalized.

In the '61 paper,

- Complete set of eigenstates
- General expression for the order between any two spins involving a Green's function
- Short, intermediate, and long range order for various situations

Bipartite Entanglement

Setup: XY and XX models with a constant transversal magnetic field Study: Entropy E_p of entanglement between subsystems

- Vidal et al. computed E_p numerically
- Jin and Korepin compute E_p for XX model using the Fisher-Hartwig conjecture, which gives the leading order asymptotics of determinants of certain Toeplitz matrices
- Keating and Mezzadri study asymptotics of entanglement of formation of ground state using RMT methods

Wells PhD thesis

Hamiltonians of the form

$$H_n = \frac{1}{\sqrt{n}} \sum_{j=1}^n \sum_{a=1}^3 \sum_{b=1}^3 \alpha_{a,b,j} \sigma_j^{(a)} \sigma_{j+1}^{(b)}$$
 (1)

for any $\alpha_{a,b,j} \in \mathbb{R}$ random Gaussian (some universality possible)

Wells PhD thesis

Hamiltonians of the form

$$H_n = \frac{1}{\sqrt{n}} \sum_{j=1}^n \sum_{a=1}^3 \sum_{b=1}^3 \alpha_{a,b,j} \sigma_j^{(a)} \sigma_{j+1}^{(b)}$$
 (1)

for any $\alpha_{a,b,j} \in \mathbb{R}$ random Gaussian (some universality possible)

Remarks:

- RMT introduced directly into the Hamiltonian, as the Hamiltonian is itself a random matrix
- ullet Includes the σ^z so Jordan-Wigner does not yield a quadratic form
- Obtains a Gaussian density of states

Wells Numerics in the XY case

For a Hamiltonian of the form

$$H_n = \frac{1}{\sqrt{n}} \sum_{j=1}^n \sum_{a=1}^2 \sum_{b=1}^2 \alpha_{a,b,j} \sigma_j^{(a)} \sigma_{j+1}^{(b)}$$
 (2)

- Eigenvalue repulsion in the full model and lack of repulsion in the random XY model
- Convergence to a Gaussian in the random XY model
- Numerical estimate of the error in the random XY model is on the order of 1/n where n is the number of cubits

Extension by Erdös and Schröder

- Arbitrary graphs with maximal degree ≪ total number of edges
 - Gaussian DoS
- p-uniform hypergraphs
 - Correspond to p-spin glass Hamiltonians acting on n distinguishable spin-1/2 particles
 - At $p = n^{1/2}$, phase transition between the normal and the semicircle
 - quantum-classical transition

Summary

Known:

- DoS, spectral gap in (deterministic) XY model
- DoS in a random neighbor-to-neighbor Hamiltonian with XYZ

Numerics:

- DoS in a random XY model
- Rate of convergence in the random XY model
- Lack of repulsion

We establish:

- DoS in general bilinear forms of fermionic operators
- spectral gap in special cases

• Eigenvalue equation: $\frac{1}{2}\begin{pmatrix}A & -B\\B & -A\end{pmatrix}\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix} = \lambda\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}$.

• Equivalent to: $\begin{cases} A\phi_1 - B\phi_2 = 2\lambda\phi_1, \\ B\phi_1 - A\phi_2 = 2\lambda\phi_2. \end{cases}$

- Eigenvalue equation: $\frac{1}{2}\begin{pmatrix}A & -B\\B & -A\end{pmatrix}\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix} = \lambda\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}$.
- Equivalent to: $\begin{cases} A\phi_1 B\phi_2 = 2\lambda\phi_1, \\ B\phi_1 A\phi_2 = 2\lambda\phi_2. \end{cases}$
- If $\psi_1 = \phi_1 \phi_2$ and $\psi_2 = \phi_1 + \phi_2$, then $\begin{cases} (A+B)\psi_1 = 2\lambda\psi_2, \\ (A-B)\psi_2 = 2\lambda\psi_1. \end{cases}$

- Eigenvalue equation: $\frac{1}{2}\begin{pmatrix}A & -B\\B & -A\end{pmatrix}\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix} = \lambda\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}$.
- Equivalent to: $\begin{cases} A\phi_1 B\phi_2 = 2\lambda\phi_1, \\ B\phi_1 A\phi_2 = 2\lambda\phi_2. \end{cases}$
- If $\psi_1 = \phi_1 \phi_2$ and $\psi_2 = \phi_1 + \phi_2$, then $\begin{cases} (A+B)\psi_1 = 2\lambda\psi_2, \\ (A-B)\psi_2 = 2\lambda\psi_1. \end{cases}$
- Note that $(A B)^T = (A + B)$ and hence we get

$$\frac{1}{4}(A+B)^{T}(A+B)\psi_{1}=\lambda^{2}\psi_{1}.$$

- Eigenvalue equation: $\frac{1}{2}\begin{pmatrix}A & -B\\B & -A\end{pmatrix}\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix} = \lambda\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}$.
- Equivalent to: $\begin{cases} A\phi_1 B\phi_2 = 2\lambda\phi_1, \\ B\phi_1 A\phi_2 = 2\lambda\phi_2. \end{cases}$
- If $\psi_1 = \phi_1 \phi_2$ and $\psi_2 = \phi_1 + \phi_2$, then $\begin{cases} (A+B)\psi_1 = 2\lambda\psi_2, \\ (A-B)\psi_2 = 2\lambda\psi_1. \end{cases}$
- Note that $(A B)^T = (A + B)$ and hence we get

$$\frac{1}{4}(A+B)^{T}(A+B)\psi_{1}=\lambda^{2}\psi_{1}.$$

$$\lambda \in \sigma(M) \iff \sqrt{\lambda^2}$$
 is singular value of $\frac{A+B}{2}$.

Need Hermiticity to get new Fermi operators

- Let U be the orthogonal matrix that diagonalizes M.
- Then U is a linear canonical transformation in the sense that

$$U = \begin{pmatrix} G & K \\ G^T & K^T \end{pmatrix} \qquad \begin{cases} GG^T + KK^T = I_n \\ GK^T + KG^T = 0_n, \end{cases}$$
(3)

and

$$UMU^T = \frac{1}{2} \begin{pmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{pmatrix},$$

with $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, $\lambda_i \geq 0$.

Need Hermiticity to get new Fermi operators

- Let U be the orthogonal matrix that diagonalizes M.
- Then U is a linear canonical transformation in the sense that

$$U = \begin{pmatrix} G & K \\ G^T & K^T \end{pmatrix} \qquad \begin{cases} GG^T + KK^T = I_n \\ GK^T + KG^T = 0_n, \end{cases}$$
(3)

and

$$UMU^T = \frac{1}{2} \begin{pmatrix} \Lambda & 0 \\ 0 & -\Lambda \end{pmatrix},$$

with $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, $\lambda_i \geq 0$.

• Let $\eta_k, {\eta_k}^{\dagger}$ operators defined by

$$\left(\frac{\eta}{\eta^{\dagger}}\right) = U\left(\frac{\underline{c}}{\underline{c}^{\dagger}}\right).$$

- Because of (3), the η 's are Fermi operators as well.
- $\mathcal{H} = \sum_{k=1}^n \lambda_k \eta_k^{\dagger} \eta_k + c I_{2^n}$ where $\lambda_k \geq 0$ and $c = -\frac{1}{2} \sum_{k=1}^n \lambda_k$.

Diagonalizing \mathcal{H} : Fermi basis

- η_j acts as a lowering operator for $\eta_j^\dagger \eta_j$ i.e. if $\eta_j^\dagger \eta_j |\psi\rangle = |\psi\rangle$ then $\eta_j^\dagger \eta_j \eta_j |\psi\rangle = 0$
- η_j^\dagger acts as a raising operator for $\eta_j^\dagger \eta_j$

Diagonalizing \mathcal{H} : Fermi basis

- η_j acts as a lowering operator for $\eta_j^\dagger \eta_j$ i.e. if $\eta_j^\dagger \eta_j |\psi\rangle = |\psi\rangle$ then $\eta_j^\dagger \eta_j \eta_j |\psi\rangle = 0$
- η_j^\dagger acts as a raising operator for $\eta_j^\dagger \eta_j$
- $\eta_j^\dagger \eta_j$'s commute so there exists a state $|\psi\rangle$ which is a simultaneous eigenstate

Diagonalizing \mathcal{H} : Fermi basis

- η_j acts as a lowering operator for $\eta_j^\dagger \eta_j$ i.e. if $\eta_j^\dagger \eta_j |\psi\rangle = |\psi\rangle$ then $\eta_j^\dagger \eta_j \eta_j |\psi\rangle = 0$
- η_j^\dagger acts as a raising operator for $\eta_j^\dagger \eta_j$
- $\eta_j^\dagger \eta_j$'s commute so there exists a state $|\psi\rangle$ which is a simultaneous eigenstate
- By raising and lowering the state $|\psi\rangle$ in all possible combinations, can construct a set of 2^n orthonormal states which are simultaneous eigenstates of the $\eta_i^\dagger \eta_j$

Diagonalizing ${\cal H}$: subset sums

The spectrum of \mathcal{H} is characterized as follows:

$$x \in \sigma(\mathcal{H}) \iff \exists S \subset \{1, \dots, n\} \text{ such that } x = c + \sum_{k \in S} \lambda_k.$$
 (4)

where
$$c = -rac{1}{2} \sum_{k=1}^n \lambda_k$$

Diagonalizing \mathcal{H} : subset sums

The spectrum of ${\cal H}$ is characterized as follows:

$$x \in \sigma(\mathcal{H}) \iff \exists S \subset \{1, \dots, n\} \text{ such that } x = c + \sum_{k \in S} \lambda_k.$$
 (4)

where
$$c = -\frac{1}{2} \sum_{k=1}^{n} \lambda_k$$

Key point in our methodology:

We work with the subset sum structure to glean information for a fixed sequence of λ_j 's. Then we introduce the randomness on λ_j 's as in RMT.

Ground state energy gap: important physical quantity, reflects how sensitive is the system to perturbations

Theorem 1

For A, B with iid Gaussian entries up to symmetry, the rescaled energy gap $\sqrt{2n/\sigma}\Delta$ converges in distribution to a random variable whose probability density function is

$$f(x) = (1+x)e^{-\frac{x^2}{2}-x}$$
.

Ground state energy gap: important physical quantity, reflects how sensitive is the system to perturbations

Theorem 1

For A, B with iid Gaussian entries up to symmetry, the rescaled energy gap $\sqrt{2n/\sigma}\Delta$ converges in distribution to a random variable whose probability density function is

$$f(x) = (1+x)e^{-\frac{x^2}{2}-x}$$
.

• $x_{2^n} = \sum_{j=1}^n \lambda_j$ and $x_{2^n-1} = \sum_{j=2}^n \lambda_j$ yielding that

$$\Delta := x_{2^n} - x_{2^n-1} = \lambda_1$$

Ground state energy gap: important physical quantity, reflects how sensitive is the system to perturbations

Theorem 1

For A, B with iid Gaussian entries up to symmetry, the rescaled energy gap $\sqrt{2n/\sigma}\Delta$ converges in distribution to a random variable whose probability density function is

$$f(x) = (1+x)e^{-\frac{x^2}{2}-x}$$
.

• $x_{2^n} = \sum_{j=1}^n \lambda_j$ and $x_{2^n-1} = \sum_{j=2}^n \lambda_j$ yielding that

$$\Delta := x_{2^n} - x_{2^n-1} = \lambda_1$$

- Recall that λ_j are singular values of A + B
- Result for smallest eigenvalue value of Wishhart matrices by Edelman
- Note that Δ is very large compared to mean spacing (O(1/n)) instead of 2^{-n}

The relation with iid Bernoullis

Let x_j be the eigenvalues of \mathcal{H} . Then

$$x_j = \frac{1}{2} \sum_{k \in S_j} \lambda_k - \frac{1}{2} \sum_{k \in S_j^c} \lambda_k$$

for some $S_j \subset \{1, \ldots, n\}$.

Then

$$d\mu_n=rac{1}{2^n}\sum_{j=1}^{2^n}\delta_{x_j}= ext{prob.}$$
 meas. of $\sum_{j=1}^n\lambda_j(B_j-1/2)$

where B_i are n independent Bernoulli random variables.

The relation with iid Bernoullis

Let x_j be the eigenvalues of \mathcal{H} . Then

$$x_j = \frac{1}{2} \sum_{k \in S_j} \lambda_k - \frac{1}{2} \sum_{k \in S_j^c} \lambda_k$$

for some $S_j \subset \{1, \ldots, n\}$.

Then

$$d\mu_n = \frac{1}{2^n} \sum_{j=1}^{2^n} \delta_{x_j} = \text{prob. meas. of } \sum_{j=1}^n \lambda_j (B_j - 1/2)$$

where B_i are n independent Bernoulli random variables.

Fix the triangular array of $\lambda_{j,n}$ with $\lambda_j \ll \sqrt[4]{n}$ for all j

Consequences

- CLT: Lindenberg condition, so $\frac{1}{\sqrt{n}}d\mu_n \to \mathcal{N}(0,\frac{1}{n}\sum \lambda_j^2)$
- ullet Can get a precise formula for the Fourier transform of $rac{1}{\sqrt{n}}d\mu_n$.

Details

- Lindenberg condition states:
 - variances σ_k are finite
 - $s_n^2 = \sum_{k=1}^n \sigma_k^2$
 - $\bullet \lim_{n\to\infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\big[(X_k)^2 \cdot \mathbf{1}_{\{|X_k| > \varepsilon s_n\}} \big] = 0$
 - yields convergence to a Normal distribution with variance s_n for sequences of λ_i so that the maximum $< \sqrt[4]{n}$
 - will show that the condition on the max is satisfied with $\mathbb{P} o 1$ as $n o \infty$
 - ullet a Berry-Esseen estimate yields an error of $1/\sqrt{n}$

Details

- Lindenberg condition states:
 - variances σ_k are finite
 - $s_n^2 = \sum_{k=1}^n \sigma_k^2$
 - $\lim_{n\to\infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[(X_k)^2 \cdot \mathbf{1}_{\{|X_k| > \varepsilon s_n\}} \right] = 0$
 - yields convergence to a Normal distribution with variance s_n for sequences of λ_i so that the maximum $< \sqrt[4]{n}$
 - ullet will show that the condition on the max is satisfied with $\mathbb{P} o 1$ as $n o \infty$
 - ullet a Berry-Esseen estimate yields an error of $1/\sqrt{n}$
- For the computation of the Fourier transform :
 - Fourier transform of $\frac{1}{\sqrt{n}}\lambda_j(B_j-1/2)$ is $\cos\left(\frac{t\lambda_j}{2\sqrt{n}}\right)$
 - ② Fourier transform of the DoS is then $\prod_{j} \cos \left(\frac{t \lambda_{j}}{2 \sqrt{n}} \right)$

Random Matrix Theory

Have to show that $\lambda_n \leq \sqrt{n}$ when σ^2 of matrix entries is 1/N

- We study the case where A, B have k non-trivial diagonals, e.g. when k=1 we recover the XY model
- ② Band covariance matrices?
- Our proof sketch:
 - Top singular value equals the operator norm
 - ullet triangle inequality means that we can work with hermitian A,B instead of non-Hermitian M
 - For Hermitian A, $\lambda_n \leq \sup_i \sum_i |a_{ij}|$
 - This and union bounds enough for a large deviation estimate for $k \leq n^{1-\epsilon}$, including the XY model case i.e.
 - $\mathbb{P}(\lambda_n > n^{1/4-\delta}) \to 0$

Our Numerics

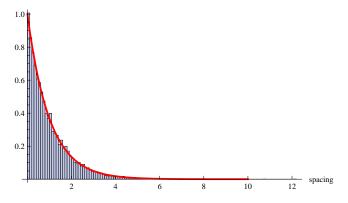


Figure: Spacing distribution for the unfolded spectrum.

Our Numerics

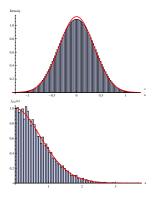


Figure: Density of states and ground state energy gap distribution for Gaussian quadratic form of Fermi operator. Here n = 16 (for a sample size of about 50).

Future study

Further questions we want to examine:

- Rate of convergence can probably be improved.
- The bottom eigenvalue of a band covariance matrix.
- In the bulk, the eigenvalues appear to form a Poisson process on the line.
- Speculation: relation to the Berry-Tabor conjecture. Generic integrable system ⇒ Poisson statistics

Numerics, speculations, and future studies

Thank you!