## Statistics of eigenvectors in the deformed Gaussian unitary ensemble of random matrices



## Alexander Ossipov In collaboration with Kevin Truong

University of Nottingham

XII Brunel - Bielefeld Workshop on RMT, December 9 - 10, 2016



#### Overview

- Introduction
- 2 Definition of models
- 3 Model I with non-random  $H_0$
- 4 Model I with random  $H_0$
- The Rosenzweig-Porter model
- 6 Model II
- Conclusions



## Gaussian Unitary Ensemble (GUE)

- $N \times N$  Hermitian random matrices  $H = H^{\dagger}$
- $\langle H_{ij} \rangle = 0$ ,  $\langle |H_{ij}|^2 \rangle = 1/N$
- Probability density  $P(H) = C_N e^{-\frac{N}{2} \text{Tr} H^2}$



## Gaussian Unitary Ensemble (GUE)

- $N \times N$  Hermitian random matrices  $H = H^{\dagger}$
- $\langle H_{ij} \rangle = 0$ ,  $\langle |H_{ij}|^2 \rangle = 1/N$
- Probability density  $P(H) = C_N e^{-\frac{N}{2} \text{Tr} H^2}$

Non-trivial statistics of the eigenvalues



## Statistics of the eigenvectors in GUE

Unitary invariance of  $P(H) = P(UHU^{\dagger}) \Rightarrow$ 

- ullet Matrix of the eigenvectors U is uniformly distributed over the unitary group
- ullet In the limit  ${\it N} 
  ightarrow \infty$ , all the eigenvector components  $\psi_n$  become independent
- Distribution function of  $y = N|\psi_n|^2$  is  $P(y) = e^{-y}$
- Inverse participation ratio  $I_2 \equiv \sum_{n=1}^N \left< |\psi_n|^4 \right> \propto 1/N$



#### Anderson localisation and transition

#### Anderson model

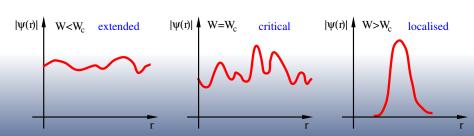
$$(H\psi)_i = v_i\psi_i + \sum_{\langle ij\rangle} \psi_j, \quad \langle v_i \rangle = 0, \ \langle v_iv_k \rangle = W^2\delta_{ik}$$



#### Anderson localisation and transition

#### Anderson model

$$(H\psi)_i = v_i\psi_i + \sum_{\langle ij\rangle} \psi_j, \quad \langle v_i \rangle = 0, \ \langle v_iv_k \rangle = W^2\delta_{ik}$$





$$I_q \equiv \sum_{n=1}^N \left\langle |\psi_n|^{2q} \right\rangle$$



$$I_q \equiv \sum_{n=1}^N \left\langle |\psi_n|^{2q} \right\rangle \propto N^{-d_q(q-1)}$$

Extended states:  $d_q = 1 \leftrightarrow \mathsf{GUE}$ 



$$I_q \equiv \sum_{n=1}^{N} \left\langle |\psi_n|^{2q} \right\rangle \propto N^{-d_q(q-1)}$$

Extended states:  $d_q = 1 \leftrightarrow \mathsf{GUE}$ 

Localised states:  $d_q = 0$ 



$$I_q \equiv \sum_{n=1}^{N} \left\langle |\psi_n|^{2q} \right\rangle \propto N^{-d_q(q-1)}$$

Extended states:  $d_q = 1 \leftrightarrow \mathsf{GUE}$ 

Localised states:  $d_q = 0$ 

Critical states:  $0 < d_q < 1 \leftrightarrow \text{multifractal eigenvectors}$ 



#### Definition of models

Breaking of the unitary invariance  $\Leftrightarrow$  non-trivial statistics of the eigenvectors



#### Definition of models

Breaking of the unitary invariance  $\Leftrightarrow$  non-trivial statistics of the eigenvectors

#### Model I

$$H = H_0 + V$$

$$(H_0)_{ii} = d_i \delta_{ii}, \ d_i$$
 - deterministic or random,  $V \in \mathrm{GUE}$ 



#### Definition of models

Breaking of the unitary invariance  $\Leftrightarrow$  non-trivial statistics of the eigenvectors

#### Model I

$$H = H_0 + V$$

 $(H_0)_{ij} = d_i \delta_{ij}, \ d_i$  - deterministic or random,  $V \in \text{GUE}$ 

#### Model II

$$H = WVW$$

 $(W)_{ij} = w_i \delta_{ij}, \ w_i$  - deterministic,  $V \in \text{GUE}$ 



### Supersymmetry approach

Green's functions at the energy  $E\pm \mathrm{i}\epsilon\leftrightarrow \mathrm{integrals}$  over the supermatrix Q with the action

$$S[Q] = rac{N}{2} \mathrm{Str} \ Q^2 + \sum_{i=1}^{N} \mathrm{Str} \ln \left[ E - d_i - Q + \mathrm{i} \epsilon \Lambda \right]$$
 
$$\Lambda = \mathrm{diag}(1, 1, -1, -1)$$



## Supersymmetry approach

Green's functions at the energy  $E\pm \mathrm{i}\epsilon\leftrightarrow \mathrm{integrals}$  over the supermatrix Q with the action

$$S[Q] = \frac{N}{2} \operatorname{Str} Q^2 + \sum_{i=1}^{N} \operatorname{Str} \ln \left[ E - d_i - Q + i\epsilon \Lambda \right]$$

$$\Lambda = \operatorname{diag}(1, 1, -1, -1)$$

In the limit  $N \to \infty$  the integral is dominated by the saddle-points

$$Q = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{E - d_i - Q}$$



## Saddle-point solution

$$Q_{s.p.} = t I - isT^{-1}\Lambda T$$

 $T^{-1}\Lambda T$  parametrises the saddle-point manifold in the absence of  $H_0$   $s \neq 0$  and t are two real parameters satisfying the simultaneous equations

$$t = rac{1}{N} \sum_{i}^{N} rac{E - t - d_{i}}{(E - t - d_{i})^{2} + s^{2}},$$
 $1 = rac{1}{N} \sum_{i}^{N} rac{1}{(E - t - d_{i})^{2} + s^{2}}$ 



$$\rho(E) = \frac{s}{\pi}, \quad I_q(n) = \frac{1}{N^q} \left[ \frac{1}{(E - t - d_n)^2 + s^2} \right]^q \Gamma(q + 1)$$



$$\rho(E) = \frac{s}{\pi}, \quad I_q(n) = \frac{1}{N^q} \left[ \frac{1}{(E - t - d_n)^2 + s^2} \right]^q \Gamma(q + 1)$$

If  $d_i = 0 \ \forall i \Rightarrow \mathsf{GUE}$  results

$$ho^{GUE}(E) = rac{1}{\pi} \sqrt{1 - (E/2)^2}, \ I_q^{GUE} = rac{\Gamma(q+1)}{N^{q-1}}$$



$$\rho(E) = \frac{s}{\pi}, \quad I_q(n) = \frac{1}{N^q} \left[ \frac{1}{(E - t - d_n)^2 + s^2} \right]^q \Gamma(q + 1)$$

If  $d_i = 0 \ \forall i \Rightarrow \mathsf{GUE}$  results

$$ho^{GUE}(E) = rac{1}{\pi} \sqrt{1 - (E/2)^2}, \ I_q^{GUE} = rac{\Gamma(q+1)}{N^{q-1}}$$

If  $d_i \neq 0 \Rightarrow$ 

- $\bullet$   $I_q(n)$  depends explicitly on  $d_n$  and implicitly on all  $d_i$ ; non-perturbative result
- ullet  $I_q \propto N^{-(q-1)}$  extended eigenvectors for any strength of the perturbation
- $\circ I_q/I_q^{GUE}$  can be arbitrary large



#### Numerical results

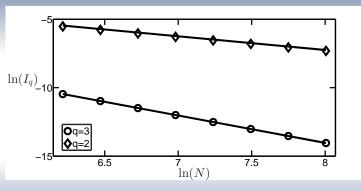


Figure: The moments of the eigenvectors  $I_q = \sum_{n=1}^N I_q(n)$  for  $d_i = -1 + \frac{2}{N}(i-1)$ .



### Model I with random $H_0$

$$H = H_0 + V$$
,  $(H_0)_{ij} = d_i \delta_{ij}$ ,  $V \in GUE$ 

 $d_i$  are independent Gaussian variables,  $\langle d_i \rangle = 0$  and  $\langle d_i^2 \rangle = \sigma^2$ 



## Model I with random $H_0$

$$H = H_0 + V$$
,  $(H_0)_{ij} = d_i \delta_{ij}$ ,  $V \in GUE$ 

 $d_i$  are independent Gaussian variables,  $\langle d_i \rangle = 0$  and  $\langle d_i^2 \rangle = \sigma^2$ 

$$\sigma \gg 1$$
 – weak perturbation  $\sigma \ll 1$  – strong perturbation

$$t = \frac{1}{N} \sum_{i}^{N} \frac{E - t - d_{i}}{(E - t - d_{i})^{2} + s^{2}},$$
$$1 = \frac{1}{N} \sum_{i}^{N} \frac{1}{(E - t - d_{i})^{2} + s^{2}}$$

t and s random and self-averaging



## Equations for $\langle s \rangle$ and $\langle t \rangle$

#### Averaging over $d_i$ :

$$\langle t \rangle = \left\langle \frac{E - \langle t \rangle - d}{(E - \langle t \rangle - d)^2 + \langle s \rangle^2} \right\rangle_d,$$

$$1 = \left\langle \frac{1}{(E - \langle t \rangle - d)^2 + \langle s \rangle^2} \right\rangle_d.$$



## Equations for $\langle s \rangle$ and $\langle t \rangle$

Averaging over  $d_i$ :

$$egin{aligned} \langle t 
angle &= \left\langle rac{E - \langle t 
angle - d}{(E - \langle t 
angle - d)^2 + \langle s 
angle^2} 
ight
angle_d, \ 1 &= \left\langle rac{1}{(E - \langle t 
angle - d)^2 + \langle s 
angle^2} 
ight
angle_d. \end{aligned}$$

Using that *d* is Gaussian distributed:

$$\begin{split} \langle t \rangle &= -\mathrm{i} \sqrt{\frac{\pi}{8}} \frac{1}{\sigma} e^{-\frac{(E - \langle t \rangle + \mathrm{i} \langle s \rangle)^2}{2\sigma^2}} F_- \left( \frac{E - \langle t \rangle}{\sqrt{2}\sigma}, \frac{\langle s \rangle}{\sqrt{2}\sigma} \right), \\ 1 &= \sqrt{\frac{\pi}{8}} \frac{1}{\sigma \langle s \rangle} e^{-\frac{(E - \langle t \rangle + \mathrm{i} \langle s \rangle)^2}{2\sigma^2}} F_+ \left( \frac{E - \langle t \rangle}{\sqrt{2}\sigma}, \frac{\langle s \rangle}{\sqrt{2}\sigma} \right), \\ F_\pm(x,y) &= 1 \pm e^{4\mathrm{i} x y} (1 - \mathrm{erf}(\mathrm{i} x + y)) + \mathrm{erf}(\mathrm{i} x - y). \end{split}$$

The density of states:  $\hat{\rho}(E) = \frac{\langle s \rangle}{\pi}$ .



### Density of states

$$\sigma \rightarrow 0$$

$$\sigma \to \infty$$

$$\sigma o 0$$
  $\hat{
ho}(E) pprox rac{1}{\pi} \sqrt{1 - rac{E^2}{4}}$ 

$$\sigma o \infty$$
 $\hat{
ho}(E) pprox rac{1}{\sqrt{2\pi}\sigma} e^{-rac{E^2}{2\sigma^2}}$ 



### Density of states

$$\sigma o 0$$
  $\sigma o \infty$   $\hat{
ho}(E) pprox rac{1}{\pi} \sqrt{1 - rac{E^2}{4}}$   $\hat{
ho}(E) pprox rac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-rac{E^2}{2\sigma^2}}$ 

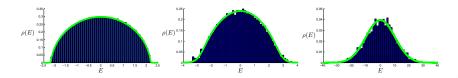


Figure: The histograms for the density of states, for  $\sigma = 0.4, 1, 10$ , calculated for N = 3000 and compared with the analytical predictions.



$$\hat{I}_{q} = \frac{q}{N^{q-1}} \left[ \left( -\frac{1}{2y} \frac{d}{dy} \right)^{q-1} G(y) \right]_{y = \langle s \rangle},$$

$$G(y) = \sqrt{\frac{\pi}{8}} \frac{1}{\sigma y} e^{-\frac{(E - \langle t \rangle + iy)^{2}}{2\sigma^{2}}} F_{+} \left( \frac{E - \langle t \rangle}{\sqrt{2}\sigma}, \frac{y}{\sqrt{2}\sigma} \right).$$



$$\hat{I}_{q} = \frac{q}{N^{q-1}} \left[ \left( -\frac{1}{2y} \frac{d}{dy} \right)^{q-1} G(y) \right]_{y = \langle s \rangle},$$

$$G(y) = \sqrt{\frac{\pi}{8}} \frac{1}{\sigma y} e^{-\frac{(E - \langle t \rangle + iy)^{2}}{2\sigma^{2}}} F_{+} \left( \frac{E - \langle t \rangle}{\sqrt{2}\sigma}, \frac{y}{\sqrt{2}\sigma} \right).$$

$$egin{align} \sigma 
ightarrow 0 & \sigma 
ightarrow \infty \ & \hat{l}_q pprox \hat{l}_q^{GUE} & \hat{l}_q pprox q(2q-3)!! \left(rac{\sigma^2}{\pi N}
ight)^{q-1}, \ & \hat{l}_q/\hat{l}_q^{GUE} \propto \sigma^{2(q-1)} \gg 1 \ \end{pmatrix}$$



#### Moments: numerical results

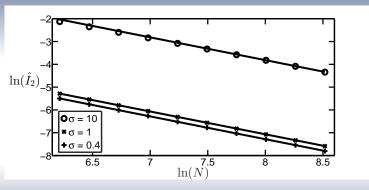


Figure:  $\hat{l}_2$  calculated for the three different values of  $\sigma = 0.4, 1, 10$  and for N = 500 to N = 3000.



## The Rosenzweig-Porter model

$$H = H_0 + V$$
,  $(H_0)_{ij} = d_i \delta_{ij}$ ,  $V \in GUE$ 

 $d_i$  are independent Gaussian variables,  $\langle d_i 
angle = 0$  and  $\left\langle d_i^2 
ight
angle = \mathcal{N}^{\gamma-1}$ 



## The Rosenzweig-Porter model

$$H = H_0 + V$$
,  $(H_0)_{ij} = d_i \delta_{ij}$ ,  $V \in GUE$ 

 $d_i$  are independent Gaussian variables,  $\langle d_i 
angle = 0$  and  $\left\langle d_i^2 
ight
angle = \mathcal{N}^{\gamma-1}$ 

The two-point spectral correlation function: transition from the Wigner-Dyson to the Poisson form at  $\gamma = 2$ .



### The Rosenzweig-Porter model

$$H = H_0 + V$$
,  $(H_0)_{ij} = d_i \delta_{ij}$ ,  $V \in GUE$ 

 $d_i$  are independent Gaussian variables,  $\langle d_i \rangle = 0$  and  $\langle d_i^2 \rangle = N^{\gamma-1}$ 

The two-point spectral correlation function: transition from the Wigner-Dyson to the Poisson form at  $\gamma = 2$ .

Recent results: new phase transition at  $\gamma=1$  separating the ergodic  $(\gamma<1)$  and non-ergodic  $(1<\gamma<2)$  states.

$$\hat{I}_q \propto N^{-d_q(q-1)}, \quad 0 < d_q < 1$$



Our general formula can be applied to the eigenvectors of the Rosenzweig-Porter model for  $\gamma < 2$ .



Our general formula can be applied to the eigenvectors of the Rosenzweig-Porter model for  $\gamma < 2. \,$ 

• If  $\gamma < 1$ , then  $\sigma = N^{\frac{\gamma - 1}{2}} \to 0$  as  $N \to \infty \Rightarrow \hat{I}_q \approx \hat{I}_q^{GUE}$ .



Our general formula can be applied to the eigenvectors of the Rosenzweig-Porter model for  $\gamma < 2. \,$ 

- If  $\gamma < 1$ , then  $\sigma = N^{\frac{\gamma 1}{2}} \to 0$  as  $N \to \infty \Rightarrow \hat{I}_q \approx \hat{I}_q^{GUE}$ .
- For  $1 < \gamma < 2$ ,  $\hat{l}_q \approx q(2q-3)!! \left(\frac{\sigma^2}{\pi N}\right)^{q-1}$ ,  $\sigma = N^{\frac{\gamma-1}{2}} \Rightarrow \hat{l}_q \approx \frac{q(2q-3)!!}{\pi^{q-1}} N^{(\gamma-2)(q-1)} \Rightarrow d_q = 2 \gamma$ .



Our general formula can be applied to the eigenvectors of the Rosenzweig-Porter model for  $\gamma < 2$ .

- If  $\gamma < 1$ , then  $\sigma = N^{\frac{\gamma 1}{2}} \to 0$  as  $N \to \infty \Rightarrow \hat{I}_q \approx \hat{I}_q^{GUE}$ .
- For  $1 < \gamma < 2$ ,  $\hat{l}_q \approx q(2q-3)!! \left(\frac{\sigma^2}{\pi N}\right)^{q-1}$ ,  $\sigma = N^{\frac{\gamma-1}{2}} \Rightarrow \hat{l}_q \approx \frac{q(2q-3)!!}{\pi^{q-1}} N^{(\gamma-2)(q-1)} \Rightarrow d_q = 2 \gamma$ .
- For  $\gamma >$  2,  $\sigma$ -model breaks down, but the moments can be computed perturbatively.



## The Rosenzweig-Porter model: numerical results

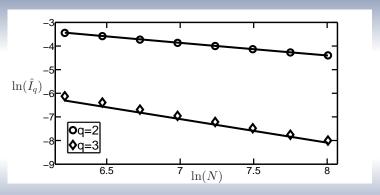


Figure: Numerical simulation for the Rosenzweig-Porter model for  $\gamma=1.5$  and N ranging from 500 to 3000.



## Definition of the model and the saddlepoint solution

#### Model II

$$H=WGW$$
  $(W)_{ij}=w_i\delta_{ij},\;w_i>0$  - deterministic,  $G\in\mathrm{GUE}$   $\left<|H_{ij}|^2\right>=rac{w_iw_j}{N},\;\;v_i\equiv w_i^2$ 



## Definition of the model and the saddlepoint solution

#### Model II

$$H=WGW$$
  $(W)_{ij}=w_i\delta_{ij},\ w_i>0$  - deterministic,  $G\in\mathrm{GUE}$   $\left<|H_{ij}|^2\right>=rac{w_iw_j}{N},\ v_i\equiv w_i^2$ 

The saddle-point solution:

$$Q_{s.p.} = t I - isT^{-1}\Lambda T$$

$$t = rac{1}{N} \sum_{i=1}^{N} rac{v_i (E - v_i t)}{(E - v_i t)^2 + s^2 v_i^2}, \quad 1 = rac{1}{N} \sum_{i=1}^{N} rac{v_i^2}{(E - v_i t)^2 + s^2 v_i^2}.$$



$$\rho(E) = \frac{s}{\pi N} \sum_{i=1}^{N} \frac{v_i}{(E - v_i t)^2 + s^2 v_i^2}$$

$$I_q(n) = \frac{1}{(\pi \rho(E)N)^q} \left[ \frac{sv_n}{(E - v_n t)^2 + s^2 v_n^2} \right]^q \Gamma(q+1)$$



$$\rho(E) = \frac{s}{\pi N} \sum_{i=1}^{N} \frac{v_i}{(E - v_i t)^2 + s^2 v_i^2}$$

$$I_q(n) = \frac{1}{(\pi \rho(E)N)^q} \left[ \frac{sv_n}{(E - v_n t)^2 + s^2 v_n^2} \right]^q \Gamma(q + 1)$$

- If  $v_i = 0 \ \forall i \Rightarrow \mathsf{GUE}$  results
- For E=0 the equations for s and t can be solved for  $\forall v_i \Rightarrow$

$$\rho(0) = \frac{1}{\pi N} \sum_{i=1}^{N} \frac{1}{v_i}, \quad I_q(n) = \frac{v_n^{-q}}{\left(\sum_i \frac{1}{v_i}\right)^q} \Gamma(q+1)$$



## Example: extended, localized and critical eigenvectors

$$v_n = C_N \left(\frac{1}{n}\right)^p$$

**1** p > 0,  $I_q \propto N^{1-q}$  – GUE scaling



# Example: extended, localized and critical eigenvectors

$$v_n = C_N \left(\frac{1}{n}\right)^p$$

① p > 0,  $I_q \propto N^{1-q}$  – GUE scaling



# Example: extended, localized and critical eigenvectors

$$v_n = C_N \left(\frac{1}{n}\right)^p$$

- ① p > 0,  $I_q \propto N^{1-q}$  GUE scaling



### Numerical results for p = -0.5

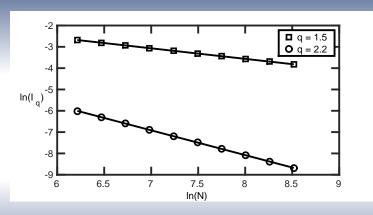


Figure: The numerical values of the gradients of the lines are -0.49 and -1.16 for q=1.5 and q=2.2 respectively. The corresponding analytical results are -0.5 and -1.1



#### **Conclusions**

- Non-trivial eigenvectors statistics in the deformed Gaussian unitary ensembles, including extended, localized and critical eigenstates
- $\bullet$  Their properties can be described analytically using supersymmetric  $\sigma\text{-model}$
- They can coexist with the Wigner-Dyson statistics of the eigenvalues
- K. Truong, AO, J. Phys. A: Math. Theor. 49, 145005 (2016)
- K. Truong, AO, arXiv:1609.03467, accepted in Europhys. Lett.