Optimal global rigidity estimates in unitary invariant ensembles

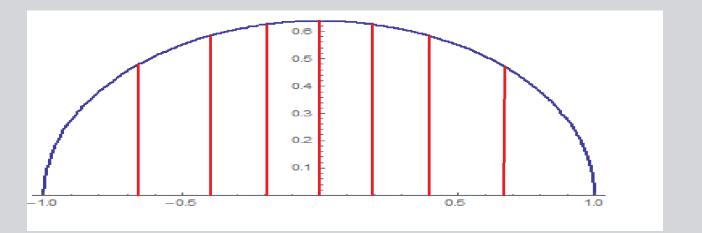
Tom Claeys

joint work with Benjamin Fahs, Gaultier Lambert and Christian Webb XIV Brunel-Bielefeld Workshop on Random Matrix Theory, December 14, 2018

Classical GUE eigenvalue locations

Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$ be the ordered eigenvalues of a GUE matrix of size $N \times N$, normalized such that the eigenvalue distribution converges to a semi-circle law on [-1,1]. We define the classical locations $\kappa_1,\kappa_2,\ldots,\kappa_N \in [-1,1]$ of the eigenvalues by

$$rac{2}{\pi}\int_{-1}^{\kappa_j}\sqrt{1-x^2}dx=rac{j}{N}, \qquad j=1,\ldots,N.$$



Global rigidity

What can we say for large N about the distribution of the normalized maximal fluctuation of eigenvalues (cf. Bourgade-Erdos-Yau)

$$M_N := \max_{j=1,\ldots,N} \left\{ rac{2}{\pi} \sqrt{1-\kappa_j^2} |\lambda_j - \kappa_j|
ight\} ?$$

Upper bound for generalized Wigner matrices (Erdos-Yau-Yin '12)

$$\mathbb{P}\left(M_N \geq rac{(\log N)^{lpha \log \log N}}{N}
ight) \leq C \exp\Bigl(-c(\log N)^{lpha' \log \log N}\Bigr)$$

Lower bound for GUE (Gustavsson '05)

$$2\sqrt{2}\sqrt{1-\kappa_j^2}rac{N}{\sqrt{\log N}}(\lambda_j-\kappa_j) o \mathcal{N}(0,1)$$

for $\delta \leq j \leq (1-\delta)N$, which implies (non-optimal) lower bounds for M_N

•

Theorem (C-Fahs-Lambert-Webb '18)

For any $\epsilon > 0$, we have

$$\lim_{N o\infty}\mathbb{P}\left((1-\epsilon)rac{\log N}{\pi N} < M_N < (1+\epsilon)rac{\log N}{\pi N}
ight) = 1.$$

Unitary invariant ensembles

A similar result holds for unitary invariant ensembles with eigenvalue distribution

$$rac{1}{Z_N} \prod_{1 \leq i < j \leq N} \left| \lambda_i - \lambda_j
ight|^2 \prod_{1 \leq j \leq N} e^{-NV(\lambda_j)}$$

for real analytic V with sufficient growth at $\pm\infty$.

Equilibrium measure and classical locations

Semi-circle law is then replaced by the equilibrium measure μ_V minimizing

$$\int_{\mathbb{R} imes\mathbb{R}}\log|x-y|^{-1}d\mu(x)d\mu(y)+\int_{\mathbb{R}}V(x)d\mu(x).$$

We assume that μ_V is one-cut regular, and that the support is [-1,1] for convenience.

The classical locations $\kappa_1,\dots,\kappa_N\in[-1,1]$ are now defined by $\int_{-1}^{\kappa_j}d\mu_V(x)=j.$

Theorem (C-Fahs-Lambert-Webb '18)

For any $\epsilon > 0$, we have

$$\lim_{N o\infty}\mathbb{P}\left((1-\epsilon)rac{\log N}{\pi N}<\max_{j=1,\ldots,N}\left\{rac{d\mu_V}{dx}(\kappa_j)|\lambda_j-\kappa_j|
ight\}<(1+\epsilon)rac{\log N}{\pi N}
ight)=1.$$

Eigenvalue counting function

We prove this result by estimating the extrema of the normalized eigenvalue counting function

$$h_N(x) = \sqrt{2}\piigg(\sum_{1 \leq j \leq N} \mathbf{1}_{\lambda_j \leq x} - N \int_{-1}^x d\mu_Vigg), \qquad x \in \mathbb{R}.$$

Namely, we prove that for any $\delta>0$,

$$\lim_{N o\infty}\mathbb{P}\left[(1-\delta)\sqrt{2}\log N\leq \max_{x\in\mathbb{R}}ig\{\pm h_N(x)ig\}\leq (1+\delta)\sqrt{2}\log N
ight]=1.$$

Heuristically, we expect $h_N(\lambda_j)=\int_{\lambda_j}^{\kappa_j}d\mu_V(x) pprox \frac{d\mu_V}{dx}(\kappa_j)(\kappa_j-\lambda_j)$, which explains the connection between global rigidity and the maximum of the normalized eigenvalue counting function.

Extreme of log-correlated fields

The problem is then to study extrema of the log-correlated field h_N . Extrema of such processes have been studied in other models:

- ✓ Riemann ζ function and CUE (Fyodorov-Hiary-Keating '12, Arguin-Belius-Bourgade '16, Chhaibi-Madaule-Najnudel '16)
- ✓ Circular Beta Ensemble and Sine Beta process (Chhaibi-Madaule-Najnudel '16, Paquette-Zeitouni '16, Holcomb-Paquette '18)
- √ Characteristic polynomial in unitary invariant ensembles (FYODOROV-SIMM '14, LAMBERT-PAQUETTE '18)

Multiplicative chaos

Powerful tools to study such extrema come from the theory of multiplicative chaos

- ✓ General theory (Kahane '85, Rhodes-Vargas '14, Berestycki '15)
- ✓ Applied to Circular Unitary Ensemble (FYODOROV-KEATING '14, WEBB '15, BERESTYCKI-WEBB-WONG '18, LAMBERT-OSTROVSKY-SIMM '18)

Upper bound estimates

The upper bound for $\max_{x\in I} \big\{ \pm h_N(x) \big\}$ can be obtained using an elementary one-moment method.

1.
$$\max_{x \in I} \big\{ \pm h_N(x) \big\} \leq \max_{j: \kappa_j \in I} \big\{ \pm h_N(\kappa_j) \big\} + 1.$$

2. By a union bound and Markov's inequality,

$$\mathbb{P}\left(\max_{j:\kappa_j\in I}\{h_N(\kappa_j)\}>Y
ight) \leq \sum_{j:\kappa_j\in I}\mathbb{P}\left(h_N(\kappa_j)>Y
ight) \ \leq \sum_{j:\kappa_j\in I}rac{\mathbb{E}e^{\gamma h_N(\kappa_j)}}{e^{\gamma Y}}.$$

Upper bound estimates

3. $\mathbb{E}e^{\gamma h_N(x)}$ is a Hankel determinant with discontinuous weight $e^{-NV(\lambda)}e^{\gamma \mathbf{1}_{\lambda\leq x}}$, and large N asymptotics for such Hankel determinants are known for $x\in (-1+\delta,1-\delta)$ (ITS-Krasovsky '08 for GUE, Charlier '18 for one-cut regular unitary invariant ensembles).

Upper bound estimates

4. Choosing γ, Y conveniently and substituting the Hankel asymptotics, we get the upper bound

$$\lim_{N o\infty}\mathbb{P}\left[\max_{x\in[-1+\delta,1-\delta]}\!\!h_N(x)\leq (1+\delta)\sqrt{2}\log N
ight]=1.$$

5. To extend the upper bound to $\max_{x \in \mathbb{R}}$, we prove estimates for $\mathbb{E}e^{\gamma h_N(x)}$ for x close to ± 1 , or in other words for Hankel determinants with a jump discontinuity close to a soft edge,

$$\mathbb{E}e^{\gamma h_N(x)}=O\left((1-x^2)^{rac{3\gamma^2}{4}}N^{rac{\gamma^2}{2}}
ight)$$

as $N o \infty$, uniformly for $|x| \le 1 - M N^{-2/3}$.

Lower bound estimates

Optimal lower bound estimates are much harder to obtain, and require to investigate the log-correlated structure of h_N .

Log-correlated structure

It is well-known (Johansson '98) that $h_N(x)$ behaves for large N like a Gaussian process X(x) with logarithmic covariance kernel

$$\Sigma(x,y) := \log \left| rac{1-xy+\sqrt{1-x^2}\sqrt{1-y^2}}{x-y}
ight|.$$

Maximum of the eigenvalue counting function

For studying the maximum of h_N , we prove that the random measure

$$d\mu_N^{\gamma} = rac{e^{\gamma h_N(x)}}{\mathbb{E} e^{\gamma h_N(x)}} dx, \qquad \gamma \in \mathbb{R}$$

converges weakly in distribution to a multiplicative chaos measure which can be formally written as (cf. Kahane '85, Rhodes-Vargas '10, Berestycki-Webb-Wong '17)

$$d\mu^{\gamma}(x)=rac{e^{\gamma X(x)}}{\mathbb{E}e^{\gamma X(x)}}dx.$$

Extreme values

It will turn out that the extreme values of the limiting measure μ^{γ} will lead us to estimates for extreme values of h_N .

Heuristics

Heuristically, the random measure $d\mu_N^\gamma(x)=rac{e^{\gamma h_N(x)}}{\mathbb{E}e^{\gamma h_N(x)}}dx$ is expected to be dominated for $\gamma>0$ by x-values where $h_N(x)$ is exceptionally large, and it is natural to expect that the multiplicative chaos measure μ^γ will give us information about large values of $h_N(x)$. For $|\gamma|>\sqrt{2}$, $\mu^\gamma=0$.

Multiplicative chaos and γ -thick points

Consider the set of γ -thick points

$$\mathscr{T}_N^{\pm\gamma} = \left\{x \in [-1,1]: \pm h_N(x) \geq \pm \gamma \log N
ight\}.$$

This set contains points where $h_N(x)$ is of the order of its variance rather than its standard deviation. It follows from the multiplicative chaos convergence that for any $\gamma \in (-\sqrt{2},\sqrt{2})\setminus\{0\}$, in probability,

$$\lim_{N o\infty}rac{\log|\mathscr{T}_N^{\gamma}|}{\log N}=-rac{\gamma^2}{2}.$$

Freezing transition

Another consequence of the multiplicative chaos convergence is that

$$\lim_{N o\infty}rac{1}{\log N}\!\log\!\left(\int_{-1}^1e^{\gamma h_N(x)}dx
ight)=\left\{egin{array}{ll} \gamma^2/2 & ext{if } \gamma\leq\sqrt{2} \ \sqrt{2}\gamma-1 & ext{if } \gamma\geq\sqrt{2} \end{array}
ight.,$$

in probability.

In the physics literature, this is called a freezing transition of the random energy landscape h_N (cf. Fyodorov-Bouchaud '08, Fyodorov-Le Doussal-Russo '12, Fyodorov-Keating '14 for CUE).

Convergence to multiplicative chaos

The key technical input to prove convergence of μ_N^γ to μ consists of detailed asymptotic estimates as $N\to\infty$ for exponential moments of the form

$$\mathbb{E}e^{\gamma_1 h_N(x) + \gamma_2 h_N(y) + \sum_{j=1}^N W(\lambda_j)}$$
 .

These can also be written as Hankel determinants

$$D_N(x,y;\gamma_1,\gamma_2;W) = \det\left(\int_{\mathbb{R}} \lambda^{i+j} f(\lambda;x,y;\gamma_1,\gamma_2;W) d\lambda
ight)_{i,j=0}^{N-1},$$

with
$$f(\lambda;x,y;\gamma_1,\gamma_2;W)=e^{\sqrt{2}\pi\gamma_1\mathbf{1}_{\{\lambda\leq x\}}+\sqrt{2}\pi\gamma_2\mathbf{1}_{\{\lambda\leq y\}}+W(\lambda)-NV(\lambda)}$$
 .

Asymptotics are known (Charlier '18) for $x
eq y \in (-1,1)$ fixed and for W independent of N.

Two merging singularities

$$egin{align} \log D_N(x_1,x_2;\gamma_1,\gamma_2;0) &= \log D_N(x_1;\gamma_1+\gamma_2;0) + \sqrt{2}\pi\gamma_2 N \int_{x_1}^{x_2} d\mu_V \ &-\gamma_1\gamma_2 \max\{0,\log(|x_1-x_2|N)\} + \mathcal{O}(1), \end{aligned}$$

as $N o \infty$, where the error term is uniform for $-1+\delta < x_1 < x_2 < 1-\delta$, $0 < x_2-x_1 < \delta$ for δ sufficiently small.

Method of proof

We prove this using a similar method than the one used for Toeplitz determinants with merging Fisher-Hartwig singularities (C-Krasovsky '15) and Hankel determinants with merging root singularities (C-Fahs '16), based on a Riemann-Hilbert method.

N-dependent W

Assume that $W=W_N$ is a sequence of functions which are analytic and uniformly bounded on a suitable domain which does not shrink too fast with N.

$$egin{align} \log D_N(x_1,x_2;\gamma_1,\gamma_2;W_N) &= \log D_N(x_1,x_2;\gamma_1,\gamma_2;0) \ &+ N \int W_N d\mu_V + rac{1}{2} \sigma(W_N)^2 + \sum_{j=1}^2 rac{\gamma_j}{\sqrt{2}} \sqrt{1-x_j^2} \mathcal{U} W_N(x_j) + o(1), \end{aligned}$$

as $N
ightarrow \infty$, uniformly for (x_1,x_2) in any fixed compact subset of $(-1,1)^2$, where

$$\sigma(f)^2 = \iint_{\S^2} f'(x) f'(y) rac{\Sigma(x,y)}{2\pi^2} dx dy, \; (\mathcal{U}w)(x) = rac{1}{\pi} ext{P. V.} \int_{-1}^1 rac{w(t)}{x-t} rac{dt}{\sqrt{1-t^2}}.$$

Finally, we need also asymptotics for Hankel determinants with one singularity tending to the edge ± 1 . This is needed for the upper bound estimate for the maximum of h_N .

Singularity close to the edge

$$\log rac{D_N(x;\gamma;0)}{D_N(x;0;0)} = \sqrt{2}\pi\gamma N \int_{-1}^x d\mu_V(\xi) + rac{\gamma^2}{2} \log N + rac{3\gamma^2}{4} \log(1-x^2) + \mathcal{O}(1),$$

as $N o \infty$, with the error term uniform for all $|x| \leq 1 - M N^{-2/3}$, with M sufficiently large.

Overview

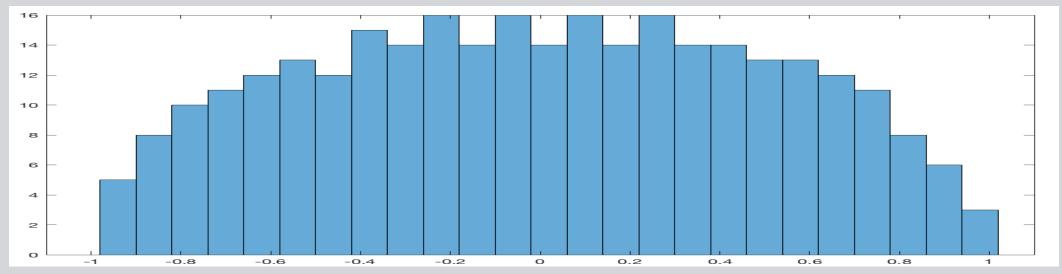
Summary of the method

- 1. Hankel determinant asymptotics
 - \Longrightarrow Convergence of $rac{e^{\gamma}h_N(x)}{\mathbb{E}e^{\gamma h_N(x)}}dx$ to a

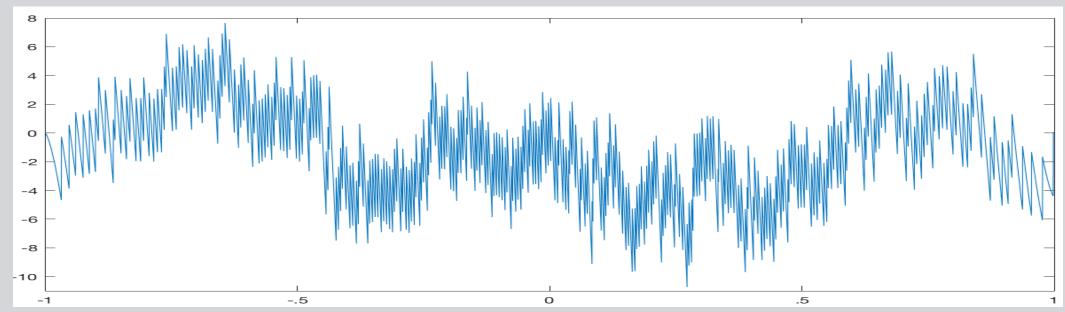
multiplicative chaos measure μ^γ

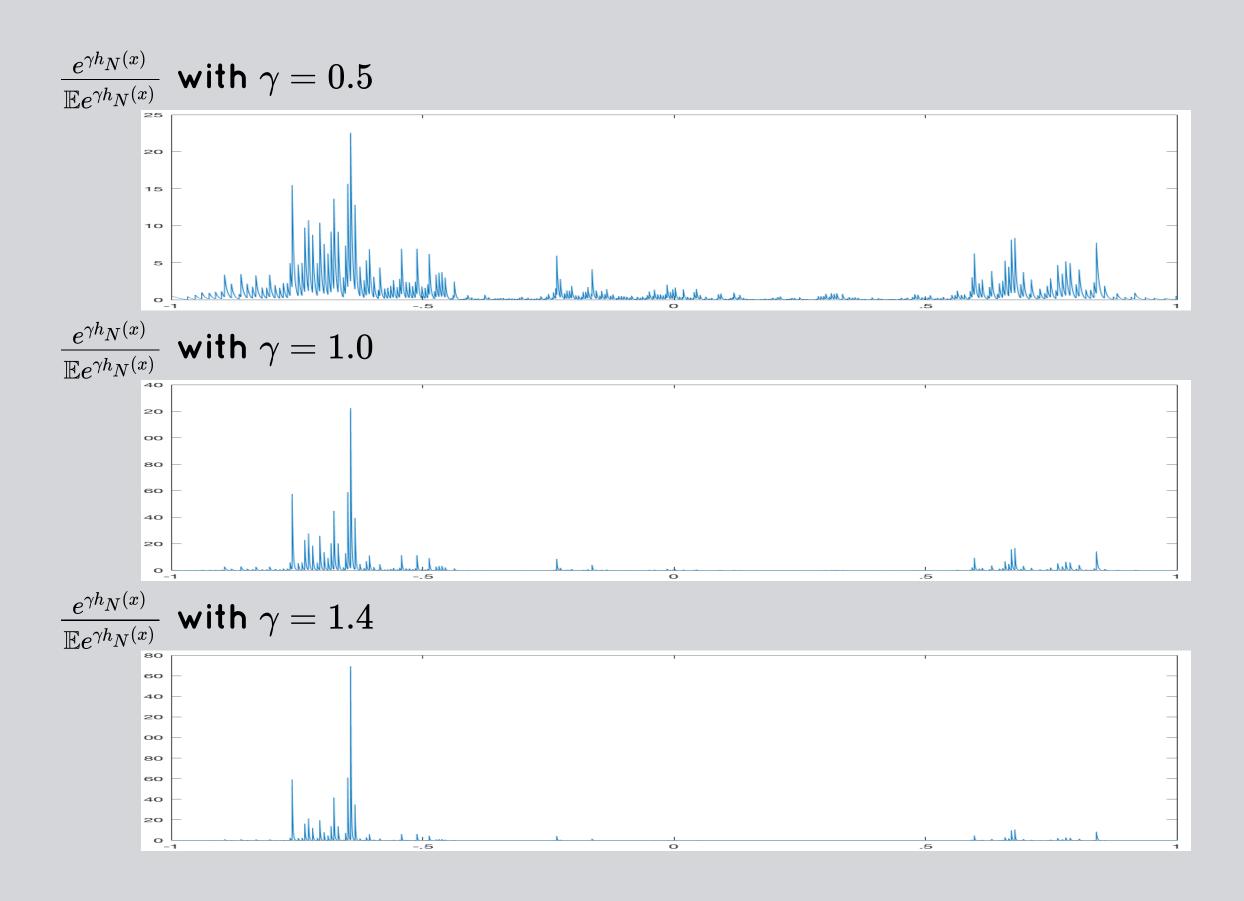
- \Longrightarrow Estimates for γ -thick points
- \Longrightarrow Estimates for the lower bound of $\max h_N$
- 2. Hankel determinant asymptotics
 - \Longrightarrow Estimates for the upper bound of $\max h_N$ via one-moment method
- 3. Estimates for extrema of h_N
 - ==> Estimates for global rigidity of eigenvalues

Histogram of GUE eigenvalues for $N=300\,$

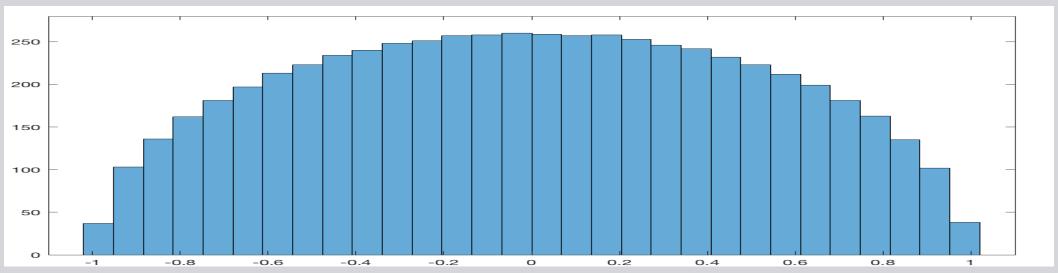


Normalized eigenvalue counting function h_N for N=300.

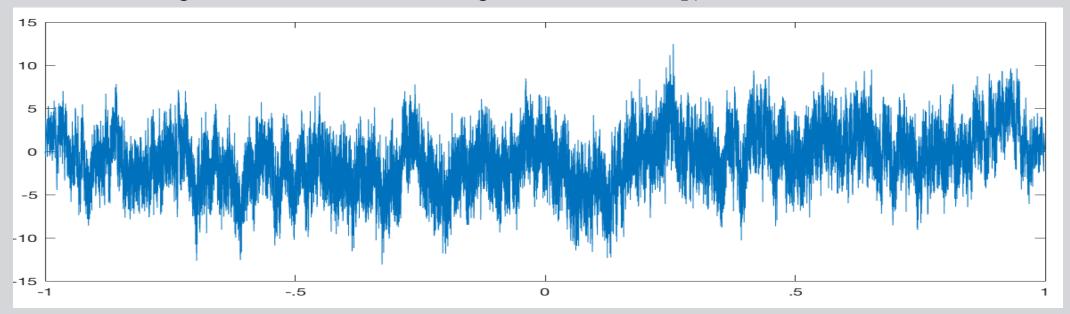


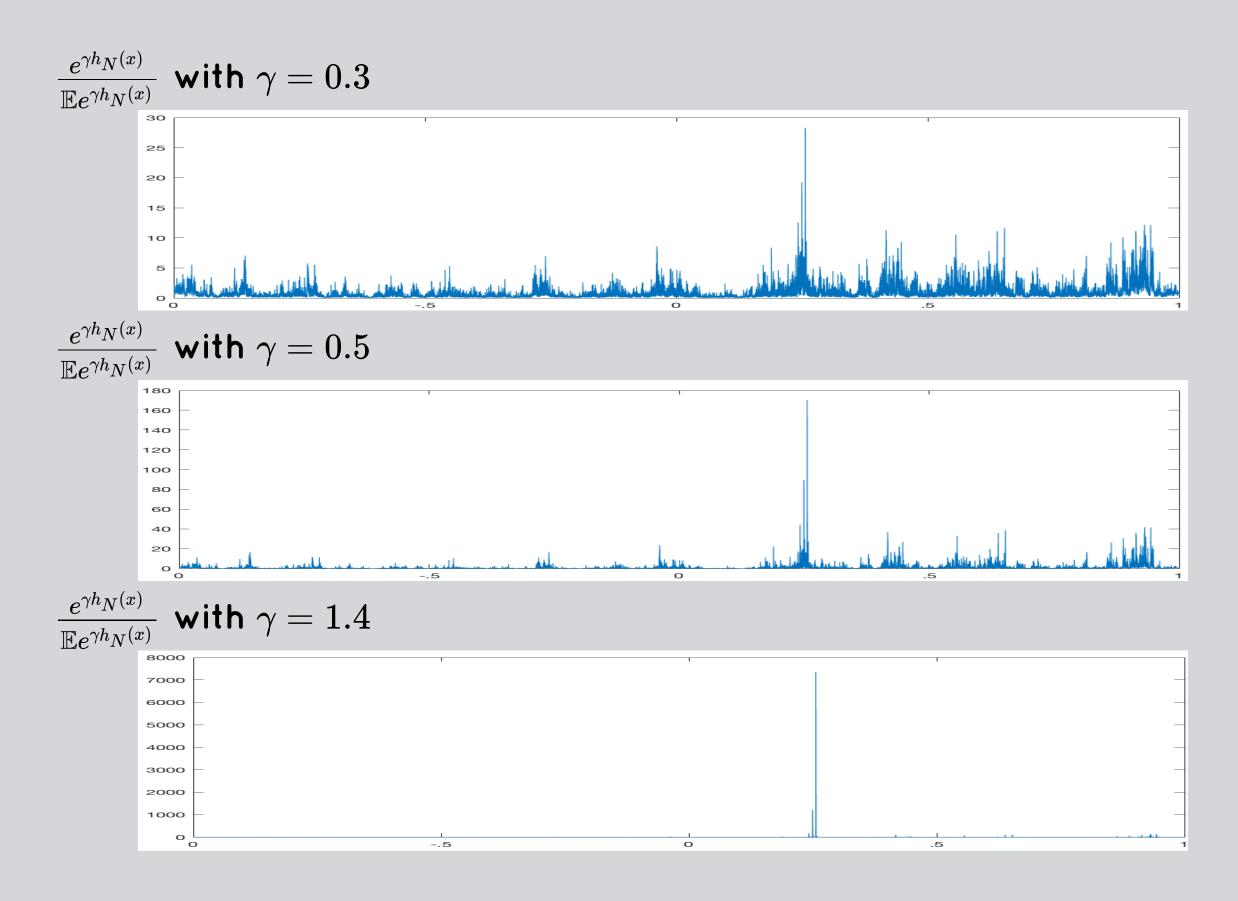


Histogram of GUE eigenvalues for $N=300\,$



Normalized eigenvalue counting function h_N for N=300.





Thank you for your attention!