
April 6-8, 2018 Beijing

London South Bank University, UK

PERFORMANCE INDICATORS FOR ENERGY EFFICIENT SUPERMARKET BUILDINGS

Ulla Lindberg

RISE Research Institutes of Sweden

Annex 44 has been performed by:
The Netherlands: Saint Trofee (S.M. van der Sluis),
Coolsultancy (R. Jans)

Sweden: RISE (U. Lindberg, A.-L. Lane), KTH (J. Arias, S. Sawalha).

Denmark: DTI (C. Heerup, R. Borup), Danfoss (L. Larsen, S. Piscopiello), IPU (J. Wronski, M. Winter), AK-Centralen (T.Gøttsch)

The Netherlands (Operating Agent)

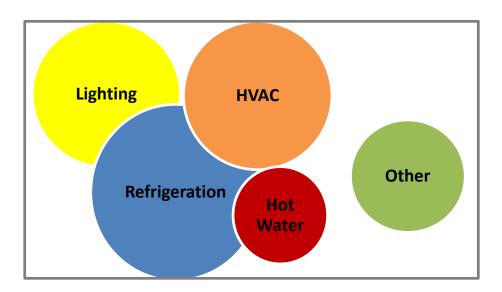
OBJECTIVES

Objectives

- create performance indicators for energy efficient supermarket buildings, so that measurements and monitored data can be converted into knowledge concerning the energy performance.
- create knowledge concerning the energy efficiency of supermarket buildings for decision making, benchmarking and development of energy efficiency strategies.

Is "your" supermarket building energy efficient?

- Compared to other supermarkets in same chain
- Compared to other supermarkets in the same country
- Compared internationally.



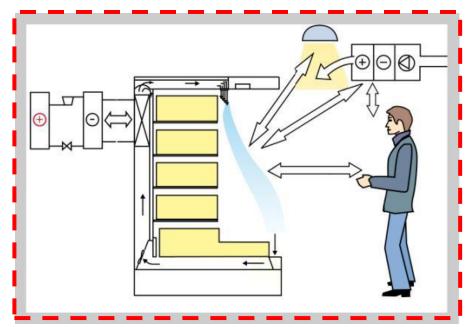
April 6-8, 2018 Beijing

SCOPE

- Supermarkets (ISIC 4711)* non-specialized stores, with food, beverages or tobacco predominating
- ❖ All energy systems (thermal & electric)

Energy systems	% energy use
Lighting	27 %
HVAC	13 %
Refrigeration	47 %
Hot water	3 %
Others	10 %

Supermarket refrigeration systems are more and more used as heat pumps (heat recovery)



April 6-8, 2018 Beijing

SYSTEM BOUNDARY

(from Lindberg, Axell and Rolfsman 2011, ICR2011)

The system boundary in Annex 44 is the whole supermarket, which includes all energy systems (HVAC, refrigeration, lighting and other uses).

Proposed in Annex 44

kWh/(m².year)

- Total Energy Consumption (Electricity and Heat/Gas/Oil)
- Sales Area.

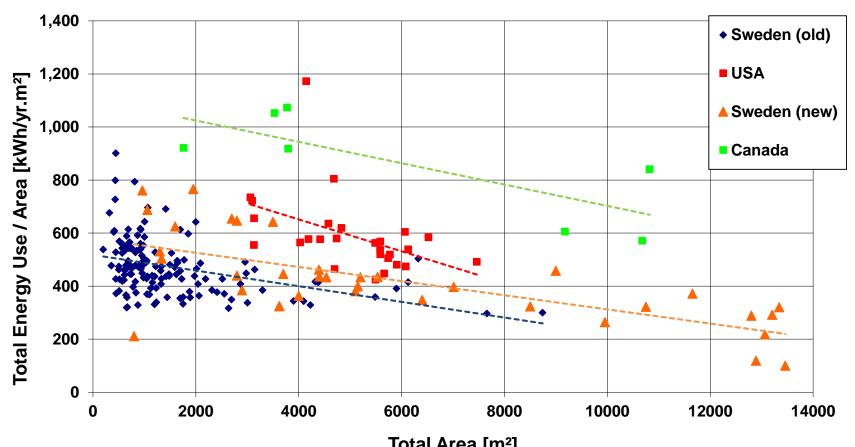
MONITORING AND MEASUREMENTS

- Primary aim of these systems is control and regulation
- Separate systems i.e. energy meters

Supermarkets require

Efficient handling of alarm monitoring, data structure, HACCP¹ procedures, HACCP policies, refrigeration energy consumption, service calls and refrigeration maintenance management.

¹Hazard analysis and critical control point here specifically related to safe handling of food



April 6-8, 2018 Beijing


(IEA-HPT Annex 31)

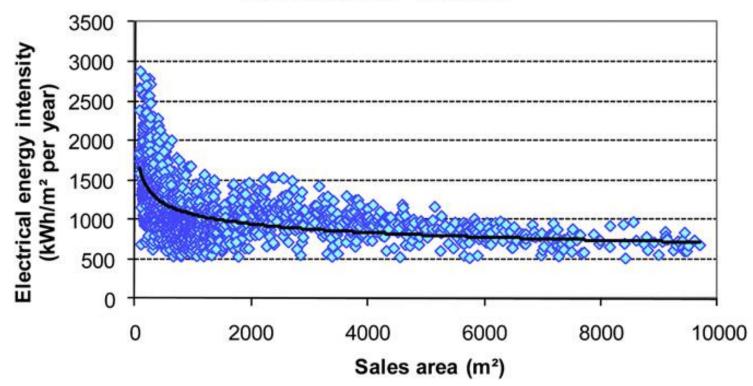
Related (earlier) work.

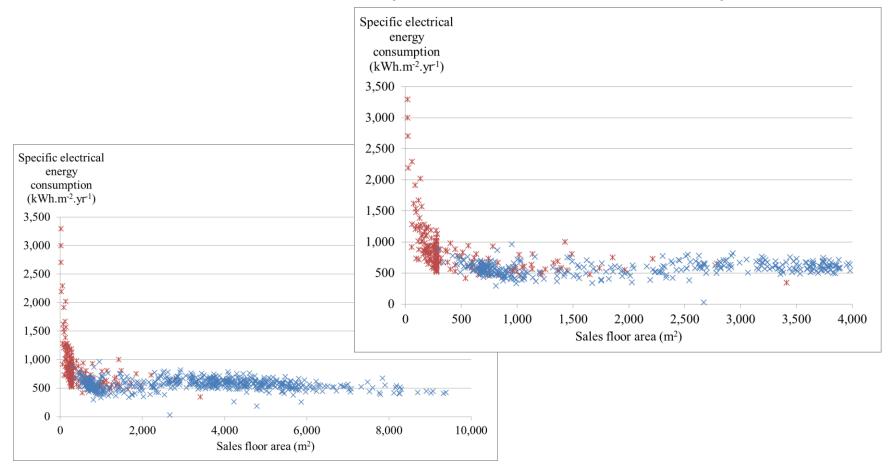
Total Energy Use (heating & cooling) / Total Area [kWh/yr.m²]

Total Area [m²]

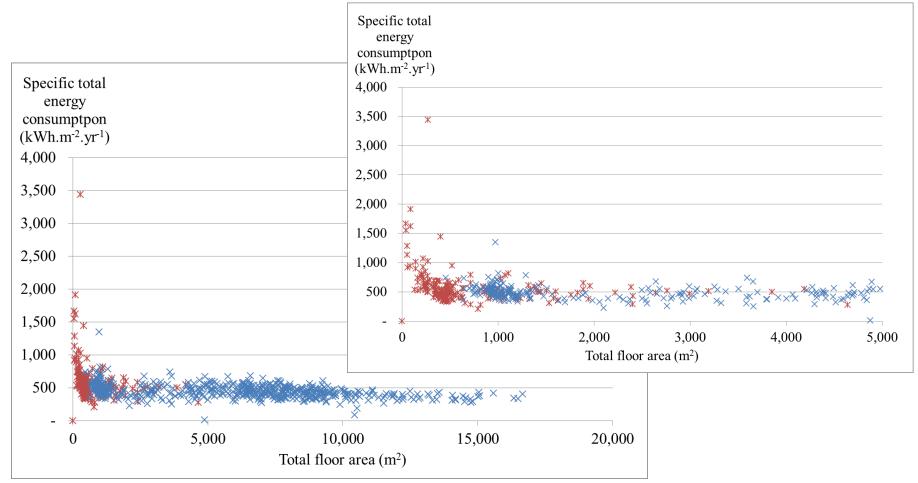
Related (earlier) work. (Tassou *et al.* - UK)

Sales area 80 - 10000 m²




illustration of the decrease in energy intensity as the supermarket size increases (with permission, from Tassou, 2010).

New study **Electrical energy consumption vs Sales area** (Foster *et al.* - UK)



Total energy vs Total area (Foster et al.)

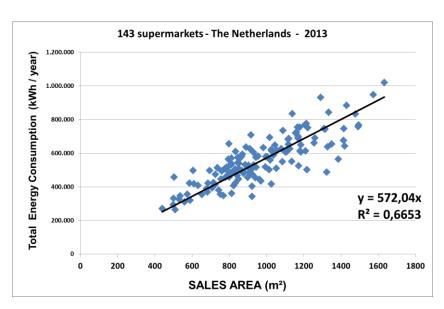
Comparison

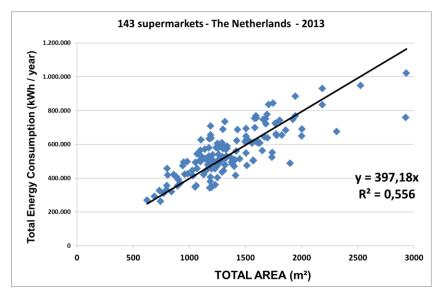
Store location and date	Energy intensity (kWh/m2)	Basis of SEC	Floor area applicable for
Store A (2015)	566	EE /SFA	3306
Store B (2016)	886	EE /SFA	435
Store B (2016)	1870 to 600	EE /SFA	20 to 300
Store B (2016)	700 to 470	EE /SFA	300 to 3400
Store B (2016)	1350 to 675	EE /SFA	80 to 300 (no filling stations)
Store B (2016)	2400 to 675	EE /SFA	20 to 200 (filling stations
Store A (2015)	450	TE /TFA	5845
Store B (2016)	601	TE /TFA	681

Issues arising from (earlier) work

Comparison basis:

- Supermarket Size:
 - * First source (Annex 31) uses TOTAL Supermarket Area
 - * Second source (Tassou) uses Supermarket SALES Area
- Energy consumption:
- * First source (Annex 31) uses TOTAL energy consumption / m².year
- * Second source (Tassou) uses ELECRICAL energy consumption / m².year
- What is the preferential choice?
- How do data from these sources relate?
- SEC_{EE/SFA}

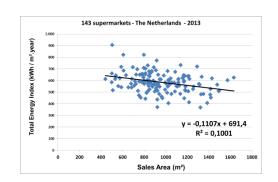


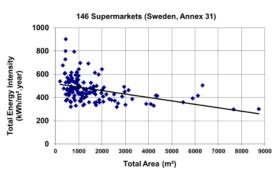


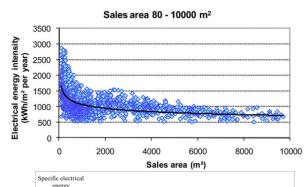
Analysis of Dutch data.

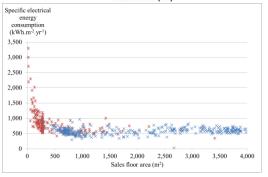
- SALES area relates better to energy consumption than TOTAL area, therefore SALES Area must be considered.

(Average TOTAL Area / SALES Area = 1,4)

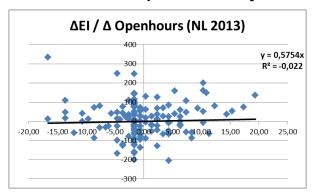


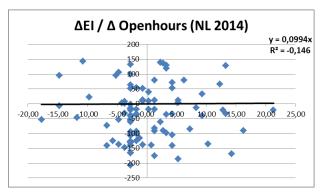


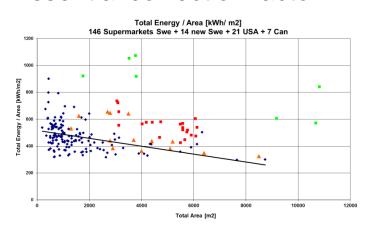

Energy intensity: total energy use / sales area

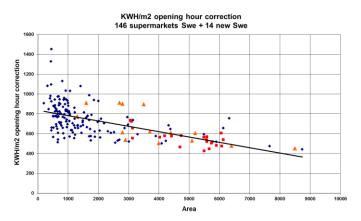

- NL 2013: Average Energy Intensity = 585 kWh/m².year (@ 957 m²)
- NL 2014: Average Energy intensity = 539 kWh/m².year (@ 970 m²)
- Energy intensity decreases with increasing supermarket size.

(- 2 % for each 100 m² sales area increase)






Energy intensity: opening hours dependency


- Minimal dependency in Dutch data sets 2013 and 2014

Essential correction factor in Annex 31 data Sweden & USA

Under further investigation

RESULTS

Annex 44 Supermarket size as primary performance indicator

Discussions to include non – conventional indicators, to fully explain observed energy use and efficiency in practice, i.e.

- the maintenance and dynamics of the systems
- sales volume or customer density
- the indoor temperature & humidity
- the cleaning and loading procedures
- the training of personnel

April 6-8, 2018 Beijing

Results 1(4) Supermarket comparison

Data from Denmark, Sweden, The Netherlands:

- Total energy consumption below 400 kWh/m²/year energy efficient supermarkets with referred data to total supermarket area.
- 400 kWh/m²/year the average energy intensity.
 Average total area 1 360 m² and 73 openings hours per week.
- No relation between total energy consumptions (heat & electricity) and the geographic region
- Developments, i.e. refrigeration systems and lighting, increased energy efficiency ranging 1-10% per year.

Results 2(4)

UK Data

- SEC different conclusions with different data sets
- SEC reduces with increasing area
 - Very small stores very large SEC

Results 3(4) Reduction in SEC with time

- Sullivan and Gouldson (2013)
- Six UK supermarket chains
- 2.5 to 5.5% reduction p.a. relative to 2007
- Up to 10 years, 2 to 3% reduction
- Savings often outstripped by business growth

Results 4(4)

Reduction in SEC with time

- New data 1 UK store
- 2013 to 2017 3.3% reduction p.a.
- Over 5 years
 - 32% reduction in lighting
 - 20% reduction in refrigeration
 - 8% reduction in HVAC

Future work and for discussion

Other secondary performance indicators? In relation to indoor conditions, Annex 44 propose:

	Dry bulb temperature	Relative humidity	Water content
	°C	%	(g H ₂ O / kg dry air)
Proposed reference condition	20	50	7,3
ISO Standard test condition	25	60	16,7

- Other indicators/ calculations in relation to other parameters that influence
- energy consumption?
- costs?
- heat recovery?
- parking area?
- How to display the indicators, different detailed levels depending on interest.

April 6-8, 2018 Beijing

HOW TO START OR JOIN AN ANNEX

Any party working in any of the programme's member countries can participate in annexes. HPT welcomes ideas and topics for new international collaborations!

http://heatpumpingtechnologies.org

ANNEX

START DATE:

1 June 2013

END DATE:

30 June 2017

Performance indicators for energy efficient supermarket buildings

Supermarkets and the supermarket sector was the main target for the Annex. However the methodology created in this Annex may, when modified accordingly, also be applied t...

Read more

Visit annex

ANNEX

START DATE:

1 January 2006

END DATE:

31 December 2009

Advanced Modeling and Tools for Analysis of Energy Use in Supermarkets

Supermarkets are the most energy intensive buildings in the commercial sector. It has been estimated that 3-5 % of the total use of electricity stems from supermarkets in...

Read more

Visit annex

April 6-8, 2018 Beijing

THANKS!

Ulla Lindberg: ulla.lindberg@ri.se

Alan Foster: alan.foster@lsbu.ac.uk

April 6-8, 2018 Beijing

Indicators for the refrigeration system (time period =1 year)

	Goodness factors: Specific electrical energy (kWh/m³ and year)		
	Refrigeration	Chilled food	Frozen food
	$w_{reftot} = \frac{W_{e,reftot}}{V_{reftot}} (1)$	$w_{ref} = \frac{W_{e,ref}}{V_{ref}} (2)$	$w_{fr} = \frac{W_{e,fr}}{V f r} $ (3)
	kWh/(m ³ and year)	kWh/(m ³ and year)	kWh/(m ³ and year)
Supermarket A	613	499	698
Supermarket B	259	169	601
Supermarket C	1137	783	1950

Axell and Lindberg, 2005

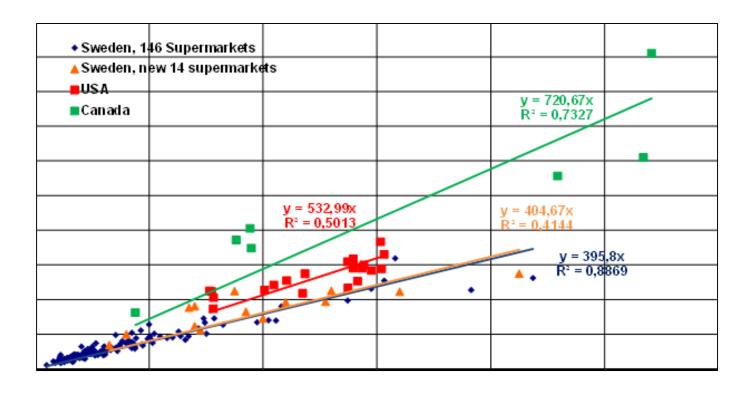
$$W_{e,reftot} = W_{e,dry-coolers} + W_{e,ref} + W_{e,fr}$$

April 6-8, 2018 Beijing

Indicators for the refrigeration system factors related to the buildings area

	Goodness factors		
	Total Electrical Supply /	Total Electrical Supply /	
	(Total area)	(Total sales area)	
Supermarket	$w_{tot} = \frac{W_{e,tot}}{A_{tot}} \qquad 1$	$w_{sale} = \frac{W_{e,tot}}{A_{sale}} \qquad 2$	
	kWh/(m²and year)	kWh/(m² and year)	
A	425	995	
В	348	434	
C	665	943	

Data on supermarkets


	Supermarket		
	A	В	C
Total area, Atot, (m2)	8 981	3 300	949
Sales area, Asale, (m2)	3 839	2 650	670
Air volume, sales area,			
V_{sale} , (m ³)	16 000	10 843	2 093
Air volume; chilled food;			
cabinets and rooms, V_{ch} ,	1267	1339	123
(m ³)			
Air volume; frozen food;			
cabinets and rooms, V_{ft} ,	373	187	31
(m ³)			

April 6-8, 2018 Beijing

TOTAL YEARLY ENERGY CONSUMPTION (ELECTRICITY +HEATING) VS TOTAL AREA

