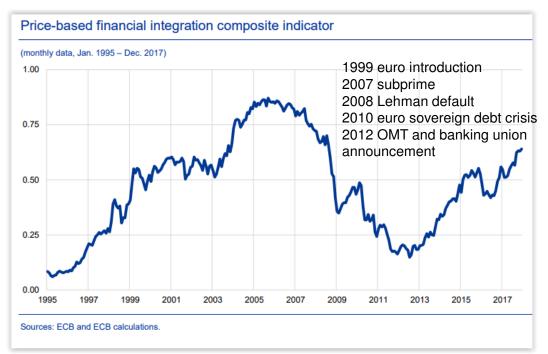
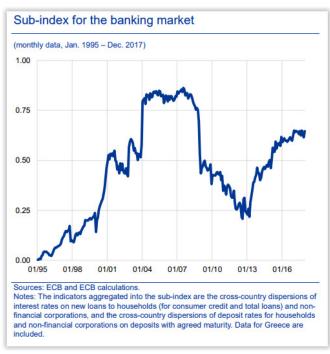
Paolo Coccorese (1)
Claudia Girardone (2)

What affects bank market power in the euro area?

CONFERENCE ON "BANK REGULATION, COMPETITION AND RISK"


Brunel University, 11th July 2018


- (1) Department of Economics and Statistics, University of Salerno, Italy
- (2) Essex Business School, University of Essex, UK

Background

- With greater integration, contestability/competition should increase and differences across countries should reduce
- Financial crises and economic recession significantly affected the process of integration in the euro area
- The banking union announcement in 2012 revived the trend towards greater integration
- ECB (2018) suggested that recent "post crisis reintegration trend" is mainly driven by convergence in equity returns and, to a lesser extent, bond yields and retail banking markets

ECB financial integration -trends

Source: ECB (2018) Financial Integration in Europe, May.

Overview of literature

- Large body of literature measuring competition use structural (SCP) and more recently non-structural (NEIO) approaches (e.g. Claessen and Laeven, 2004)
- Some recent studies (e.g. Weill, 2013; Apergis et al., 2016; Cruz et al. 2017) focus on evolution of competition in the EU
- Findings show that competition has started slightly improving only in the most recent years (after 2010). There is some evidence of convergence across countries
- On the factors affecting market power, usually the focus is on the crisis. Pre-crisis EU studies typically find that size, efficiency and the economic cycle are significant explanatory variables; for concentration results are mixed (e.g., Maudos et al 2007)
- Common methods: from SCP to (more recently) Lerner, Boone, H-statistic
- There are no recent studies on the euro area using other methods

Aims of paper

- To explore factors affecting bank market power and look at trends over the most recent years
- To employ the Bresnahan-Lau mark-up test developed in the context of the NEIO with variations
- To check whether there has been a movement towards integration, i.e. a reduction of the differences in market power across countries and a process of convergence

The model

Profit maximization

In country c at time t, profit-maximizing banks choose their output level q (loans) where MR = MC.

- In a perfectly competitive market with n firms, MR coincides with P.
- In case of *perfect collusion* among the *n* firms, *MR* is equal to the *MR* of the whole market.

Demand for loans

$$Q_{ct} = Q_{ct}(P_{ct}, X_{ct}, \delta)$$

where

 Q_{ct} = aggregate level of loans

 P_{ct} = interest rate on loans charged by local banks

 X_{ct} = vector of exogenous variables shifting the

demand curve

 δ = vector of unknown parameters to be estimated

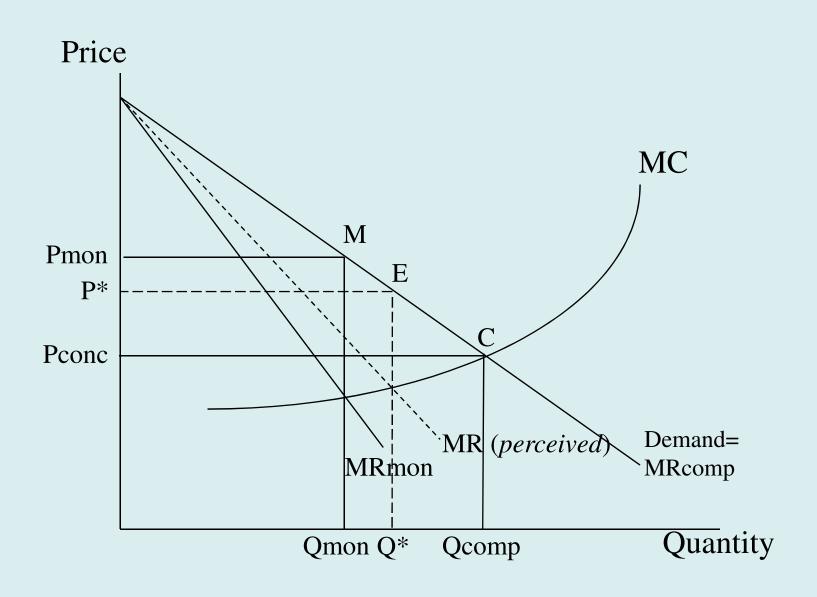
The model

Marginal revenue

The industry's <u>true</u> marginal revenue function is the well-known *MR* formula for a monopoly:

$$MR = P + \frac{\partial P}{\partial Q}Q$$

Here it can be written as


$$MR_{ct} = P_{ct} + Q_{ct} / \frac{\partial Q_{ct}}{\partial P_{ct}}$$

The firm's <u>perceived</u> marginal revenue function for the generic bank i operating in country c, and supplying the quantity of loans q_{ict} , is

$$MR_{ict} = P_{ct} + \lambda_{ict} q_{ict} / \frac{\partial Q_{ct}}{\partial P_{ct}}$$

where λ_{ict} (to be estimated) is the competitiveness of oligopoly conduct.

Monopoly

The model

Conduct (market power) parameter

$$MR_{ict} = P_{ct} + \lambda_{ict} q_{ict} / \frac{\partial Q_{ct}}{\partial P_{ct}}$$

It is $0 \le \lambda_{ict} \le 1$.

- When $\lambda_{ict} = 0$, each bank acts as though MR = P (perfectly competitive behaviour).
- When $\lambda_{ict} = 1$, banks choose price and output according to the industry marginal revenue curve (*joint monopoly* or *perfect collusion*).
- Intermediate values of λ_{ict} indicate various degrees of imperfect competition or market power.

The overparametrization of this model (i.e. too many λ_{ict} 's) can be solved by aggregation, so:

- we can use country industry data for both demand and cost variables;
- we are then *left with a single parameter* λ_{ct} , which measures *the average conduct of the banks* operating in country c at time t.

The model

Equilibrium condition

After aggregating for the n banks in the market, the MR = MC condition becomes

$$P_{ct} + \lambda_{ct} Q_{ct} / \frac{\partial Q_{ct}}{\partial P_{ct}} = MC_{ct}$$

Empirically, with reference to the behavioural parameter λ_{ct} , we estimate *two* different specifications of the two-equation system:

- λ_{ct} constant (the customary Bresnahan-Lau mark-up test)
- λ_{ct} as a function of the **five** banking market characteristics

Advantages of Bresnahan-Lau's mark-up test

- > It provides an easily interpreted test statistic
- > It allows to use aggregate industry data
- The model does not rely on any particular definition of local banking markets within a country (the estimate of λ represents the average degree of market power of the banks across those separate markets)
- ➤ The estimation of the market power parameter is not biased, because our sample spans complete markets rather than only a subset of the relevant industries

Data & estimation methods

Data: 155 observations

17 EU countries

10 years (2007-2016)

Sources: ECB & Eurostat

Methods: System of equations using nonlinear 3-stage least squares.

The instruments are:

- all exogenous variables (including time trend);
- first lagged values of Q_{ct} and P_{ct} ;
- the level of total assets of the banking sector;
- national investment.

The last two instruments proxy for additional aspects of (supply and demand) market size.

Integration: beta and sigma convergence

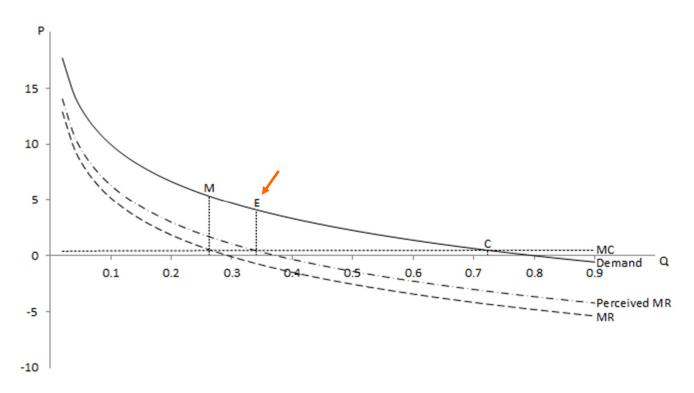
Main methodology

Two-equation systems:

- a) with a constant lambda;
- b) with lambda as a function of 5 banking market factors.

The system b) to be estimated is the following:

$$\begin{cases}
\ln Q_{ct} = a_0 + a_1 P_{ct} + a_2 POP_{ct} + a_3 Z_{ct} + a_4 YPERCAP_{ct} & [1] \\
P_{ct} = \frac{C_{ct}}{Q_{ct}} \left[b_Q + b_{QQ} \ln Q_{ct} + b_{Q1} \ln (W_{1ct} / W_{3ct}) + b_{Q2} \ln (W_{2ct} / W_{3ct}) + b_{QT} \ln TIME \right] - \\
- \frac{(\lambda_0 + \lambda_1 CR5_{ct} + \lambda_2 LIQUIDITY_{ct} + \lambda_3 LEVERAGE_{ct} + \lambda_4 TBTF_{ct} + \lambda_5 ATMPERCAP_{ct})}{a_1}
\end{cases}$$


Results: constant lambda 1/2

Demand	Model 1		
equation	Coef.	Z	
Constant	-2.8487	-8.47	***
P	-0.2080	-6.49	***
POP	0.0539	23.20	***
Z	0.1010	4.61	***
YPERCAP	0.0392	7.28	***
R^2	0.7923		
Obs.	155	_	

MC	Model 1		
equation	Coef.	Z	
Constant	-0.9899	-5.98	***
InQ	0.0034	0.29	
InW1W3	0.1251	3.87	***
InW2W3	-0.3044	-6.87	***
InTIME	-0.0537	-2.23	**
Lambda	0.7604	6.05	***
R^2	0.3686		
Obs.	155		

- Downward-sloping loan demand function
- POP ⇒ wider markets guarantee banks a higher loan demand
- The coefficient of Z is positive
 ⇒ the interest rate of government bonds is a good measure of the price of a substitute for bank loans
- YPERCAP ⇒ per capita GDP plays a major role in stimulating loan demand
- The coefficients of all variables of the marginal cost function (except InQ) are *significant*
- In this specification, where λ is treated as constant, it is $\lambda = 0.7604 \Rightarrow banks'$ perceived MR has been about 76% of the MR that would be taken into consideration by a monopolistic firm or a cartel
- λ is significantly different from zero and one \Rightarrow we can reject the hypotheses of both perfect collusion and perfect competition

Results: constant lambda 1/2

Average situation of EU banking markets when $\lambda = 0.7604$

Point E = equilibrium (MC = perceived MR).

The calculated Q is 339.9 billion euro (very close to the median value of the sample, 372.1 billion euro).

Banks did not behave as joint profit-maximizing firms.

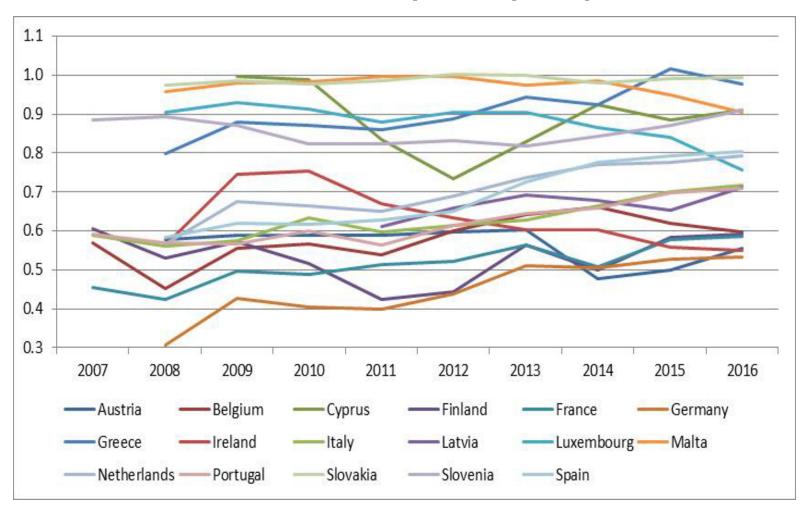
	Model 2			
	Coef.	Z		
Demand	equation			
Constant	-3.0282	-9.15	***	
P	-0.1863	-5.77	***	
POP	0.0542	23.25	***	
Z	0.1092	4.96	***	
YPERCAP	0.0411	7.70	***	
Marginal co	Marginal cost equation			
Constant	-1.0379	-4.21	***	
InQ	0.0701	3.62	***	
InW1W3	0.1895	5.97	***	
InW2W3	-0.3399	-4.82	***	
InTIME	-0.0562	-2.11	**	
Lambda constant	0.3093	2.10	**	
CR5	0.1878	1.94	*	
LIQUIDITY	1.0024	3.66	***	
LEVERAGE	-0.0143	-2.83	***	
TBTF	0.0662	3.67	***	
ATMPERCAP	-0.2115	-3.14	***	
R ² demand	0.7953			
R ² marginal cost	0.5625			

The coefficients in both the demand and the marginal cost equations do not significantly change.

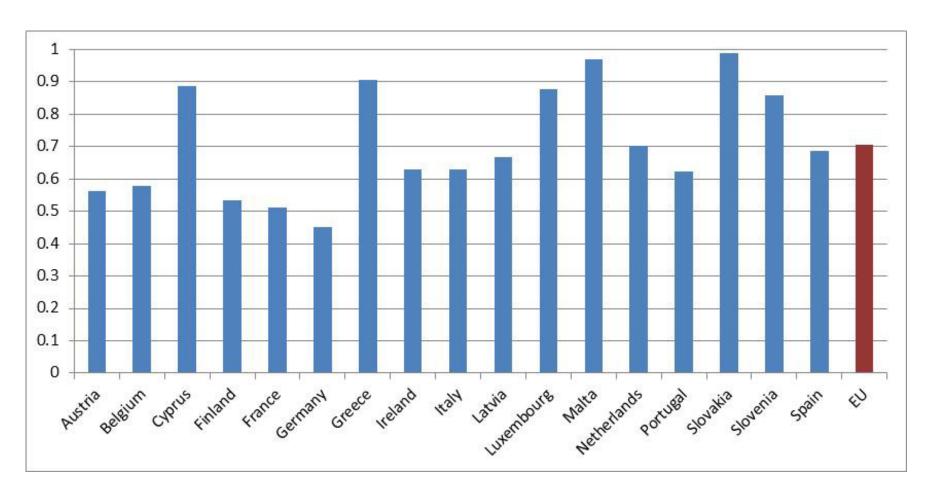
Market power determinants

- CR5 ⇒ market power is directly linked with local market concentration (conforming to the SCP paradigm), although at a 10% level of significance;
- LIQUIDITY

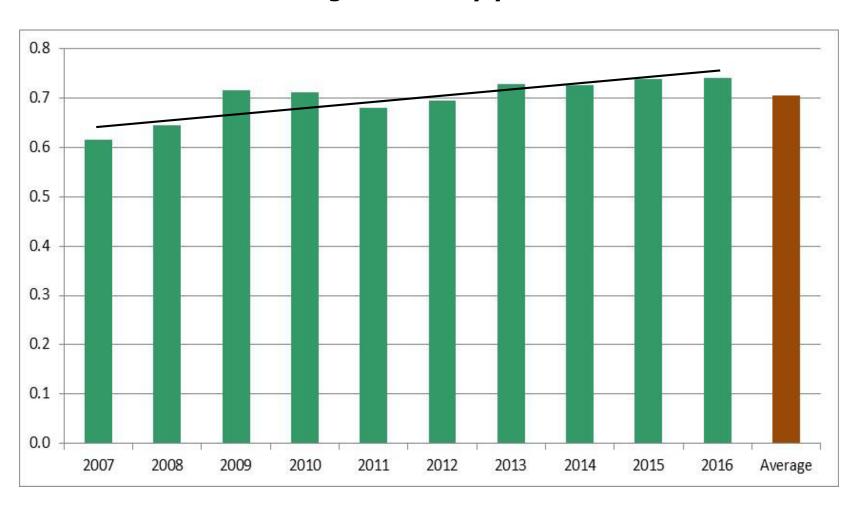
 ⇒ a higher deposits/assets ratio helps to mitigate rivalry among banks;
- LEVERAGE


 ⇒ more leveraged (i.e. less capitalized) banks enjoy a lower degree of market power;
- TBTF ⇒ banking markets with notably large banks are characterized by higher market power;
- ATMPERCAP

 ⇒ financial inclusion increases competition in the banking industry.


Estimated elasticities of P with respect to the market power determinants

- *CR5* → not significant
- $LIQUIDITY \rightarrow significant \ and \ equal \ to \ 0.71$ (i.e., a 10% increase in the deposits to assets ratio causes an increase of about 7% in the value of the interest rate charged to customers by banks)
- LEVERAGE \rightarrow significant and equal to -0.30 (i.e., a 10% increase in the equity multiplier ratio generates a price drop of about 3%)
- $TBTF \rightarrow significant \ and \ equal \ to \ 0.20$ (i.e., a 10% increase in the ratio between the assets of the 5 largest banks and GDP increases price by 2%)
- ATMPERCAP \rightarrow significant and equal to -0.24 (i.e., increasing ATMs by 10% causes a fall of the price of 2.4%)


Estimated indices by country and year

Average indices by country

Average indices by year

Tests of convergence (Barro and Sala-I-Martin, 1992)

eta-convergence	Coef.	Z	
Constant	-0.1600	-5.72	***
$ln(\lambda_{i,t-1})$	-0.4485	-6.36	***
Adjusted R ²	0.2123		
Obs.	138		

There is β -convergence

• β -convergence \rightarrow As the coefficient of $\ln(\lambda_{i,t-1})$ is negative and significant, the less competitive banking sectors have experienced a lower improvement of market power than the more competitive ones.

σ -convergence	Coef.	Z	
Constant	-0.0065	-1.20	
$ln(\lambda_{i,t})$ - mean($ln(\lambda_t)$)	-0.4389	-6.50	***
Adjusted R ²	0.2348		
Obs.	138		

There is σ -convergence

 σ -convergence \rightarrow Results suggest an increase in the speed of convergence as the σ coefficient is negative and statistically significant. There has been a convergence in the various national banking market power indexes, because the dispersion of the mean values of λ between countries has reduced.

Sum-up

- We employ the mark up test developed in the context of the NEIO and find that
 - Where lambda is assumed constant, it is = 0.7604 → banks' perceived MR has been about 76% of the MR that would be taken into consideration by a monopolistic firm or a cartel
 - The above lambda is significantly different from 0 and 1
 → we reject the hypotheses of both perfect collusion and perfect competition
 - When lambda is function of 5 determinants: liquidity (-), leverage (-) TBTF (+) and ATMs (-); concentration (+) but only weakly significant
- Market power has slightly increased over time
- There has been a significant movement towards integration i.e. a reduction of the differences in market power across countries and a process of convergence