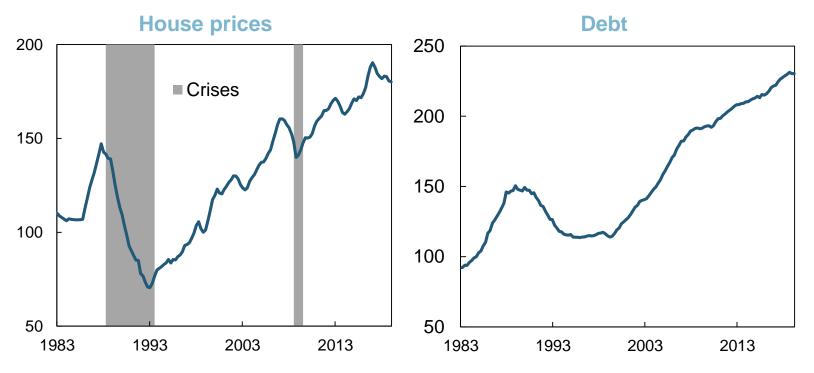


The plan for my talk

Borrower Based Regulation of Banks' Mortgage Loans

- Introduction
 - The motivation for and implementation of BBMs
- Assessing the effects of the BBMs
 - Benefits
 - Costs

INTRODUCTION


Motivation for BBMs

- A response to high growth in house prices and debt
- Prevent an increase in household vulnerability
- Prevent the building up of systemic risks

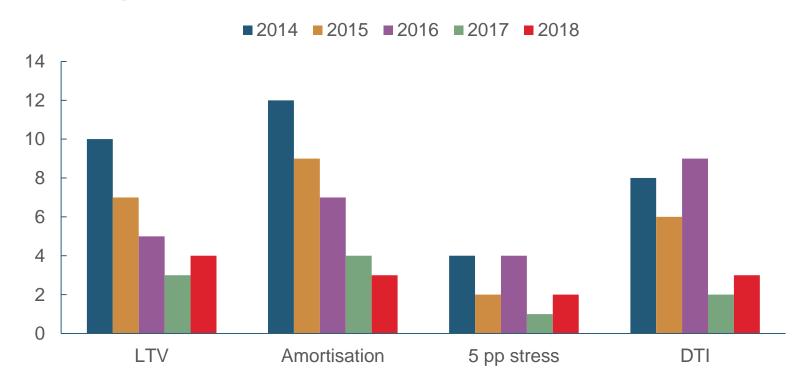
House prices and household debt as a percentage of disposable income

1983Q1 - 2019Q1

Borrower-based regulation

Requirement	June 2015	Jan 2017 and current		
Max. loan to value (LTV)	85%	85%		
Debt-servicing				
Interest rate increase of	5 p.p.	5 p.p.		
Compulsory principal payment	For LTVs > 70%	For LTVs > 60%		
Max. debt to income (DTI)		5 x pre-tax earnings		
Regional requirements		Max. LTV 60% for secondary dwellings in Oslo		
Speed limit (flexibility quota)	10%	10% 8% in Oslo		

ASSESSING THE EFFECTS OF IMPLEMENTED BBMs


We focus on

- Credit growth in vulnerable households
- Effect on house prices and aggregate credit growth
 - Significant effects
 - Time structure of the effect
- Distributional consequences
 - First-time buyers

Mortgage requirements have had an effect

Percentage of new instalment loans in breach of requirement

International analyses of BBMs

The effect on growth in house prices (ΔP^h) and credit (ΔC)

- A growing number of papers is estimating the effect of BBMs using panel data including a large number of countries
- The results are ambiguous

	Redu	ce ΔP^h	Reduce ΔC		
	Short run	Long run	Short run	Long run	
Carreras et al. (2018) JFS	DTI, LTV	DTI, LTV		DTI	
Nymoen et al. (2019) IJFS	LTV		LTV, (DTI)	(DTI)	

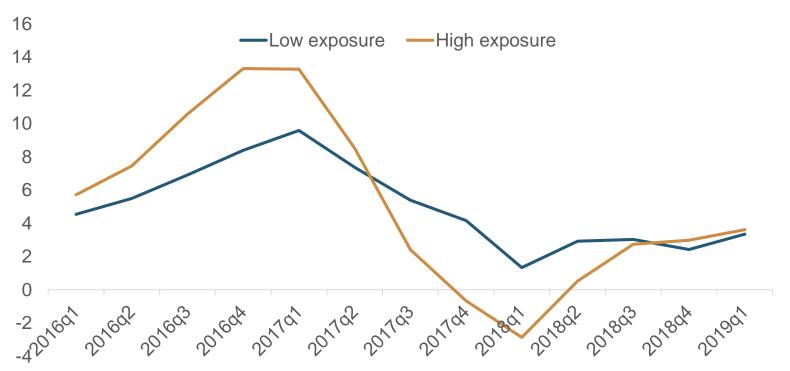
Important with additional analyses!

Analyses at Norges Bank using micro data

Growth in house prices and credit

- Tax returns data on all Norwegian households 2004-2017
- Data on all housing transitions in the market
 - Price, address, buyer
- House prices in 57 geographical regions

The effect of DTI on house price growth


New requirement in 2017

- Hypothesis: The DTI limit has a higher impact on house price growth in areas with a high share of homebuyers with a high DTI (high exposure areas).
- Norway is devided into 57 areas. The share of homebuyers in 2014 with a DTI>5 is calculated. The speed limit is subtracted from the share. If this adjusted share is positive (zero or negative), the area is defined as being a «high exposure» («low exposure») area.

House price growth in areas with high and low exposure to the DTI requirement

Four quarter growth. Percent. 2016 Q1 – 2019 Q1

Estimating the effect of high exposure

$$(1) \Delta_j P_i^h = \alpha EXSP_i + X_i' \beta_1 + \beta_0 + \epsilon_i$$

 $\Delta_j P_i^h$ is the j quarter growth in house prices in region i

 $EXSP_i$ is a dummy variable. Equals 1 if the region is classified as a high exposure area

 X_i is a vector of controls (four quarter change in unemployment and housing supply)

Fixed effects: Large cities, Smaller cities

Regression results

	2016q4 – 2017q4			2016q4-2019q1		2018q1-2019q1		
	I	II	III ¹	IV	V	VI	VII	VIII
EXSP=1	-4.8***	-2.0*	-1.8*	-2.1*	-4,9***	-3.2**	0.3	-0.7
$\Delta_{10-16}P^h$				-0.02				
X	No	Yes	Yes	Yes	No	Yes	No	Yes
City dummies	No	Yes	Yes	Yes	No	Yes	No	Yes
N	57	57	42	57	57	57	57	57
Adj. R ²	0.16	0.57	0.19	0.56	0.20	0.38	-0.0	0.13

¹⁾ Without Oslo.

^{*, **, ***} indicate significance at 10, 5 and 1 percent level.

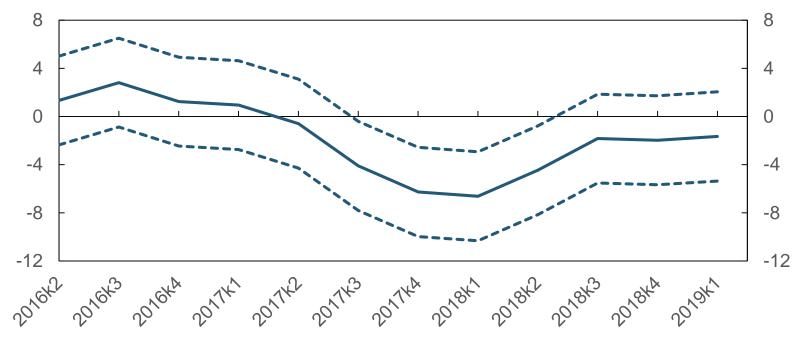
Estimating the effect of high exposure

With time fixed effects

(2)
$$\Delta_4 P_{it}^h = \alpha_1 E X S P_i + \alpha_{2t} \tau_t + \alpha_{3t} E X S P_i \cdot \tau_t + X_{it}' \beta_1 + \beta_0 + \epsilon_i$$

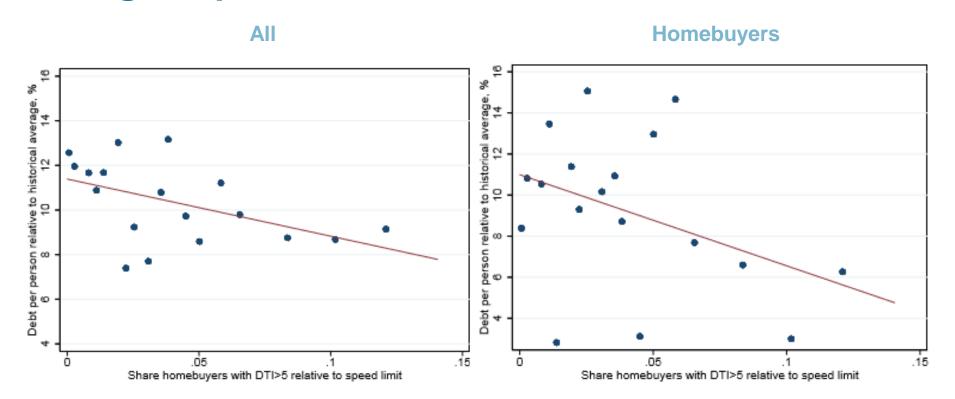
 $\Delta_4 P_i^h$ is the four quarter growth in house prices in region i

 $EXSP_i$ is a dummy variable. Equals 1 if the region is classified as a high exposure area

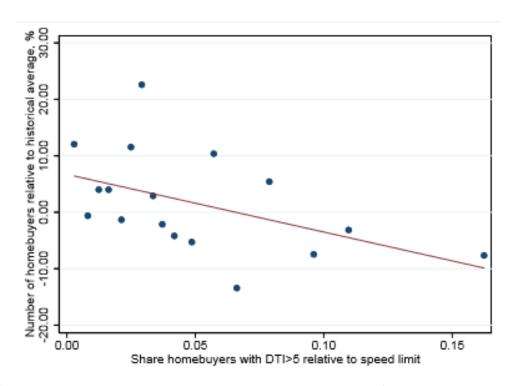

 X_i is a vector of controls (four quarter change in unemployment and housing supply)

 τ_t is a time dummy for each quarter

Time-varying effect on the four quarter house price growth of high exposure¹


Percent. 2016q2 - 2019q1

¹⁾ Dotted lines show plus/minus two times the standard deviation. Sources: Ambita, Eiendom Norge, Eiendomsverdi, Finn.no, Statistisk sentralbyrå and Norges Bank


Exposure and growth in debt per person¹ in high exposure areas. Percent. 2017

1) 2017 debt per person compared with average debt per preson of 2014-2016. Reference: Borchgrevink and Torstensen, Economic Commentaries 1/2018. Norges Bank

Exposure and number of home buyers¹. High exposure areas. Percent. 2017

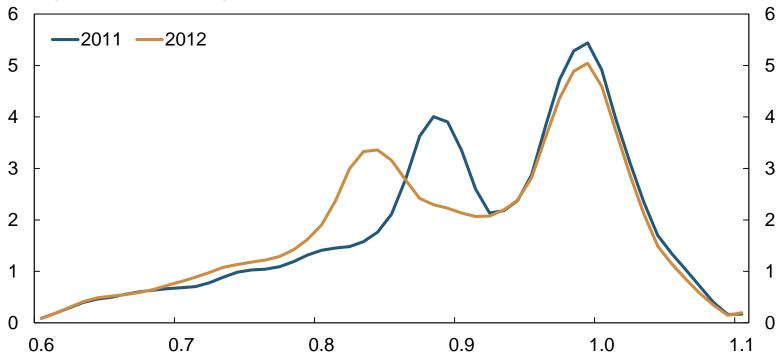
1) Number of homebuyers in 2017 relative to the average of 2010-2016. Reference: Borchgrevink and Torstensen, Ecoomic Commentaries 1/2018. Norges Bank

To summarize

Our analysis shows that

- BBMs reduce the number of vulnerable household
- The DTI limit reduces growth in house prices and credit in the medium term – at least in high exposure areas relative to low exposure areas
- The negative effect on house price growth lasts 1½ year. The level effect is stille present after 2 years

THANK YOU!



EXTRA

The distribution of LTV among first-time buyers 18-39 years shifted in 2012

The guideline changed from 0.9 to 0.85 December 2011

First-time buyers

Age 21-31

- We analyse
 - if parental support is important for children's first home investment
 - if parental support has become increasingly important over time.
- Estimate the probability of young persons buying their first home

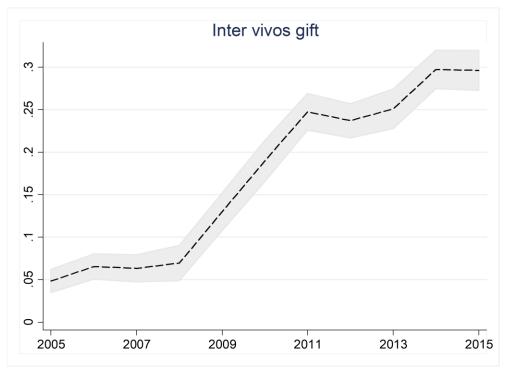
Main findings

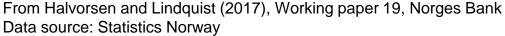
- We find significant positive effects on children' probability of buying their first home from
 - Parental financial and collateral wealth
 - Inter vivos gifts
 - Own income and financial wealth
- Over time, the importance of parental support has increased

2 The model

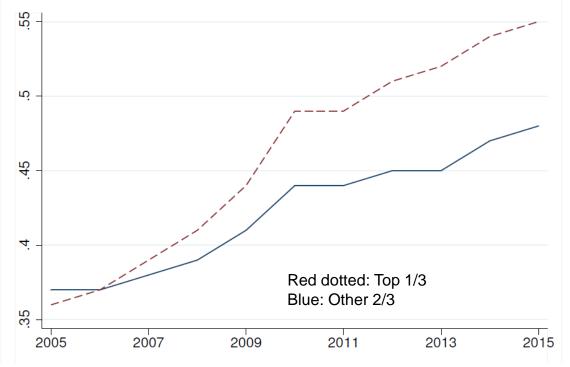
Logit estimation. The probability to buy the first home

$$\Pr[\Delta H_{it} = 1] = \frac{1}{\exp\{-\left(\alpha + \beta \ln Y_{it}^p + \gamma \ln W_{i,t-1}^p + \varphi X_{it} + extensions\right)\}-1}$$

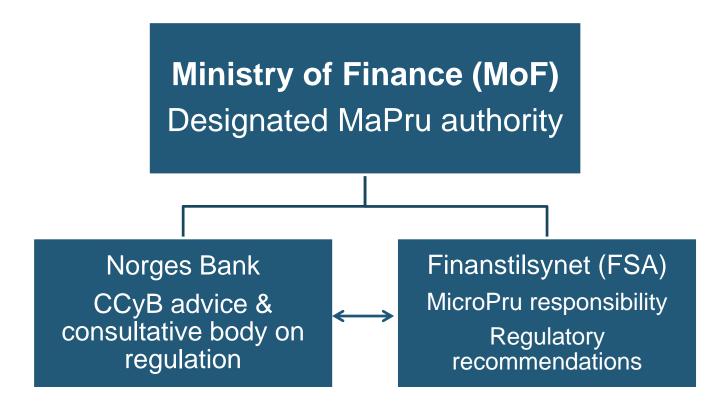

$$extensions = \delta \ln Y_{it}^k + \vartheta \ln W_{i,t-1}^k + \tau \ln W H_{i,t-1}^p + \theta T_{it}$$


 $\Delta H_{it} = 1$ if individual i buys its first home in period t; Y =income; W = financial wealth; WH = housing wealth; T = dummy for inter vivos gift; p =parents; k =child; $X_{it} =$ (age, gender, marital status, own children, big city, siblings, student, time dummies)

Average marginal effect on the propensity to buy from receiving inter vivos gift


Age 21-31 years

Mean ownership-rate difference across parental wealth position groups increases


Share. Young 21-31 years

From Halvorsen and Lindquist (2017), Working paper 19, Norges Bank Data source: Statistics Norway

The macroprudential institutions

