Exit Menu

Intelligent control of bi-product distillation column


Project description

Nowadays, industrial processes are rapidly developing to meet high standards regarding increases in the production rate and/or improving product quality. Fulfilling these requirements is having to work in tandem with the pressure to reduce energy consumption due to global environmental regulations.

Consequently, most industrial processes critically rely on automatic control, which can provide efficient solutions to meet such challenges and prerequisites. For this thesis, an intelligent system design has been investigated for controlling the distillation process, which is characterised by highly nonlinear and dynamic behaviour. These features raise very challenging tasks for control systems designers. Fuzzy logic and artificial neural networks (ANNs) are the main methods used in this study to design different controllers, namely: PI- PD- and PID-like fuzzy controllers, ANN-based NARMAL2 in addition to a conventional PID controller for comparison purposes. Genetic algorithm (GA) and particle swarm optimisation (PSO) have also been utilised to tune fuzzy controllers by finding the best set of scaling factors.

Finally, an intelligent controller is proposed, called ANFIS-based NARMA-L2, which uses ANFIS as an approximation approach for identifying the underlying systems in a NARMA-L2 configuration. The controllers are applied to control two compositions of a binary distillation column, which has been modelled and simulated in MATLABR and on the Simulink platform.