Exit Menu

Occurrence and lifecycle fate of additives used in plastics

Trade-offs in closing the food plastic packaging loop: occurrence and lifecycle fate of additives

This project pivots around the topical, yet niche area of the lifecycle fate of additives used in food plastic packaging applications. It aims to explore the trade-offs associated with the mechanical recycling of polyethylene terephthalate (PET) bottles, by focusing on the occurrence and lifecycle fate of intentionally and non-intentionally added substances. PET is the most commonly used plastic packaging for the containment of beverages, e.g. water and soda drinks, and the most widely collected plastic for recycling at both formal and informal recycling systems. Thereby, interrogating all processes – from manufacturing to end-of-life management – involved in PET drinking bottles lifecycle, the project will champion innovative thinking and challenge the sustainability of closing the plastic material loops via the employment of mechanical recycling processes.

The outputs of this project, will be of wider benefit to the academic community that is increasingly facing the challenge of understanding the impacts of plastic packaging in the environment and society. The systemic approach taken by this study will benefit academics and stakeholders alike, as it will provide evidence on the lifecycle fate of additives used in food plastic packaging. This, in turn, can be used to assess the effectiveness of multiple proposed interventions in the plastic packaging system, and lead to effective decision-making regarding future policy interventions. This is a rapidly developing cross-cutting research area and it yields support from a wide variety of individuals and groups, including the Department of Environment, Food and Rural Affairs (Defra) and the European Food Packaging Forum.


Meet the Principal Investigator(s) for the project


Related Research Group(s)

Sustainable Plastics

Sustainable Plastics - SPLaSH group combines the strengths of social scientists in the Department of Social and Political Sciences with colleagues working in the area of plastic pollution from Environmental Sciences, Design, Business & Marketing, and Engineering. We are leading experts on behaviour change, public health protection, resource and waste management, governance aspects and sustainability design.

Pollution Research and Policy

Pollution Research and Policy - Predictive approaches in toxicology, including combined chemical exposures and development of new frameworks for non-animal approaches for predicting toxicity; Endocrine disruptor research with an emphasis on mechanisms of disease and test method development; Pollution monitoring, clean-up technologies and chemical analytics.


Project last modified 22/01/2021