Exit Menu

A condition monitoring system for offshore wind turbines

CleanWinTur: An ultrasonic system for anti-fouling and condition monitoring of offshore wind turbines

Background

Offshore wind is a significant part of UK energy generation, with UK installed capacity forecast to rise from 8GW in 2018 to 30GW by 2030 (BEIS). The global offshore wind power market size has an installed capacity of more than 22 GW and is projected to reach approximately 94 GW by the end of 2026 (Fortune Business Insights, Market Research Report, June 2019.).

Recent reports, by the Offshore Renewable Energy Catapult (OREC) highlighted problems associated with marine growth on offshore wind turbine structures. CWT aims to address these problems by introducing an ultrasonic antifouling system. The validity of the approach will be demonstrated through trials, environmental and durability testing, staged in a manner to minimise risks.

A permanently-installed system that uses relatively high-power ultrasound to prevent marine growth on the access ladders will eliminate the need for manual inspection and cleaning of the access ladders – for example by pressure washing - prior to any maintenance activity on the OWT, reducing costs and improving safety.

Objective

CleanWinTur will combine cutting-edge innovative ultrasonic technologies to improve OWT resilience and lower overall lifetime costs. The aim is to further develop and demonstrate the novel anti-fouling system that remains effective in marine environments, targeting an operational lifetime of at least 10 years. The technical approach consists of permanently attached ultrasonic transducers, placed on the surface of the access ladders, which emit ultrasonic waves in the range 20kHz to 40 kHz for eliminating marine growth.) preventing micro-organisms growth by creating acoustic cavitation on the outer surface of the substructure.

Benefits

  • An autonomous system drawing power directly from the OWT using custom-made electronics for low cost and low power consumption.
  • A non-toxic (in contrast to coatings) solution for bio-fouling prevention. Crucially, the ultrasound operating modes are non-destructive.

Brunel Innovation Centre's Role

  • To develop cutting edge custom-made electronics for low cost and low power consumption with enclosure.
  • Finite Element modelling, designing and lab/field demonstration of the ultrasonic cleaning of the biofouling.

Project Partners

3Sci Limited

EMEC (The European Marine Energy Centre Limited)

OREC (Offshore Renewable Energy Catapult Limited)

InnotecUK, 

Brunel University London


Meet the Principal Investigator(s) for the project


Related Research Group(s)

Brunel Innovation Centre

Brunel Innovation Centre - A world-class research and technology centre that sits between the knowledge base and industry.


Project last modified 19/02/2021