Exit Menu

Investigating the role of bioactive sphingolipids in Friedreich’s ataxia

Friedreich’s ataxia (FA) is caused by the reduction of a specific protein found in cells, called frataxin. Although this has been known for many years, the knock-on effects that the loss of frataxin has on other processes in cells are constantly being discovered. This project aims to study one of these processes in more detail, which could lead to alternate options for treatments. Lipids are important components of all living cells.

A specific group of lipids, called sphingolipids, are particularly important for brain function. Sphingolipids are known to have a role in a number of other neurodegenerative conditions, such as Parkinson’s disease. These researchers previously measured the levels of sphingolipids in cells from people with FA. They found that the levels were different when compared to cells taken from people that did not have FA.

This suggests that sphingolipids could also play a role in the neurodegeneration that occurs in FA. Sphingolipids can determine the fate of a cell. A specific sphingolipid, called Cer, can trigger a cellular pathway, which ends in the death of the cell. If the level of Cer gets too high in brain cells it would contribute to neurodegeneration. Another sphingolipid, called CerP, promotes the survival of cells, which would protect against neurodegeneration.

Therefore, the different levels of these sphingolipids are very important for maintaining cells in the brain and preventing neurodegeneration.

During this project, the researchers will study the respective levels of these different types of sphingolipids to determine the role they might play in FA.

Finally, Dr. Anjomani Virmouni and her team will use drugs to increase or decrease the levels of these sphingolipids in cell models of FA. This will tell them whether this could be a way to treat the condition in people.

Dr Anjomani Virmouni said: “The aim of this project is to have a clear picture of the sphingolipid changes in FA, and to identify potential targets for the development of treatments. The results from this study will provide valuable information to allow us to test this theory in animal models of FA, and eventually, if successful, to bring this approach to clinical trials.”

Publications

  • Sherzai, M., Valle, A., Perry, N., Kalef-Ezra, E., Al-Mahdawi, S., Pook, M. and Anjomani-Virmouni, S. (2020) 'HMTase Inhibitors as a Potential Epigenetic-based Therapeutic Approach for Friedreich’s Ataxia'. Frontiers in Genetics, 11. pp. 1 - 10. ISSN: 1664-8021
  • Anjomani-Virmouni, S., Kalef-Ezra, E., Valle, A., Perry, N., Tripp, A., Agliano, A., et al. (2019) 'Elucidation of the metabolic signature of Friedreich’s ataxia'. IARC International Ataxia Research Conference. Washington. 
  • Anjomani Virmouni, S., Ezzatizadeh, V., Sandi, C., Sandi, M., Al-Mahdawi, S., Chutake, Y. and et al. (2015) 'A novel GAA-repeat-expansion-based mouse model of Friedreich's ataxia'. Dis Model Mech, 8 (3). pp. 225 - 235. ISSN: 1754-8403

Meet the Principal Investigator(s) for the project


Related Research Group(s)

Genome Engineering and Maintenance

Genome Engineering and Maintenance - Diverse research network focused on molecular, cellular, organismal and computational aspects of genome biology.


Project last modified 25/06/2021