Exit Menu

Occurrence and lifecycle fate of additives used in plastics

Ongoing

Project description

Trade-offs in closing the food plastic packaging loop: occurrence and lifecycle fate of additives

This project pivots around the topical, yet niche area of the lifecycle fate of additives used in food plastic packaging applications. It aims to explore the trade-offs associated with the mechanical recycling of polyethylene terephthalate (PET) bottles, by focusing on the occurrence and lifecycle fate of intentionally and non-intentionally added substances. PET is the most commonly used plastic packaging for the containment of beverages, e.g. water and soda drinks, and the most widely collected plastic for recycling at both formal and informal recycling systems. Thereby, interrogating all processes – from manufacturing to end-of-life management – involved in PET drinking bottles lifecycle, the project will champion innovative thinking and challenge the sustainability of closing the plastic material loops via the employment of mechanical recycling processes.

The outputs of this project, will be of wider benefit to the academic community that is increasingly facing the challenge of understanding the impacts of plastic packaging in the environment and society. The systemic approach taken by this study will benefit academics and stakeholders alike, as it will provide evidence on the lifecycle fate of additives used in food plastic packaging. This, in turn, can be used to assess the effectiveness of multiple proposed interventions in the plastic packaging system, and lead to effective decision-making regarding future policy interventions. This is a rapidly developing cross-cutting research area and it yields support from a wide variety of individuals and groups, including the Department of Environment, Food and Rural Affairs (Defra) and the European Food Packaging Forum.


Meet the Principal Investigator(s) for the project

Dr Eleni Iacovidou - My research focuses on environmental management, with emphasis on resource and waste management systems. Specifically, I develop methods for performing holistic and integrated environmental, economic, social and technical assessments of resource recovery systems based on a systems thinking approach. Using this approach, I combine environmental science and engineering with an understanding of the political, organisational, structural and cultural aspects that act synergistically in a resource recovery system to highlight areas of intervention for promoting sustainability. My research is predominantly desktop based and focuses on four key areas: food waste prevention and management , plastic and plastic packaging system assessment, construction components reuse and modular structures, waste electrical and electronic equipment (WEEE) repair and reuse, I am also interested in the implications of technological and regulatory lock-ins, the role of stakeholders in sustainability transitions, the impact of informal recycling systems on environment and society, in waste infrastructure availability and adaptation based on area-specific characteristics, the use of smart technologies for tracking components and products across the value chain, and in circular economy.